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Abstract—The topic of opportunistic scheduling for wireless
ad-hoc networks has been studied for single-channel networks in
several recent works. Since now many wireless systems provide
multiple channels for data transmission, this problem is of
practical interest for networks with multiple channels. In this
paper, we study the problem of opportunistic scheduling for
one type of ad-hoc networks where the wireless spectrum can
be divided into multiple independent sub-channels for better
efficiency. We start with a naive multi-channel protocol where the
scheduling scheme is working independently from sub-channel to
sub-channel. We show that the naive protocol can only marginally
improve the system throughput. We then develop a protocol
to jointly consider the opportunistic scheduling behavior across
multiple sub-channels. We characterize the optimal stopping rule
and present several bounds for the system throughput of the
multi-channel protocol. We show that by joint optimization of
the scheduling scheme across multiple sub-channels, the proposed
protocol improves the system throughput considerably in contrast
to that of single-channel systems.

I. INTRODUCTION

In the past decade many papers have been published on

the topic of opportunistic scheduling [1]. Instead of treating

channel fading as a source of unreliability and trying to

mitigate the channel fluctuations, fading can be exploited by

transmitting information opportunistically when and where

the channel is strong [2]. This problem is well studied for

cellular-like networks where a central scheduler tries to op-

timize the overall system performance by selecting the on-

peak user for data transmission [1]–[3]. In contrast, in ad-hoc

networks it is required to access the medium and schedule

data transmission in a decentralized fashion. So far few works

have studied this problem in distributed scenarios. A few

examples include rate adaptation with MAC design based on

the RTS/CTS handshaking for IEEE 802.11 networks [4]–

[6] and channel-aware ALOHA for uplink communications

[7]–[9]. However, rate adaptation schemes focus on exploiting

temporal opportunities, leaving the distributed medium access

problem to the RTS/CTS mechanism [4]–[6]. On the other

hand, channel-aware ALOHA associates the probability to

access the uplink with channel quality assuming that each

user knows its own channel state information (CSI) from

the uplink [7]–[9]. These works ignore the overhead due to

distributed medium access in wireless ad-hoc networks. One

type of distributed opportunistic scheduling (DOS) problems

is studied in [10], in which multiple links contend the shared

wireless medium and schedule data transmission using only

local information in an ad-hoc network. In [10], the transmitter

has no knowledge of other links’ channel conditions, and

even its own channel condition is not available before one

successful probing. The link condition corresponding to one

successful probing can either be good or poor due to channel

fluctuations. In each round of channel probing, the winner

decides whether or not to send data over the channel. If the

winner gives up the current opportunity, all links re-contend

the wireless medium again, in the hope that another link

with better channel condition can utilize the channel after re-

contention. The purpose of this procedure is to optimize the

overall system throughput. It is shown in [10] that the decision

on further channel probing or data transmission is based on

local channel condition only, and the optimal strategy is a

threshold policy. This problem in further studied in [11] where

the winners’ channel rates are not explicitly assumed to be

independent. The system throughput is characterized in [11]

under possible dependence of the winners’ channel rates.

On the other hand, many wireless systems now provide

multiple channels for data transmission [12]–[14]. Hence the

opportunistic scheduling problem for such kind of wireless

networks is of practical interest. In a multi-channel network,

different channels experience independent fluctuations if the

channel separation is greater than the coherent bandwidth. This

fact substantially enhances the possbility that there exists at

least one channel with good quality. This type of opportunis-

tic scheduling problem has been discussed in [12]–[14] for

centralized scenario. In this paper, we study the distributed

opportunistic scheduling problem for ad-hoc networks where

the wireless spectrum is divided into multiple independent

channels. We develop a scheduling scheme that jointly exploits

opportunism across multiple sub-channels. We characterize the

optimal decision rule and present several bounds for the system

throughput of the multi-channel protocol. Through numerical

results we show that our proposed multi-channel opportunistic

scheduling protocol can improve system performance consid-

erably in contrast to that of single-channel systems.

This paper is organized as follows. We first introduce our

system model in Section II. We explain our motivation for

the multi-channel scheme and develop our protocol in Section

III. We characterize the optimal rules and system throughput

for the multi-channel protocol in Section IV, and show our
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numerical results in Section V. Finally we conclude this paper

in Section VI.

II. SYSTEM MODEL

Similar to [10], [11], we assume there are M links sharing

the wireless medium in an ad-hoc network without any cen-

tralized coordinator. To access the wireless medium, all links

have to probe first. Suppose these links adopt a fixed probing

duration τ . A collision channel model is considered, where a

link wins the channel if and only if no other links are probing

simultaneously. If link m probes the medium with a fixed

probability p(m), the duration of the n-th round of channel

probing is

Tn = τ ·Kn, (1)

where Kn is the number of probes before the channel is

won by some link sn. Hence Kn has a geometric distribution

Geom(ps), where its parameter

ps =

M
∑

m=1

p(m)

∏

i6=m

[

1− p(i)

]

(2)

is the successful probing probability. At the end of the n-th
round, the winner sn has an option to send data through the

wireless channel at a rate of Rn, or to give up. Here we denote

the channel rate for link m as R(m), and the channel rate for

the winner in the n-th round as Rn.

To opportunistically schedule transmissions in a distributed

fashion, all M links cooperate to optimize the average network

throughput. At the end of the n-th round, sn makes a decision

on whether or not to utilize the channel for data transmission,

where sn sends data over the channel only when Rn is

satisfactory. If sn gives up the opportunity, all links re-contend

the wireless medium. This procedure repeats until some link

finally utilizes the channel for data transmission. The goal

is that all links cooperate to make the channel accessible by

someone with satisfactory transmission rate. This problem can

be modeled as an optimal stopping problem [15], [16]. In the

n-th round, the winner sn observes the probing duration Tn

and the transmission rate Rn. Hence the sequence of σ-fields
[15], [16] can be written as

Fn = {R1, T1; R2, T2; . . . ; Rn, Tn}. (3)

At time n, based on the observation Fn the winner sn makes

a decision on whether to stop or not to maximize the system

throughput.

We study this problem under the constant access time (CAT)

model [11], [13], where the total duration of the channel

probing and data transmission is a constant, i.e. Tp +Td = T .

We adopt this model so that the beginning of each block T on

different sub-channels can easily be synchronized in a multi-

channel network. Note that the duration of channel probing

is a random variable depending on the stopping time N , i.e.

Tp,N =
∑N

i=1 Ti.

III. THE MULTI-CHANNEL OPPORTUNISTIC SCHEDULING

PROBLEM

In this section, we describe the opportunistic scheduling

problem for multi-channel ad-hoc networks and develop a

protocol that enables joint optimization across multiple sub-

channels.

A. Motivation for the Multi-Channel Problem

We consider a wireless ad-hoc network with available

bandwidth W . There are a total of M links competing the

medium in a cooperative and opportunistic manner. The whole

spectrum can be directly used as one single channel, using

the distributed opportunistic scheduling protocols described in

[11]. We assume a homogeneous network where the channel

statistics are identical for different links. Now we are interested

in better efficiency by dividing the whole bandwidth into J
sub-channels, where J < M . We assume each sub-channel

has a bandwidth of W
J
, and the sub-channels are orthogonal

and hence their channel fadings are independent from each

other. This is a common assumption in literature. For example,

wireless networks with independent sub-channels have been

discussed in [12]–[14]. We denote the time as t and the number

of active probing links on the j-th sub-channel at time t

as M
(j)
t . For simplicity we use the scenario M

(j)
t = M

J
to

illustrate our idea.

We first take a look at the average waiting time for any

given link to access the medium. For a single-channel network,

a given link m is able to access the current block with a

probability 1
M
. Since the procedure is independent from block

to block, the average waiting time before link m can send

data through the wireless medium is MT , i.e. M blocks. For

a multi-channel system, link m is able to access the current

block with a probability 1

M
(j)
t

= J
M
. Hence the average delay

for link m to access the medium is MT
J

. This is only 1
J
of that

of a single-channel network. Hence multi-channel protocols

can considerably reduce the average waiting time for any given

link to access the medium.

Now we consider the system throughput. Intuitively speak-

ing, the system throughput is determined by how likely a

“good” link can be found in the network. For a single-channel

network, we assume the probability that the current captured

channel rate for a given link being “good” is Pg. Hence the

probability that the wireless medium will be utilized by a

“good” link is MPg. For the multi-channel network, on the

other hand, we need to find J “good” links. This is because

the bandwidth of each sub-channel is only W
J
. Suppose the

probability that the current captured transmission rate being

“good” on a given sub-channel is P̃g . If we consider the

scheduling is independent between sub-channels, this probabil-

ity is J · M
J

P̃g = MP̃g . There is no big difference compared

to the single-channel scenario, since we can treat Pg ≈ P̃g

if the bandwidth W is evenly allocated to each sub-channel.

On the other hand, if the distributed opportunistic scheduling

is jointly designed across all sub-channels, this probability

becomes
(

M

J

)

P̃g . Hence this probability will be improved
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Fig. 1. The channel probing within one block duration T for a network with
3 sub-channels.

considerably when there are enough number of sub-channels

J . It gives us some hint on the benefit from joint optimization

across multiple sub-channels. However, it is tricky to design

protocols that can work in a distributed scenario to achieve

the opportunism introduced by these sub-channels.

B. The Multi-Channel Opportunistic Scheduling Protocol

Similar to the single-channel scenario, we consider a col-

lision model for each sub-channel where channel probing

is required before accessing any sub-channel. The channel

probing is still independent from sub-channel to sub-channel

due to lack of centralized coordinator. Suppose at time t there

are M
(j)
t links actively probing the j-th sub-channel with a

fixed probability p. The j-th sub-channel is won by some link

after a duration of τK
(j)
nj and is captured at a transmission

rate of R
(j)
nj . Here nj = nj(t) is the index for the round

of successful channel probing on the j-th sub-channel. We

can see K
(j)
nj has a geometric distribution with parameter p

(j)
s,t ,

where p
(j)
s,t is the successful probing probability on the j-th

sub-channel at time t and it depends on M
(j)
t .

Since the channel probing is independent for different sub-

channels, nj(t) is generally asynchronous for different j. This
is illustrated in Fig. 1, where the numbers above each sub-

channel indicate nj at different time t. We can see that sub-

channel 2 has its first winner link later than sub-channel 1 and

3, while sub-channel 1 has its second winner link later than

sub-channel 2 and 3 respectively. Whenever any sub-channel

is won by some link that is actively probing that sub-channel,

we say one event happens in the system. Now we take a look

at the whole procedure from time t = 0. We already know that

it takes a duration of τK
(j)
nj for the nj-th event to happen on

the j-th sub-channel. Hence it takes a duration of τ min K
(j)
nj

for the first event ever to happen in this network. Similarly,

starting from the first event, it takes a duration of τ min K
(j)
nj

for the second event to appear in the system, and so on. We

denote the minimum duration across different sub-channels as

K̃n = min
j∈Jt

K(j)
nj

, (4)

where n = n(t) is the index for the round of successful

probing in the system, and Jt is the set of sub-channels that

have not been utilized for data transmission until time t. We

can see that K̃n is the shortest time interval between any two

events (not necessarily originated from the same sub-channel)

in the system.

1: Each link m picks one sub-channel;

2: Jt ← {1, 2, . . . , J};
3: while Jt 6= ∅ do
4: for each j ∈ Jt do

5: links probe the j-th sub-channel;

6: end for

7: if link m wins some sub-channel j then

8: m makes a decision on whether to send data on

j or not;

9: if m decides to utilize sub-channel j then

10: m sends data over sub-channel j until the end

of this block;

11: sub-channel j is deleted from Jt;

12: end if

13: end if

14: end while

Fig. 2. The Distributed Opportunistic Scheduling Protocol for Multi-Channel
Networks

Hence for a multi-channel network, it is not necessary to

trace all events on a specific sub-channel and design optimal

stopping rule for that sub-channel. Instead the protocol could

make a decision as soon as there is a new event available

in the system, no matter from which sub-channel this event

is originated. As a result, one major difference of the multi-

channel protocol is that the decision making at different time

instances could be based on observations from different sub-

channels. The full protocol can be described in Fig. 2.

Note that in Fig. 2, there are generally multiple winners

on different sub-channels at the same time and hence multiple

decision makings based on different instant transmission rates.

IV. PERFORMANCE ANALYSIS FOR THE MULTI-CHANNEL

PROTOCOL

In this section, we analyze the proposed multi-channel

protocol and characterize its system throughput. We present

lower and upper bounds on the system throughput under

various constraints.

In this paper, we only characterize system performances

for homogeneous networks, where the distributions of the

transmission rates are identical with respect to different links

or sub-channels. To facilitate our performance analysis, we

make some additional assumptions as we did for single-

channel systems in [11]:

[A1] The channel rates can only take values in (0,+∞);
[A2] The probing duration τ is much smaller compared to the

block length, i.e. τ ≪ T .

We take a look at the channel probing and decision making

procedure described by Fig. 2. Suppose the j-th sub-channel

is won by some link after a duration of K̃n, which makes it

the n-th round of successful channel probing for the multi-

channel system. Suppose sub-channel j is then captured by
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the winner sn at rate R̃n.
1 Hence the reward is

Yn =
R̃n · (T − τ

∑n

i=1 K̃n)

T
(5)

if the winner sn decides to utilize the channel, and is 0
otherwise. We can rewrite it as

Yn =
T − τ

∑n

i=1 K̃n

T/R̃n

,

and the optimization is now reduced to maximize the rate

of return [15], [16]. To do this, we need to characterize the

probabilistic distribution of K̃n.

Lemma 1: K̃n has a geometric distribution Geom(p̃s,t)
with parameter

p̃s,t = 1−
∏

j∈Jt

[

1− p
(j)
s,t

]

, (6)

where p
(j)
s,t is the successful probing probability on the j-th

sub-channel at time t.
Proof: It is easy to compute the CDF of K̃n based on (4)

if we notice that K
(j)
nj are independent geometric distributions

with parameter p
(j)
s,t .

Now that K̃n has a geometric distribution Geom(p̃s,t), we
can apply a similar procedure as in [11] to characterize the

optimal stopping rule.

Lemma 2: Suppose at time t, the set of sub-channels that

have not been utilized for data transmission is Jt. Then the

optimal stopping rule is

N∗ = min

{

n ≥ 1 : R̃n ≥ λ∗
n ·

T

T − τ
∑n

i=1 K̃i

}

, (7)

where λ∗
n is the solution to

E

[

1−
τ

T

(

n
∑

i=1

K̃i − K̃n+1

)

−
λ

R̃n

]+

=
τ

T · p̃s,t

. (8)

The optimal system throughput λ∗ is the solution to

E

[

1−
λ

R̃n

]+

=
τ

T · p̃s,t

. (9)

Here the successful probing probability p̃s,t is defined in (6).

Proof: The proof can be obtained in a similar way as the

proof of Theorem 1 in [11].

From Lemma 2, we can see the optimal reward and stopping

rule only depend on the cumulative durations τ
∑n

i=1 K̃n for

channel probing and the captured instant channel rate R̃n. Both

of them are readily available for the winners’ decision makings

in a distributed setting, even though physically these events

might be originated from different sub-channels.

We now take a look at the whole decision making procedure.

Once a sub-channel is utilized for data transmission, it will

not be involved in the channel probing until the beginning

1Strictly speaking, they should be denoted as s
(j)
n and R̃

(j)
n respectively,

since there might be multiple winners on different sub-channels at time t.
Here we ignore the superscript when discussing one of these winners.

of the next block. Hence the cardinality of Jt (denoted as

Jt = ‖Jt‖) decreases whenever there is a decision to stop. All

sub-channels will be eventually utilized for data transmission.

Hence there should be J decisions that are to stop in the

end. The decreasing of Jt will affect the successful probing

probability (6) for the multi-channel system and hence the

system throughput.

We first characterize the optimal reward when the successful

probing probability p̃s,t is varying as the procedure moves on.

Lemma 3: Suppose the successful probing probability p̃s,t

in Lemma 2 is varying as the procedure moves on. Suppose

before one winner decides to stop, the minimum and maximum

of p̃s,t are p̃s,min and p̃s,max respectively. Then the optimal

system throughput λ∗ for this decision can be bounded as

λ∗
min ≤ λ∗ ≤ λ∗

max, (10)

where λ∗
min is the system throughput if the successful probing

probability is always p̃s,min, and λ∗
max is the system through-

put if the successful probing probability is always p̃s,max.

Proof: The proof is straight-forward if we notice that

the optimal reward λ∗ in (9) monotonically increases as p̃s,t

increases.

To calculate the system throughput, note that the successful

probing probability p̃s,t increases as Jt increases. Hence p̃s,t

reaches its maximal value in the beginning when Jt = J .
Based on this we can get an upper bound on the system

throughput. To simplify our notation, we further make the

following assumptions:

[A3] Each sub-channel has the same number of links, i.e.

M
(j)
t = M

(1)
t for j = 1, . . . , J ;

[A4] All links are probing with the same probability, i.e.

p(m) = p for m = 1, . . . ,M .

Thus all sub-channels have the same successful probing prob-

abilities, i.e. p
(j)
s,t = p

(1)
s,t for j = 1, . . . , J .

Theorem 1: The system throughput of Fig. 2 is at most Jλ∗
0,

where λ∗
0 is the solution to

E

[

1−
λ

R̃n

]+

=
τ/T

1−
[

1− p
(1)
s,t

]J
. (11)

We can also have a lower bound on the system throughput

if Jt is available for optimal decision making through some

means.

Theorem 2: If Jt = ‖Jt‖ is available for decision making

in Fig. 2, the system throughput is at least
∑J

j=1 γ∗
j , where

γ∗
j is the solution to

E

[

1−
γ

R̃n

]+

=
τ/T

1−
[

1− p
(1)
s,t

]j
. (12)

Proof: We can see when Jt = j, the optimal system

throughput is γ∗
j . Hence if there is at most one sub-channel

that is decided to be utilized for data transmission at any time

t, the total network throughput will be exactly
∑J

j=1 γ∗
j .

Now suppose Jt = j. At this time there are still j sub-

channels involved in active channel probing and decision
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making. Suppose ∆ sub-channels are decided to be utilized

for data transmission at some point. Then the reward from

these sub-channels are ∆ · γ∗
j . We can easily see that

∆ · γ∗
j >

j
∑

i=j−∆+1

γ∗
i . (13)

To bound the system throughput, iterate j from the very

beginning j = J and apply (13) when multiple sub-channels

are decided to be utilized for data transmission at the same

time.

Unfortunately, in ad-hoc networks Jt is not readily available

for decision making. Starting from Jt = J , more and more

sub-channels will be eventually utilized for data transmission

as the procedure moves on. At any time more than one

decisions over multiple sub-channels might be made to stop.

Hence Jt is a random process which depends on the channel

probing and decision making behavior. One solution to this

problem is to conservatively use a fixed small J0 as the true

Jt for decision making. We can get a lower bound on the

system throughput if the protocol works in this way.

Theorem 3: If a fixed J0 is used in Fig. 2 to replace Jt when

computing the optimal stopping rule, the system throughput is

at least (J − J0 + 1)ζ∗, where ζ∗ is the solution to

E

[

1−
ζ

R̃n

]+

=
τ/T

1−
[

1− p
(1)
s,t

]J0
. (14)

Proof: To characterize the throughput from each decision,

we divide the whole procedure into two phases:

• Jt ≥ J0: The decision rule is more conservative as it

is using a smaller p̃s,t. Hence the decision making will

stop earlier and result in a reward ζ̂. Apparently we have

ζ̂ ≥ ζ∗. The first J − (J0 − 1) sub-channels that are

decided to be utilized for data transmission fall into this

category.

• Jt < J0: The decision rule is more optimistic compared

to the true situation. There is a chance that it will never

stop properly since a larger threshold is used here. The

worst case is that we get a total reward of 0 for these

J0 − 1 sub-channels.

Now combine these two cases, we get a total throughput which

is at least (J − J0 + 1)ζ∗.

V. NUMERICAL RESULTS

In this section, we compare system throughput of Fig. 2 to

that of the single-channel protocol under various constraints,

as described by Theorem 1, 2 and 3 in Section IV.

We consider a wireless network with a total bandwidth W .

Without loss of generality, we assume the bandwidth is 1
in certain units, e.g. W = 1MHz. We assume the wireless

medium is Rayleigh fading within each block T = 1. Hence
if the whole spectrum is used as a single wireless channel, its

channel rate can be written as

R(h) = log(1 + ρh)
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Fig. 3. System throughput with varying number of sub-channels in the
network, where τ = 0.02, ρ = −10dB and σ = 1.

in Mbits/s/Hz, where ρ is the average signal-to-noise ratio

(SNR), and h is the channel gain corresponding to Rayleigh

fading. We write the probability density function (pdf) of h as

f(h;σ) =
h

σ2
e−

h2

2σ2 , h > 0.

There are a total of M = 400 links accessing the wireless

medium with distributed opportunistic scheduling protocols.

For a multi-channel network, we split the total bandwidth

evenly as W
J

= 1
J
, where J is the number of sub-channels in

the system. Accordingly the rate for each sub-channel can be

written as

R(j)(h) =
1

J
log(1 + ρh)

in Mbits/s/Hz, where j = 1, . . . , J .
We first show that it only marginally improves the sys-

tem throughput if the opportunistic scheduling is working

independently on each sub-channel. Fig. 3 shows the system

throughput for this case, with parameters τ = 0.02, ρ =
−10dB and σ = 1. The number of sub-channels J is varying

from J = 15 to J = 50. For comparison, the dotted line

shows the system throughput for the single-channel network.

For the single-channel system, the distributed opportunistic

scheduling protocol is running where all links probe with

probability p = 1
M
. For the multi-channel system, each sub-

channel is running the single-channel protocol independently

with p = 1/⌊M
J
⌋. We can see it only yields a performance

improvement of roughly 1.5% with J = 50 sub-channels.

In Fig. 4, we show system throughput of the multi-channel

opportunistic scheduling protocols based on various bounds

discussed in Section IV. Similarly the dotted line shows

the system throughput for the single-channel network. The

dashdott line shows the upper bound of the system throughput

described in Theorem 1. We can see the system throughput

quickly reaches a maximal value at a relatively medium J . It
shows an increase of almost 22.4% in network throughput. The

dashed line shows the lower bound of the network throughput
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Fig. 4. System throughput with varying number of sub-channels in the
network, where τ = 0.02, ρ = −10dB and σ = 1.

shown in Theorem 2, where Jt is available through other

means for decision making. We can see that as J increases,

it increases slower than the upper bound. For a large enough

J , say J > 25, it shows an increase of 21.4% in network

throughput. Finally, the solid line shows the network through-

put of Fig. 2 if we simply use J0 = 3 in the decision making

procedure. We can see that the network throughput increases

much slower compared to the dashdot line. For J = 50,
it shows an increase of 12.3% in the network throughput

compared to the single-channel scenario. Hence even without

any additional information, the distributed version of Fig. 2

can still improve the system throughput considerably.

VI. CONCLUSIONS

In this paper, we studied one distributed opportunistic

scheduling problem for ad-hoc networks with multiple inde-

pendent sub-channels. The motivation is to divide the wireless

spectrum into multiple sub-channels for better efficiency. We

showed that a naive protocol where the opportunistic schedul-

ing is designed independently within each sub-channel can

only slightly improve the system throughput. We then came

up with the idea of opportunistic scheduling across multiple

sub-channels. We developed a multi-channel protocol for ad-

hoc networks and analyzed its performance. We characterized

the optimal decision rule and the system throughput. Through

numerical results we showed that by joint optimization of

the scheduling schemes across multiple sub-channels, the pro-

posed protocol improves the network throughput considerably.
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