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ABSTRACT

Future communications consist of an increasing number of
wireless parts, while simultaneously need to support the
widespread multimedia applications imposed by social net-
works. These human-machine systems, driven by both real
time social interactions and the challenges of the wireless
networks’ design, call for efficient and easy to implement,
distributed cross-layer algorithms for their operation. Per-
formance metrics such as throughput, delay, trust, energy
consumption, need to be improved and optimized aiming at
high quality communications. We investigate the coveted
throughput-delay trade-off in static wireless multihop net-
works based on a “computer-aided” design of the backpres-
sure scheduling/routing algorithm for networks embedded in
hyperbolic space. Both routing and scheduling exploit the
hyperbolic distances to orient the packets to the destina-
tion and prioritize the transmissions correspondingly. The
proposed design provides us with the freedom of controlling
its theoretical throughput optimality and of counterbalanc-
ing its practical performance through simulations, leading to
significant improvements of the throughput-delay trade-off.

Categories and Subject Descriptors

C.2 [Computer Systems Organization]: Computer - Com-
munication Networks; C.2.1 [Computer - Communica-

tion Networks]: Network Architecture and Design—Wire-
less Communication, Network Communications, Distributed
Networks

General Terms

Performance, Algorithms, Design
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1. INTRODUCTION
The new era of networks integrates increasingly the wire-

less communications either as autonomous wireless network
topologies or as parts of hybrid network infrastructures. In
addition, we are witnessing the spread of multimedia appli-
cations imposing real-time traffic over wireless networks and
calling for high throughput with low packet delays. Even
more, the emerging development of social network applica-
tions over wireless ad hoc topologies strengthens the calling
for efficient throughput-delay trade-offs.

The backpressure algorithm, introduced in its original form
in [14], satisfies the requirement of throughput optimality.
It performs routing and scheduling based on congestion gra-
dients, by allowing transmission to the links that maximize
the sum of differential queue backlogs in the network. How-
ever, by deploying routing without any information about
the position or distance to the destination, the backpres-
sure explores all possible source-destination paths leading
to high delays. Several approaches have been developed to-
wards the direction of reducing the delay imposed by the
pure backpressure algorithm. To begin with, the authors
in [15] combine backpressure and shortest path routing by
imposing hop-count constraints on each flow, assuming that
each node knows a-priori its hop distance from all others.
Following another approach, the authors in [3] use shadow
queues for the backpressure scheduling/routing, improving
in this way the delay of the backpressure algorithm while si-
multaneously reducing the number of real queues need to be
stored at each node. In the same spirit of “virtual” queues,
the authors in [8] examine the problem of delay reduction in
stochastic network optimization problems. After proving the
relation of the backlog vector with the dual optimal solution
(Lagrange multiplier) of the optimization problem, they use
this finding to develop the FQLA algorithm that uses vir-
tual place holder bits in order to reduce delays. Last but
not least, in [9], a backpressure algorithm based on packet
delays instead of queue backlogs is developed and shown to
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keep the average per flow delays well concentrated around
their average values and to respond to the problem of finite
flows.

In this paper, we propose a “computer-aided” backpres-
sure algorithm which admits a static network embedded in
hyperbolic space according to a greedy embedding. A greedy
embedding in hyperbolic space is a correspondence between
nodes and hyperbolic coordinates such that the greedy rout-
ing algorithm, employed in hyperbolic space, does not have
local minima, i.e. every node can find at least one neigh-
bor closer than itself to all possible destinations [4, 12]. We
consider a greedy embedding of the network following [4]
and we impose routing constraints on the backpressure al-
gorithm, by determining as possible next-hop neighbors for a
specific destination only “greedy” neighbors, i.e. those that
strictly reduce the hyperbolic distance to the destination.
Furthermore, we scale the differential backlogs on the links
with a properly designed function of hyperbolic distances, in
order to incorporate the hyperbolic distances in the schedul-
ing procedure. As it is shown through simulations, this
approach reduces the average per flow delay and increases
the average per flow throughput for each examined network
topology and social flow. The term“computer-aided”is used
due to the derivation of the form of the scaling function
through simulations. The basic intuition behind our idea
lies in the occasion of specific network topologies such as
the wireless multihop network with clique interference con-
straints, where it is delay-optimal to schedule the packets
being closest to the destination [7]. We therefore believe
that we should take into account the topological properties
of the network together with the backlog information, in
order to improve the delay performance.

The rest of the paper is organized as follows. In section
2, we describe the system model and basic knowledge re-
garding hyperbolic space and greedy embeddings. In section
3, we describe the proposed algorithm, prove its through-
put optimality and discuss its complexity and distributiv-
ity. In section 4, we provide a numerical study for choosing
the scaling function and illustrating the improvement in the
throughput-delay trade-off, while possible directions for ex-
tensions to dynamic networks are briefly presented. Finally,
section 5, concludes the paper.

2. SYSTEMMODEL AND HYPERBOLIC

EMBEDDING
The system consists of a wireless multihop network with

N nodes that function in a time-slotted fashion. Let us
denote as N the set of the network nodes. At each time
slot t, the scheduling/routing algorithm decides which set
of non-interfering links is going to transmit and which flows
will be served by each link, while new packets may arrive
at the nodes. The number of packets that arrive at node i
for destination d is a random variable Ad

i (t), i.i.d. in all t,
with expected value λd

i . We suppose that each node i stores
a queue qdi (t) for each destination d. We denote with µij(t)
the packets served by the link (i, j) and with the N × N

matrix, [µij(t)], the traffic over all the network, at time t.
Also, we denote with µd

ij(t) the communication traffic on
the link (i, j) for destination d at time t. The arrival and
service rates are considered bounded and λd

i ≤ Amax. We
use the term IS to refer to the set of service rate matrices of
all possible independent sets of the graph, i.e. maximal sets

of links that do not interfere with each other. Also, we use
the notation N (i) for the one-hop neighborhood of node i.

The whole infinite hyperbolic plane can be represented in-
side the finite unit disc D = {z ∈ C||z| < 1} of the Euclidean
space; the Poincaré Disc model. The greedy embedding used
in this work is based on the Poincaré Disc model. The hy-
perbolic distance function dH(zi, zj), for two points zi, zj , in
the Poincaré Disc model is given by [4, 1]:

cosh dH(zi, zj) =
2|zi − zj |

2

(1− |zi|2)(1− |zj |2)
+ 1 (1)

The Euclidean circle ∂D = {z ∈ C||z| = 1} is the bound-
ary at infinity for the Poincaré Disc model. In addition, in
this model, the shortest hyperbolic path between two nodes
is either a part of a diameter of D, or a part of a Euclidean
circle in D perpendicular to ∂D.

The greedy embedding is constructed by choosing a span-
ning tree of the graph of the initial network and then em-
bedding the spanning tree into the hyperbolic space accord-
ing to the distributed algorithm of [4]. If a spanning tree
of the graph admits a greedy embedding in the hyperbolic
space then the whole graph admits also a greedy embedding
[12]. Let us denote as “greedy” paths, the paths consist-
ing of nodes with strictly decreasing hyperbolic distances to
their destinations. From definition, the greedy embedding
ensures the existence of at least one greedy path between
each source-destination pair in the case of static networks.
Every pair of nodes i, j is connected through a unique path,
let us denote it as i, i1, i2, ... ik, j, lying on the spanning
tree which is embedded in the hyperbolic space. Due to the
particular embedding, i1 is at least one greedy neighbor of
i for j and ik is a greedy neighbor of j for i. Let us denote
as distH(i, d) the hyperbolic distance between nodes i, d.

We adapt the capacity region of [6], so as to include the
routing constraints of the proposed class of algorithms. There-
fore, the capacity region should allow routing only through
greedy paths. The capacity region ΛG is the set of all input
rate matrices (λd

i ) with λd
i 6= 0 if i 6= d and (i, d) is a source

destination pair, such that there exists a rate matrix [µij ]
satisfying the following constraints:

• Efficiency constraints: µd
ij ≥ 0, µd

ii = 0, µd
dj = 0,

∑

d µ
d
ij ≤ µij , ∀ i, d, j.

• Flow constraints: λd
i +

∑

l µ
d
li ≤

∑

l µ
d
il, ∀ i, d : i 6= d.

• Routing constraints: µd
ij = 0 if i has at least one greedy

neighbor for d and j is not one of the i′s greedy neigh-
bors.

Finally, we define the notion of strong stability of the queues,
which will be used in the proof that follows. According to
the Definition 3.1 of [6], a queue, qdi (t) is strongly stable
if lim supt→∞

1
t

∑t−1
τ=0E(qdi (τ )) < ∞. If all the queues of

the network are strongly stable, then the whole network is
strongly stable.

3. GREEDY BACKPRESSUREWITH

QUEUE DIFFERENCE SCALING
In this section, we describe the proposed algorithm, which

modifies the classic backpressure algorithm by performing
routing only through greedy paths, and scheduling consid-
ering, in addition to the queue backlogs, the hyperbolic dis-
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tances to the final destination of the transmitting and re-
ceiving nodes. The scheduling process weights the queue
difference for destination d of each link (i, j) by a function
f(distH(i, d), distH(j, d)) : N3 → ℜ, i 6= j, d, thus assign-
ing priorities to particular links for transmission, choosing
as crucial links for delay reduction those being highly prior-
itized. Algorithm 1 describes in pseudo-code the proposed
scheduling/routing algorithm.

Algorithm 1: Greedy Backpressure with Queue Differ-
ence Scaling (GBP QDS)

1 for each directed link (i, j) do
2 for each destination d do

3 %Greedy backpressure%
4 if distH(i, d) > distH(j, d) then
5 %Queue Difference Scaling

6 P d
ij(t) =

f(distH(i, d), distH(j, d))(qdi (t)− qdj (t));

7 else

8 P d
ij(t) = −∞;

9 %Define the weight Pij(t) as follows :

10 Pij(t) = max (maxd P
d
ij(t), 0);

11 d∗(i, j) = argmaxd P
d
ij(t);

12 Choose the rate matrix through the maximization :
13 [µij(t)] = argµ′∈IS

max
∑

(i,j) µ
′
ijPij(t)

14 for each directed link (i, j) do
15 if µij(t) > 0 then

16 the link (ij) serves d∗(i, j) with µd∗

ij (t) = µij(t);

17 For d 6= d∗ we set µd
ij(t) = 0

It is important to mention that the greedy embedding
ensures the existence of a greedy path for a source desti-
nation pair. So the routing constraints of the Algorithm 1
are well defined and there are no holes that can stack the
packets to a specific node. Therefore, the correctness of the
routing in terms of leading the packet to the destination is
ensured. The function f(distH(i, d), distH(j, d)) = f(i, j, d)
is not arbitrarily defined and should satisfy some properties.
More precisely, it should be a positive function. Due to the
finiteness of the network we can define minimum and maxi-
mum values for f(i, j, d), fmin ≤ f(i, j, d) ≤ fmax, where the
condition fmin > 0 should apply. As we will see from simu-
lations, different types of functions f(i, j, d) are suitable for
different network topologies or types of social flows. How-
ever, the idea of the “hyperbolic distance-based” scheduling
remains common in all different cases of physical topologies
and social flows. In the case of f(i, j, d) = 1, let us denote
the GBP QDS algorithm simply as GBP.

The Queue Difference Scaling approach provides us with
freedom in choosing how to prioritize transmissions based on
the network topology. As will be seen from simulations, it
appears to behave uniformly over different network topolo-
gies and social flows, in the sense that we can find a function
f(i, j, d) that improves the throughput-delay trade-off, in all
the examined cases. As a trade-off, the stability of queues
under this approach can be easily proved only for a sub-
set of the capacity region ΛG, which depends on the values
fmax, fmin and leads to throughput optimality (the whole
ΛG) when fmax → fmin (Theorem 1). Finally, in the Queue

Difference Scaling Approach, only links with positive differ-
ential backlog qdi (t) − qdj (t) can transmit as in the classic
backpressure algorithm.

Theorem 1. Let us define ǫ0 = fmax−fmin
fmin

Amax. If we

assume that the average arrival rates λd
i + ǫ, ǫ > ǫ0 lie in-

side the capacity region ΛG, then the queues of the net-
work are strongly stable, under the Greedy Backpressure with
Queue Difference Scaling algorithm (GBP QDS) for static
networks.

Proof. We define two indicator functions:
I1 = {distH(i, d) > distH(j, d)

∧

j ∈ N (i)},
I2 = {distH(i, d) < distH(j, d)

∧

i ∈ N (j)},
We use |I1 to denote that the I1 condition is satisfied for
nodes i, j. Similarly for I2. The queue dynamics in the case
of Algorithm 1 are

qdi (t+ 1) = max{qdi (t) −
∑

j|I1

µd
ij(t), 0}+

∑

j|I2

µd
ji(t) + Ad

i (t). (2)

We denote by Q(t) = [qdi (t)], the column array of the queues
of the network. From the Lemma in page 52 of [6], we have
that

(qdi (t+ 1))2 ≤ (qdi (t))
2 +





∑

j|I1

µ
f
ij(t)





2

+





∑

j|I2

µd
ji(t) + Ad

i (t)





2

−2qdi (t)





∑

j|I1

µd
ij(t) −

∑

j|I2

µ
f
ji(t) − Ad

i (t)



 . (3)

As aforementioned, fmin ≤ f(i, j, d) ≤ fmax. The back-
pressure scheduling under the Queue Difference Scaling ap-
proach, is

[µij(t)] = argµ′∈IS
max

∑

(i,j,d) f(i, j, d)µ
d
ij

′ (
qdi (t)− qdj (t)

)

.

Due to this maximization each summand of the form
f(i, j, d)µd

ij(t)
(

qdi (t)− qdj (t)
)

, f(i, j, d) > 0, with optimal

µd
ij(t), is non negative or in other words, µd

ij(t) = 0 when-

ever qdi (t)− qdj (t) < 0. Therefore, we can write that

∑

(i,j,d)

fminµ
d
ij(t)

(

qdi (t) − qdj (t)
)

,

≤
∑

(i,j,d)

f(i, j, d)µd
ij (t)

(

qdi (t) − qdj (t)
)

,

≤
∑

(i,j,d)

fmaxµ
d
ij(t)

(

qdi (t) − qdj (t)
)

, (4)

where the service rates µd
ij(t) are chosen by the maximum

weight matching (scheduling as in Algorithm 1). Also,

max
µ′∈IS

∑

(i,j,d)

fminµ
d
ij

′
(

qdi (t) − qdj (t)
)

,

≤ max
µ′∈IS

∑

(i,j,d)

f(i, j, d)µd
ij

′
(

qdi (t) − qdj (t)
)

,

≤ max
µ′∈IS

∑

(i,j,d)

fmaxµ
d
ij

′
(

qdi (t) − qdj (t)
)

. (5)

We define the Lyapunov function L(Q(t)) =
∑

i,d fmaxq
d
i (t)

2
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and we compute the Lyapunov Drift

E(L(Q(t+ 1)) − L(Q(t))|Q(t)) = E





∑

i,d

fmaxq
d
i (t + 1)2

∣

∣

∣

∣

Q(t)





−E





∑

i,d

fmaxq
d
i (t)

2

∣

∣

∣

∣

Q(t)





Eq.(2,3)

≤
∑

i,d

fmaxq
d
i (t)

2
+

∑

i,d

fmax







E









∑

j|I1

µ
d
ij(t)





2

+





∑

j|I2

µ
d
ji(t) + A

d
i (t)





2
∣

∣

∣

∣

Q(t)











−
∑

i,d

fmax







2qdi (t)E









∑

j|I1

µ
d
ij(t) −

∑

j|I2

µ
d
ji(t) − A

d
i (t)





∣

∣

∣

∣

Q(t)











−
∑

i,d

fmaxq
d
i (t)

2 ≤ fmaxB + 2
∑

i,d

fmaxq
d
i (t)λ

d
i

−2
∑

i,d

fmaxq
d
i (t)E









∑

j|I1

µ
d
ij(t) −

∑

j|I2

µ
d
ji(t)





∣

∣

∣

∣

Q(t)



 , (6)

where B is an upper bound of
∑

i,d E

[

(

∑

j|I1
µd
ij(t)

)2

+
(

∑

j|I2
µd
ji(t) + Ad

i (t)
)2

∣

∣

∣

∣

Q(t)

]

.

Therefore, we conclude to the following inequality

E(L(Q(t + 1)) − L(Q(t))|Q(t)) ≤ fmaxB + 2
∑

i,d

fmaxq
d
i (t)λ

d
i

−2
∑

i,d

fmaxq
d
i (t)E









∑

j|I1

µd
ij(t) −

∑

j|I2

µd
ji(t)





∣

∣

∣

∣

Q(t)



 ,

= fmaxB + 2
∑

i,d

fmaxq
d
i (t)λ

d
i

−2
∑

d

∑

(i,j)|I1

fmax(q
d
i (t) − qdj (t))E

[

µd
ij(t)

∣

∣

∣

∣

Q(t)

]

,

Eq.(4)

≤ fmaxB + 2
∑

i,d

fmaxq
d
i (t)λ

d
i

−2
∑

d

∑

(i,j)|I1

f(i, j, d)(qdi (t) − qdj (t))E

[

µd
ij(t)

∣

∣

∣

∣

Q(t)

]

. (7)

If λd
i + ǫ, ǫ > ǫ0 lie inside the capacity region, then from

Corollary 3.9 in [6], there exist rates µ̂d
ij(t) determined ac-

cording to the network topology and which, independently
of the queue backlog, satisfy

λd
i + ǫ = E

[

∑

j|I1
µ̂d
ij(t)−

∑

j|I2
µ̂d
ji(t)

]

∀ i, d.

As a result, we have

∑

i,d

fminq
d
i (t)λ

d
i +

∑

i,d

fminq
d
i (t)ǫ

=
∑

i,d

fminq
d
i (t)E





∑

j|I1

µ̂d
ij (t) −

∑

j|I2

µ̂d
ji(t)



 ,

=
∑

d

∑

(i,j)|I1

fminE
[

µ̂d
ij(t)

]

(qdi (t) − qdj (t)),

≤ max
µ′∈IS

∑

d

∑

(i,j)|I1

fminµ
d
ij

′
(qdi (t) − qdj (t)),

(5)

≤ max
µ′∈IS

∑

d

∑

(i,j)|I1

f(i, j, d)µd
ij

′
(qdi (t) − qdj (t)), (8)

where µ̂d
ij(t) are the service rates chosen by the random

scheduling algorithm. Therefore the Lyapunov drift (Eq.

(7)) becomes

E[L(Q(t+ 1))− L(Q(t))|Q(t)] ≤ fmaxB

+2
∑

d

∑

i

fmaxλ
d
i q

d
i (t) − 2

∑

d

∑

i

fmin(λ
d
i + ǫ)qdi (t),

E[L(Q(t+ 1))− L(Q(t))|Q(t)] ≤ fmaxB

+2
∑

d

∑

i

(fmax − fmin)Amaxq
d
i (t) − 2

∑

d

∑

i

fminq
d
i (t)ǫ. (9)

Therefore if the assumption ǫ > ǫ0 = fmax−fmin
fmin

Amax is satis-

fied then from the Lemma 4.1 of [6], the network is strongly
stable, as when

∑

d

∑

i q
d
i (t) > fmaxB

2(−(fmax−fmin)Amax+fminǫ)

the Lyapunov drift becomes negative.

At this point, we should note that for the GBP algorithm,
fmin = fmax = 1, thus Theorem 1 holds for ǫ > 0, meaning
that GBP is throughput optimal, ensuring stability for the
entire capacity region ΛG. Also, Theorem 1 is proved for a
general positive function with finite value field, although in
this paper we assume f(i, j, d) = f(distH(i, d), distH(j, d)).

3.1 Discussion on the Complexity andDistribu-
tivity of Algorithm 1

In this section, we briefly discuss the issues of the com-
plexity and the distributivity of the Algorithm 1, mostly
compared to those of the pure backpressure algorithm. The
lack of centralized infrastructure in wireless multihop net-
works leads to the search of algorithms characterized by low-
complexity to be implemented distributively. The proposed
algorithm, has at most the same complexity as the original
backpressure, due to the fact that each node computes fewer
queue differences by checking at each neighboring link only
the destinations for which this link is on a greedy path. Re-
garding the creation of the greedy embedding and the com-
putation of the hyperbolic distances, they can be performed
only once and stored at each node, and therefore they do not
add any extra complexity at each step of the execution of
the algorithm. Furthermore, the greedy embedding of [4] is
based on a distributed algorithm where the hyperbolic coor-
dinates are computed sequentially from the root to the leaves
of the spanning tree. Additionally, with respect to the dis-
tributivity issue, the proposed algorithm if combined with a
CSMA based backpressure scheme [10] achieves a completely
distributed implementation, a fact that is also true for the
classic backpressure algorithm. The method followed in [10]
can be modified, so that the transmission aggressiveness of
the CSMA algorithm is characterized by the product of the
f(i, j, d) and the queue difference instead of only the queue
difference. Finally, several approximations of the maximum
weight matching [5] which constitutes the caveat in the dis-
tributivity of the backpressure-style algorithms, can also be
applied to Algorithm 1.

4. NUMERICAL EVALUATION
In this section, we study the delay-throughput trade-off

performance in different topology and traffic scenarios. We
examine two different physical layer topologies for the wire-
less multihop network, each one consisting of N = 16 nodes
(Fig. 1). The first one is a 4x4 grid topology (Fig. 1(a)),
while the second constitutes a Random Geometric Graph
(RGG), where the nodes are randomly and uniformly dis-
tributed in a square region of side L = 4m (Fig. 1(b)). Each
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link can transmit one packet during a time slot under the
one-hop interference model. Throughput is expressed as the
percentage of packets that reach their destination divided by
those sent from the source for each flow and both through-
put and delay are expressed as averages for all flows (source-
destination pairs). Considering the social network of flows
which is developed over our wireless network, three cases are
simulated. The first one is denoted as the“All Pair Commu-
nication Model” where each node at each time slot chooses
a random node and generates traffic for it with probability
ranging from λ = 0.01 to λ = 0.3 with step increase 0.01.
For each λ we run the algorithms for 5000 slots. The sec-
ond examined social graph, is inspired by Kleinberg’s model
[11]. According to this graph each node communicates with
all its one-hop physical neighbors and with one more node
in further hop-distance, i.e. long-range social contact. At
each time slot, each node chooses randomly one of its pos-
sible destinations and generates traffic for it with probabil-
ity ranging from λ = 0.01 to λ = 0.3 with step increase
0.01. We call this model the “Kleinberg Model”. Finally,
the third type of social graph is denoted as the “Long Range
Model”, according to which each node communicates with 3
other long-distant (not one-hop neighbors) in physical layer
nodes, chosen randomly. The traffic generation for the lat-
ter model is similar with the Kleinberg Model. According to
previous research, the matching models for the social traffic
over wireless networks are the Kleinberg Model or the Long
Range Model [2]. In all simulations, we employ the Back-
pressure (BP), the GBP and the GBP QDS algorithms. Let
us denote as dmax the largest hyperbolic distance among all
node pairs in the network. Indeed, we need to note that
each hyperbolic distance has a unique value.

(a) Grid Topology (b) Random Geometric
Graph Topology

Figure 1: Physical Layer Topologies.

The range of λ is chosen suitably from simulations in or-
der to avoid excessive increase in the sum of queue lengths
in the network under all physical and social topologies and
algorithms, which would indicate the transgression of the
capacity region. An example of the queue scaling for the All
Pair Communication Model in the RGG topology is depicted
in Fig. 2. We observe that after a certain value of λ, which
concides with the value of λ at which the degradation in the
throughput and delay begins (as shown in Fig. 6), the sum
of queue backlogs in the network starts to increase, indicat-
ing that the network capabilities have been exceeded. The
functions f1, f2, f3 in Fig. 2 will be explained in the sequel of
this section. Similar results are obtained for the other com-
binations of physical and social graphs and determine the
suitable range of values for λ. For the Long Range Model
and the grid physical topology, the sum of queue lengths

increases much faster with respect to the increase of λ and
therefore, we use a more limited range for λ (Fig. 5).
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Figure 2: Queue Scaling for the RGG Topology - All

Pair Communication Scenario.

The combination of the grid topology and the All Pair
Communication Model is examined first. In Fig. 3, the
delay and throughput performance of the algorithms BP,
GBP and GBP QDS for different chosen functions is il-
lustrated. The employed functions are the following, f1 =
|distH(i, d)− distH(j, d)|, which gives higher weight to links
that transfer the packets for longer hyperbolic distance, f2 =
(2·dmax−distH(i, d)−distH(j, d))·|distH(i, d)−distH(j, d)|,
which matches higher weights with links both close to the
destination and with a high improvement of hyperbolic dis-

tance and f3 = |distH(i,d)−distH (j,d)|
distH (i,d)+distH(j,d)

, that has approximately

the same meaning with f2. It is important to note that the
necessity of Greedy Routing constraints is reflected on the
choices for the f(i, j, d) function, as they ensure the cor-
rectness of the meaning of the f(i, j, d), i.e. high difference
|distH(i, d)−distH(j, d)| implies moving closer in hyperbolic
distance to destination. More precisely, due to the greedy
routing constraints, we can ignore the absolute value and
simply multiply by (distH(i, d) − distH(j, d)). We can ob-
serve that GBP QDS for f1, f2, f3 performs better than GBP
and BP, leading to higher throughput and lower delay, for
all values of λ except from a small region λ ≃ 0.14 − 0.18.
We conclude that GBP QDS with f3 has a satisfactory be-
havior for this combination of physical topology and social
communication graph.

Similarly with Fig. 3, in Fig. 4 the delay and throughput
performance for Kleinberg’s social graph over the grid topol-
ogy, is shown. In the GBP QDS scheduling/routing the f1
and f3 scaling functions are examined. Similar conclusions
as in the All Pair Communication Model apply, with a very
good delay-throughput trade-off driven by the f1 function
for all values of λ.

With respect to the combination of the grid topology and
the Long Range Model, its performance is depicted in Fig. 5
where GBP QDS is applied with f2, f3 and (f3)

2. Obviously,
GBP QDS with (f3)

2 leads to a significant improvement of
the throughput-delay trade-off in the entire range of λ.

In the sequel, we examine the Random Geometric Graph
physical topology, in order to pinpoint any differences in
performance due to changes in the physical layer graph.

In Fig. 6, 7, 8, we depict the performance of the RGG
physical topology and the three examined models of social
flows. We employ the same functions as in the grid topol-
ogy, with the exception of the Kleinberg Model, where the
function (f3)

2 achieves a better performance in terms of the
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Figure 3: GRID Topology - All Pair Communication

Scenario.

throughput-delay trade-off. It can be observed that sim-
ilarly with the grid topology, for each combination of the
RGG topology and the three social models, we can find a
function f(i, j, d) that improves the throughput-delay trade-
off of the pure backpressure algorithm.

The GBP algorithm performs well in light traffic con-
ditions due to routing the packets towards the direction
of the destination and avoiding the long paths and cycles
which characterize the classic backpressure algorithm. In
higher traffic, it either presents the same or even some-
times worse performance than backpressure (depending on
the social flows), as although orienting the packets towards
the destination it restricts the number of paths creating
more congested routes. However, the improvement in the
throughput-delay trade-off is significant if topological prop-
erties in the hyperbolic space are taken into consideration in
the scheduling part of the algorithm. Indeed, by combining
greedy routing constraints with hyperbolic topology aware
scheduling, we can improve the throughput-delay trade-off
in a greater range of traffic values. In addition, from the
simulations we can conclude that a good delay-throughput
performance can be achieved by a function of the form

f(i, j, d) =
(|distH(i, d)− distH(j, d)|)k1

(distH(i, d) + distH(j, d))k2
, k1, k2 = 0, 1, 2, ...

(10)
which can be used to initialize our searching for a suit-
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Figure 4: GRID Topology - Kleinberg’s Communi-

cation Scenario.

able function in a different network topology and/or social
flow. Specifically, we showed that this form of functions with
k1 = k2 achieves a very good performance in our simulation
scenarios. This class of functions, scales with fmax = 1 the
links adjacent to the destination and the rest of the links
with diminishing values as we move further from the desti-
nation; depending also on the improvement that the link in-
duces to the hyperbolic distance from the destination. This
observation verifies our intuition to schedule with higher pri-
ority links closer to the destination.

4.1 Discussion on Extensions to Dynamic Net-
works

The Queue Difference Scaling approach of Algorithm 1
can be extended to dynamic networks, where the process of
node churn is much slower than the routing/ scheduling pro-
cess, by following the ideas proposed in our previous work
[13]. In dynamic networks, new nodes join the network while
existing nodes can resign from their network functionality.
The greedy embedding algorithm of [4] allows for an easy
and distributed integration in the greedy embedding of the
newcomers. However, the deactivation of a node (supposing
that the network still remains connected) can locally destroy
the greedy embedding causing malfunctions to Algorithm 1.
In this case, as proposed in [13] the GBP is replaced locally
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Figure 5: GRID Topology - Long Range Communi-

cation Scenario.

by the classic backpressure algorithm. However in the GBP
QDS the function f(i, j, d) needs to be redefined when the
greedy property is locally lost, because, as aforementioned,
its form may not express a valuable meaning for scheduling,
i.e. f3 is proportional to |distH(i, d) − distH(j, d)| which is
meaningful only if j is a greedy neighbor of i for destination
d. Therefore, the function f(i, j, d) should be replaced by a
time dependent function f(i, j, d, t), possible forms of which,
at the times t when the greedy property between i, d is lost,
will be examined in our future work.

5. CONCLUSIONS
In this work, we focused on the throughput-delay trade-off

in static wireless networks, and for the scheduling/routing
algorithms analyzed. We proposed a design of the backpres-
sure algorithm in the hyperbolic space that scales the queue
differences by a suitable function. Through rigorous analy-
sis, we proved the stability of the GBP QDS algorithm for a
part of the capacity region which can be controlled through
the min and max properties of the scaling function. Through
extended simulations, we illustrated the improvement in the
throughput-delay trade-off, which is possible with a sophis-
ticated choice of the scaling function and introduced a class
of topology-dependent functions that achieve a satisfactory
performance in the examined physical and social topologies.
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Figure 6: RGG Topology - All Pair Communication

Scenario.

The proposed algorithm if combined with a CSMA based
backpressure scheme [10] can lead to high quality perfor-
mance via a completely distributed implementation.
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