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ABSTRACT 
 
Mobile ad hoc networks are infrastructure-less networks 
consisting of wireless, possibly mobile nodes that are 
organized in peer-to-peer and autonomous fashion. The 
highly dynamic topology, limited bandwidth availability 
and energy constraints make the routing problem a 
challenging one. The Swarm Intelligence paradigm has 
recently been used in solving the routing problem in static 
computer networks with encouraging results. These 
algorithms have been proven to be robust and resilient to 
topology changes. In this paper we present performance 
results on a new routing algorithm for MANETs based on 
the swarm intelligence paradigm. We present simulation 
results that measure the performance of our algorithm 
with respect to the characteristics of a MANET, the 
varying parameters of the algorithm itself as well as 
performance comparison with other well-known MANET  
routing protocols. 
 

INTRODUCTION 
 
Substantial research effort has gone into the development 
of routing algorithms for MANETs. A number of routing 
algorithms have been proposed. Some of these are DSDV, 
OLSR, CGSR, AODV, DSR, TORA, ZRP, LAR and 
several others, [9], [11], [12], [13]. These protocols can 
generally be categorized as either proactive or reactive 
protocols. Proactive protocols build routes in the network 
constantly, while reactive (on-demand) protocols attempt 
to establish multi-hop routes between pairs of nodes only 
when there are packets to be exchanged between these 
pairs of nodes. Recently there has been great interest in so 
called “Swarm Intelligence” [1], [2]; a set of methods to 
solve hard static and dynamic optimization problems using 
cooperative agents. Ant-inspired routing algorithms were 
developed and tested by British Telecomm and NTT for 
both fixed and cellular networks with superior results [3], 
[4], [5], [6], [7], [8]. AntNet, a particular such algorithm,  
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was tested in routing for data communication networks [3]. 
 
The algorithm performed better than OSPF, asynchronous 
distributed Bellman-Ford with dynamic metrics, shortest 
path with dynamic cost metric, Q-R algorithm and 
predictive Q-R algorithm. Interest in applications of ant-
based routing in MANETs has risen and several papers 
have appeared recently on the subject [14], [15], [16]. For 
instance, Gunes et al. have proposed an Ant-based 
approach to routing in MANETs in [15]. Their approach 
uses ants for building routes initially and hence is a 
completely reactive algorithm. Marwaha et al. [16] have 
explored a hybrid approach using both AODV and Ant-
based exploration. 
 
In this paper we describe a new algorithm that utilizes the 
inherent broadcast nature of wireless networks to multicast 
control and signaling packets (ants). This algorithm 
competes well with AODV and we show here several 
comparisons by simulations in a standard benchmark for 
MANETs [10], [13], [18]. This algorithm also allows for 
discovering, storing and using multiple (ranked) paths 
between source-destination pairs. For more details on our 
new algorithms and their performance evaluation we refer 
to [17]. 
 

THE PROBABILISTIC EMERGENT ROUTING 
ALGORITHM 

 
In this section, we propose the probabilistic emergent 
routing algorithm (PERA) based on the Swarm 
Intelligence paradigm. In this approach, the process of 
route discovery is carried out by using a flooding approach 
to discover and maintain multiple paths between source-
destination pairs in the network. Route discovery in the 
algorithm is done by two kinds of agents or ants - forward 
and backward. These agents create and adjust a probability 
distribution at each node for the node's neighbors. The 
agent packets, or Ants are of a relatively small (variable) 
size. The probability  associated with a neighbor reflects 
the relative likelihood of that neighbor forwarding and 
eventually delivering the packet. 
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A. Bootstrapping the Routing Tables 
In our algorithm, neighbor discovery is done using 
‘HELLO’ broadcast messages. The routing table entry for 
a destination is initialized at a node only after receiving a 
backward ant from the destination. The initialization of the 
routing table is done by incorporating all the neighbors of 
node n in the routing table. Each node is assigned an initial 
probability 1 / N, where N is the number of neighbors of 
node n. The routing tables are then modified to give a 
higher probability to the node that the backward ant just 
came from, establishing a path toward the destination. 
 
When the metric under consideration is delay, on the 
receipt of the first backward ant, the value of the time, 
taken by the ant to travel to the destination from the 
current node, Tn→d is assigned to the mean µnd , and the 
variance, σnd

2 is assigned a value of zero. Modifications to 
(µnd, σnd

2) are made upon the arrival of later backward ants 
based on the learning rule as discussed in the section on 
backward ants. On the other hand, if the metric under 
consideration is the hop count, the backward ants as well 
as the forward ants travel on high priority queues, leading 
to faster dissemination of information regarding the 
network status. The routing table and the table of local 
statistics at each node can be visualized as in figure 1. 

 
 
 
 
 
 
 
 
 
 
 

F 
 
 

Fig. 1. The routing table and statistics at each node 
 
B. Forward Ants 
To carry out the process of Route Discovery, forward ants 
or agents are sent to a destination beginning at the time at 
which a data packet for the destination is first received by 
the node. Each forward ant contains the IP address of its 
source node, the IP address of the destination node, a 
sequence number, a hop count field and a dynamically 
growing stack. The stack contains information about the 
nodes that the forward ant traverses and the times at which 
these nodes have been traversed, ie. (NODE_ID, 
NODE_TRAVERSAL_TIME). Henceforth, the node 
keeps sending forward ants periodically to the destination 
for as long as a route is required. 

 
When a node receives a forward ant, it checks in the 
destination IP address field if the address corresponds to 
its own IP address. If the forward ant is not directed to the 
current node, the node pushes its own IP address and the 
time at which the ant was received at the node. Also, the 
hop count field of the forward ant is decremented by 1. 
Each forward ant is uniquely identified by the values of its 
source node IP address and the sequence number, i.e. the 
record (Source IP address, Sequence Number). Duplicate 
ants and ants that loop back to a node are destroyed. 
 
If the metric under consideration is delay, forward ants 
travel on the same queues as data packets. In our 
experiments, these queues are modeled as FIFO queues. 
Hence, the forward ants experience the same delay and 
congestion as the data packets. This allows us to reinforce 
certain routes more than other routes depending on the 
current network status as perceived by the forward ants. 
 
When a forward ant reaches the node that is its intended 
destination, the node extracts the source address, the hop 
count and the stack from the forward ant. The forward ant 
is then deallocated. It is important to note that since the 
forward ant is broadcast at the source and intermediate 
nodes, each forward ant will cause the broadcast of 
multiple forward ants, several of which may find different 
paths to the destination, generating multiple backward ants 
with the same source sequence number.  Further, the 
forward ant also collects information about each of these 
paths. 
 
C. Backward Ants 
When a forward ant reaches the destination node that it is 
intended for, the destination node creates a backward ant 
that uses the information contained in the forward ant on 
the reverse path to change the probability distribution at 
each node and update the routing tables to reflect the 
current status of the network more accurately. The 
backward ant is similar to the forward ant but has a non-
unique sequence number. The backward ant travels in 
unicast fashion back to the source node. It is forwarded on 
high priority queues. The stack of the forward ant is used 
to route it. Using the address at the top of the stack, the 
node forwards the backward ant to the correct next hop. 
Suppose that a forward ant from source node s is received 
at node d. Node d generates a backward ant.  When the 
backward ant is received at the next hop (also the 
penultimate hop of the corresponding forward ant), node f, 
the stack of the backward ant is popped once. The 
backward node makes changes to the probability values at 
the intermediate and final (source for forward ant) node 
according to the following update rules: 
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In both the above cases, the reinforcement parameter r can 
be defined as a function of some metric or a combination 
of metrics, e.g. delay or the number of hops. Here,             
r =  k / f(c) ,  where  k > 0  and  f(c)  is  the  cost  function.  
 
The backward ant also updates the existing estimates of 
the forward trip time at the source node as well as 
intermediate nodes. The trip time of this backward ant is 
used to update the statistics. The mean and the variance are 
updated using the following rules: 
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Where µkd is the mean of the ant trip times at the current 
node k, to the destination node d. η  is a constant, οk→d is 
the trip time of the ant from the current node k to the 
destination node d, and σ2kd   is the variance of the ant trip 
times at the current node k, to the destination node  d. η , 
οk→d and µkd are the same as above. If routing table entries 
for destination d do not exist at node f, new ones are 
created with the neighbor list of the node f. All the 
neighboring nodes are given a probability of 1 / N, where 
N is the number of neighbors of the node f. The routing 
tables are then readjusted according to the probability rules 
discussed above. 
 
D. Routing Data Packets 
The data packets can be routed based on the highest 
probability next hop neighbor or probabilistically. 
Previous results [3] for swarm intelligence algorithms 
show   excellent results for this method in the case of static 
networks with   relatively small topologies. 
 

SIMULATION RESULTS 
 
Network Simulator 2 [18] discrete event simulator  was 
used to simulate our algorithm. At the physical layer, radio 
propagation distance for each node was set to 250m and 
the channel capacity was 2 Mbps. Our model does not 
support radio capture [13] so, in the case of packet 
collisions all packets are dropped. The IEEE 802.11 
Distributed Coordination Function (DCF) [10] as 
implemented in NS2 was used as the Medium Access 

Control (MAC) protocol. The communication medium is 
broadcast and nodes have bi-directional connectivity. Each 
simulation was run for 900 seconds. Multiple runs with 
different seed values were conducted for each scenario and 
the collected data were averaged over those runs. The 
algorithm was developed as a separate NS2 routing layer 
protocol. The mobility model used was the Random 
Waypoint model. As performance metrics we used the 
throughput, the goodput and the average end-to-end 
packet transmission delay for comparisons. All the 
simulations were carried out with the same seed for the 
given simulation scenario and hence the results can be 
directly compared for the routing algorithms.  
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The end-to-end delay is the interval between the instant a 
source generates a packet and the time at which the 
destination receives the packet. The end-to-end delay is 
aggregated for each packet for each source-destination 
pair. The average per packet end-to-end delay through 
time intervals of 100 seconds is then calculated. We 
evaluated the performance of the routing algorithm based 
on the hop count metric. The network consisted of 20 
nodes, randomly placed in an area 500m x 500m. 4 source 
and destination pairs were randomly chosen from these 20 
nodes. Each source transmitted 1 packet/sec. Nodes in the 
simulation were mobile. 
 
A. Mobility Speed 
In these experiments, the mobility speed was varied 
between 0 to 20m/s (0, 5, 10, 15, 20). Figure 2 shows the  
goodput as a function of the node mobility speed. It is seen 
that the goodput decreases with increase in mobility. 
 

 
Fig. 2. Goodput vs. mobility; 20 nodes in 500m x 500m 
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COMPARISON WITH AODV 
 
We compared the proposed algorithm with AODV [12],  
[13] in terms of throughput, delay and goodput. 

 
A. Goodput Comparison 
Figure 3 shows a comparison of the goodput for AODV 
and PERA for a scenario with 20 nodes in an area of 500m 
x 500m with the nodes moving with speeds of 1 m/s and a 
pause time of 100secs. Since the mobility is low, the 
overall goodput for both algorithms is high. 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3. Goodput comparison of AODV and PERA at 1m/s 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Goodput comparison of AODV and PERA at 10m/s 
 
Figure 4 shows a comparison of PERA and AODV for the 
same scenario as above, but with a mobility speed of 
10m/s. The goodput is observed to be lower than that of 
AODV. This is because forward ants are sent more 
frequently to allow quick adaptation to the network 
conditions. 

 
B. Throughput Comparison 
Figures 5 and 6 show the throughput comparisons for 
AODV and PERA for mobility speeds of 1m/s and 10m/s 
and pause time 100 secs. At the lower speed, the 
throughput is the same for both AODV and PERA, 
however, at the higher speed, the throughput is slightly 
less for PERA in some cases. This is because with 

mobility, PERA adjusts gradually to the changes in 
topology. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Throughput comparison AODV vs. PERA, 10m/s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Throughput comparison AODV vs. PERA, 10m/s 

 
Fig. 7. Delay comparison AODV vs. PERA, 1 m/s 

 
C. Delay Comparison 
Figures 7 and 8 show the comparison of delay for AODV 
and PERA. Both algorithms show a large initial delay, 
which is required for routes to be set up. Subsequently, 
AODV shows large delays again in situations with high 
mobility. PERA on the other hand, shows low delays in all  
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cases, as instead of buffering data packets until a new 
route is found, PERA delivers the data packet through an 
alternate route. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8. Delay comparison AODV vs. PERA, 10m/s 
 

CONCLUSIONS 
In this paper we have proposed a set of routing algorithms 
for MANETs based on the swarm intelligence paradigm. 
In our experiments we observe that end-to-end delay for 
swarm based routing is low compared to AODV. 
However, the goodput for these algorithms is lower than 
for AODV in scenarios with high mobility. 
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