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A B S T R A C T  sulting wavelet system to improve image compression ratios. 

We study the problem of choosing an image based o p  
timal wavelet basis with compact support for image data 
compression and provide a general algorithm for comput- 
ing the optimal wavelet basis. We parameterize the mother 
wavelet and scaling function of wavelet systems through 
a set of real coefficients of the relevant quadrature mirror 
filter (QMF) banks. We further introduce decomposition 
entropy as an information measure to describe the distance 
between a given digital image and its projection into the 
subspace spanned by the wavelet basis. The optimal ba- 
sis for the given image is obtained through minimizing this 
information measure. The resulting subspace is used for 
image analysis and synthesis. Experiments show improved 
compression ratios due to the application of the optimal 
wavelet basis and demonstrate the potential applications of 
our methodology in image compression. This method is also 
useful for constructing efficient wavelet based image coding 
systems. 

1. I N T R O D U C T I O N  

The last few years have witnessed extensive research inter- 
est and activities in wavelet theory and its applications in 
signal processing, image processing and many other fields 
[l, 21. The most attractive features of wavelet theory are 
the multiresolution property and time and frequency local- 
ization ability. There are many applications of these prop 
erties in the fields of signal processing, speech processing 
and especially in image processing [3, 4, 5, 61. 

It is well known that a wavelet system is usually deter- 
mined by one mother wavelet function whose dilations and 
shifts span the signal space. Unlike sin and cos functions, 
individual wavelet functions are quite localized in frequency 
and time and they are not unique. Obviously, different 
wavelets shall yield different wavelet bases. An appropriate 
selection of the wavelet for signal representation can result 
in maximal benefits of this new technique. For example, 
compact wavelets are suitable for approximating discontin- 
uous functions such as images while smooth wavelets are 
appropriate for solving integral functions to  achieve high nu- 
merical accuracy. It is reasonable to think that if a wavelet 
contains enough information about an image to be repre- 
sented, the wavelet system is going to be simplified in terms 
of the levels of required resolution. We are interested in 
finding an image based wavelet basis and applying the re- 

The key to  choosing an image based optimal wavelet ba- 
sis lies in the appropriate parameterization and adequate 
performance measure in image compression processes. A 
method was proposed for choosing a wavelet for signal r e p  
resentation based on minimizing an upper bound of the L2 
norm of error [7, SI in approximating the signal up to a 
desired scale. Coifman et al. derived an entropy based al- 
gorithm for selecting the best basis from a library of wavelet 
packets [9]. We also proposed an information measure based 
approach for constructing an optimal discrete wavelet ba- 
sis with compact support in our earlier work on adaptive 
wavelet neural networks [lo] and wavelet basis selection [ll]. 
We shall illustrate the application of our methodology to 
image compression. 

This paper is intended to demonstrate that choosing an 
image based optimal or suboptimal wavelet basis can im- 
prove compression ratios of images rather than to design a 
complete coding system. In the rest of the paper, we first 
provide the definition of optimal wavelet basis for a given 
digital image and parameterize the basis through the corre- 
sponding quadrature mirror filter (QMF) banks. We then 
introduce an algorithm for constructing an optimal wavelet 
basis. Next, we compare the effects of different mother 
wavelets on image representation and provide numerical re- 
sults. Finally, we summarize our conclusions. 

2. O P T I M A L  WAVELET BASIS 

We first introduce a distance measure for optimization pur- 
pose. Inspired by the work in [9], we define an additive 
information measure of entropy type and the optimal basis 
as the following. We use Q(t )  to denote the wavelet basis 
spanned by dilating and shifting mother wavelet denoted 
by $(t ) .  

Deflnition 2..1 A non negative map M from a sequence 
{f;} to R is called an additive information measure if 
M(O) = 0 and M ( C ,  fi)  = xi M ( f i ) .  

Deflnition 2 . 2  Let x E RN be a fixed vector containing 
digital image data and B denote the collection of all or- 
thonormal bases of dimension N, a basis B E B is said 
to be optimal if M ( B x )  is minimal for all bases in B with 
respect to the vector x. 

The wavelet system is parameterized through using QMF 
banks. From the multiresolution property of wavelets due 
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t o  Mallat [12], the scaling function b(t) and mother wavelet 
+(t) are expressed as [2] 

+ ( t )  = 4 2 C k d ( 2 t -  k) (1) 
kr-m 

m 
and 

k=-m 

where the coefficient {ck} and {dk} determine a low pass 
filter ho(k) = Ck and high pass filter hl(k) = dk. The 
Fourier transforms of filter ho and hl are denoted by HO 
and HI, respectively. The condition for wavelet basis 9(t) 
generated from QMF banks to be compactly supported and 
orthonormal is provided by the following theorem due to  
Vaidyanathan [13]. 

Theorem 2..1 [I31 Let Ho(z) and HI(%) be causal FIR 
filters, then the scaling function d ( t )  and wavelet function 
+(t) generated by the QMF bank are causal with finite du- 
mtion Kbo. Further, if Ho(z) and HI(%) satisfy the pa- 
munitary condition, IHO(1)l = & and Ho(ej") # 0 while 
IwI < r /2 ,  the wavelet functions $ j , l ( t )  are orthonormal. 

This theorem imposes constraints on parameter {Ck} to  
generate a compactly supported orthonormal wavelet basis. 
In particular, the cross-filter orthonormality implied by the 
paraunitary property, is satisfied by the choice of 

Hi(%) = -z-~Ho(-z-'), K odd (3) 

or in the time domain, 

h l ( k )  = (-l)kho(K - k). (4) 

As we can see from the above, both the scaling function 
and wavelet function depend on the selection of {Ck} for 
k E [O,K]. As a consequence, the dilations and shifts of 
the mother wavelet depend on the selection of this set of 
parameters subject to the paraunitary condition imposed 
on the filters of the QMF bank. 

Definition 2..3 Let H be a Hilbert space which is an or- 
thogonal direct sum 

a map & is called decomposition entropy if 

for v E H, 1 1 ~ 1 1  # 0, such that 

and we set plogp = 0, when p = 0. 

The implication of using entropy as a performance mea- 
sure takes advantage of the nonuniform energy distribution 
of the signal or image in consideration over its energy spec- 
trum. For a source of a finite number of independent signals, 
such as a digital image considered as a source of indepen- 
dent pixels, its entropy is maximum for uniform distribution 

We introduce a cost functional to  facilitate the optimiza- 
1141. 

tion process, 

x ( * , v )  = - ~ i ~ v j ~ ~ ~ l ~ ~ I t v j I I ~  (8) 
j 

which relates to the decomposition entropy through 

E(v ,  8)  = 11v11-' A(*, U) +log l lVllZ (2M + 1). (9) 

The task for constructing an image based optimal wavelet 
basis becomes one of finding the appropriate filter coefficient 
{Ck} such that the cost functional X is minimized for the 
given image. The following theorem provides the analytical 
gradient of the cost functional (8). 

Theorem 2..2 [II] Let A(-, .) be the additive information 
measure and [O,W be the compact support for {Ck} and 9 
be the corresponding wavelet basis from dilations and shifts 
of the wavelet $(t). Let f ( t )  be a fixed signal in L2(R).  
Then the gradient of the information measure with respect 
to the parameter set {Ck} for the given signal is described 
by 

sx(e,fo) = --&==~. E, log2 l l f j l l Z  

+(-l)"c~-,, (f(t), 4(2-Jtzt - 41 - 2n - k) ! 1. 
8ck 

*fj,[ E, [(-I)'-' (f(t), 4(2-j+lt - 21 - n) 

This information gradient can be used in computing the 
filter coefficients for the optimal wavelet basis. 

3. IMAGE COMPRESSION 
In extending 1-D wavelet to  2-D image applications, we fol- 
low Mallat [12] in his hierarchical wavelet decomposition. 
We then threshold the resulting wavelet coefficients. The 
retained wavelet coefficients are used to  reconstruct the im- 
age. In this process, we assume that these coefficients can 
be transmitted and used precisely. 

We have identified the problem of finding an optimal 
wavelet basis 8 with that of choosing corresponding param- 
eter set {Ck} such that the additive information measure X 
is minimized. Next, comes our basis selection algorithm 
based on the information gradient method [Ill. 

Algorithm 3..1 Computation of the optimal wavelet basis 

Step I: Set i := 1, 
A0 := 0, 

Initialize vector CO; 
Input f(t). 

Step 3: Compute q5 and $. 
Step 4: Compute A. 

Step 8: Ci := Ci-1 +pi-1=. ax 

Step 5: If IXi - Xi-11 > e, 

Step 6: Output the optimal basis 9 and stop. 
i := i + 1, go to Step 3. 
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Figure 3. Histogram of the amplitude of wavelet 
coefficients of the mammographic image. 

Daub4 
O ~ t 4  

Figure 1. Original 512 by 512 mammographic im- 
age. 

..*6 
l " " ' 1  

X PSNR Compression Ratio 
0.6995 46.3363 18.58:l 
0.6739 30.7888 20.58:l 

Figure 2. The amplitude of wavelet coefficients of 
the mammographic image using basis Opt4, listed 
f rom low resolution to high resolution components 

In the algorithm above, f ( t )  represents the image data 
or signals and C denotes the parameter set {COCI . - C K - ~ } .  
One needs an initial parameter set as a starting point. 

We start the optimization scheme based on a low order 
wavelet system. The smaller the support of the wavelet, the 
better it can capture the features corresponding to edges. 
In general, the wavelet decomposition requires less hard- 
ware implementation than does the Fourier method. With 
a lower order system, the cost of implementation shall be 
further reduced. We first tested compressing the 512 by 
512 Lena image by using Daubechies 20, 12 and 4 wavelets. 
At the same compression ratio, 31.25 : 1, the image repre- 
sented by the Daub4 basis shows comparable quality when 
compared against those represented by the two higher or- 
der wavelet bases. As a consequence, we select fourth order 
filters in the optimization process. 

4. RESULTS 

The optimization is applied to a digital mammographic im- 
age shown in Figure 1. This image is obtained through the 
Department of Radiology, Veterans Administration Medi- 
cal Center in Baltimore, Maryland. We choose Daubechies' 
fourth order wavelet coefficients as an initial parameter 
set to  start the optimization procedure with the algorithm 
above. We denote Daubechies' fourth order wavelet and the 
optimized wavelet bases by Daub4 and Opt4, respectively. 
The coefficients of the two corresponding low pass filters are 
given in Table 1. The amplitude of the wavelet coefficients 
obtained with wavelet basis Opt4 is illustrated in Figure 2. 
The coefficients with larger amplitude concentrate on the 
low resolution region. The histogram in Figure 2 shows the 
distribution of the wavelet coefficients of the image with 
basis Opt4. 

- -  - 
I Daub4 I Opt4 

CO I 4.8296291e-01 I 5.2844307e-01 
8.365163Oe-01 8.0297232e-01 1 2 I 2.2414387e-01 I 1.8632579e-01 1 

Table 1. Daubechies 4 and Opt4 wavelet Alter coef- 
flcients. 

-1.2940952e-01 -1.0352762e-01 
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It is obvious that significant compression can be obtained 
by truncating the large number of small coefficients or by 
coding them with fewer bits. The threshold is selected by 
experiments. Different threshold values have been tested to  
choose one necessary to represent the image without per- 
ceptible loss in image quality. The quantitative results in 
terms of entropy values, peak signal noise ratios and com- 
pression ratios are listed in Table 2. 

As we can see that a lower entropy value corresponds to  
a higher compression ratio with a certain loss in PSNR. 
The reconstructed images using wavelet Daub and Opt4 
are illustrated in Figure 4 and Figure 5, respectively. The 
reconstructed image using basis Opt4 preserves the texture 
and edges at  a level comparable to  the one from using basis 
Daub4. The improvement in the ratio is about ten percent 
in this case. Although the PSNR is in favor of the Daub4 
basis, the actual visual difference is not perceptible. 

Similar to  other gradient based optimization procedures, 
this method has its limitations. It often stops at a local 
minimum and results in a suboptimal solution. However, 
the suboptimal solution may still provide an acceptable pa- 
rameter set. The actual wavelet coding system design would 
include, in addition to  finding the optimal basis, using dif- 
ferent techniques such as the noise shaping bit allocation 
procedure [6] or hierarchical coding with the estimated lo- 
cal noise sensitivity of the human vision system(HVS) [15] 
among others. 

5. CONCLUSIONS 
This paper has provided a direct approach to  construct an 
image based optimal orthonormal wavelet basis with com- 
pact support for image compression. The cost functional, 
an additive information measure, is introduced based on the 

Table 2. Entropy values, PSNR and compression ra- 
tios from employing Daub4 and Opt4 wavelet bases. 



Figure 4. Reconstructed image using Daub4 
wavelet, compression ratio 18.58:l. 

Figure 5. Reconstructed image using Opt4 wavelet, 
compression ratio 20.53:l. 

decomposition entropy of a given image with respect to an 
initial wavelet basis. Using the resulting optimal wavelet 
basis improves image compression ratios. The gain in com- 
pression outweighs the overhead due to  implementing the 
optimal basis. The parameterization of the cost functionals 
described in this paper is helpful; other forms of measures 
or cost functions may be introduced depending on the con- 
texts of actual problems. 

This methodology of the optimal basis selection in a gen- 
eral setting is useful not only for image compression, sig- 
nal approximation and reconstruction, but also for feature 
analysis, motion estimation in video and HDTV, and sys- 
tem identification. In the context of pattern recognition, it 
is also a way to construct the feature space. 

Future work includes using the optimal wavelet basis for 
image feature extraction and analysis, and for designing 
the corresponding bit allocation scheme to maximize the 
benefits of implementing the signal based wavelet basis. 
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