
�����������	
������

����������������
���������
������
����������������
��
�����
�������
������
��������
�
�����
�����������������������
	���	��������� !���������!�����������
	�"���
���!�����#��$������

	�"���
������������%���������	
����������&�������'�������
��������������������
����
���������������
�������
��(������(��������#��$�������
	�"���
���'

�������������	
�����
���
���
����������

TECHNICAL RESEARCH REPORT

Flow Control at Satellite Gateways

by Xiaoming Zhou, Xicheng Liu, John S. Baras

CSHCN TR 2002-19
(ISR TR 2002-37)

Xiaoming Zhou, Xicheng Liu, and John S. Baras
Flow control at satellite gateways

Institute of system research
Center for satellite and hybrid communication networks

University of Maryland at College Park, MD, 20742

1

Abstract-- Broadcast satellite networks are going to
play an important role in the global information
infrastructure. Several systems including DirecWay
from Hughes Network System use satellites to
provide direct-to-user high speed Internet services.
TCP works well in the terrestrial fiber networks but
does not work well in satellite hybrid (satellite-
terrestrial) networks. In this paper we analyze the
problems that cause this dramatically degraded
performance. Based on the observation that it is
difficult for an end-to-end solution to solve these
problems in this kind of hybrid networks, we propose
a connection splitting based solution. A rate based
protocol is designed for the satellite connections and
a flow control scheme at the satellite gateways (SGW)
is used to couple the two split connections together.
Our simulation results shows that our scheme can
maintain high utilization of the satellite link and
improve fairness among the competing connections.

I. INTRODUCTION

For the home users or small enterprise, using dial-up

modem to access the Internet is too slow. In order to
provide broadband Internet service for these customers,
satellite hybrid network was proposed to solve this last-
mile problem (figure 1). This kind of hybrid networks
exploits three observations [1]: 1) some rural areas may
not be reached by fiber networks or it may be too
expensive to do so; 2) satellite hybrid networks can
provide high bandwidth to a large geographical area and
it is easy to deploy; 3) home users usually consume
much more data than they generate. So this asymmetric
hybrid network fits in the need very well. The satellites
are just signal repeaters in the sky and are usually called
bent pipe satellites. They are layer one devices and no
switching is performed on board.

A geo-synchronous orbit (GEO) satellite is about
36,000km above the earth. The propagation delay
between the ground terminals and the satellite is about
125ms. Therefore a typical round trip time (RTT) for
this system is about 580ms including about 80ms RTT
for the terrestrial networks. The time taken by TCP slow

 Satellite

Figure 1 Direct to user satellite hybrid network

start to reach the satellite bandwidth (SatBW) is about
RTT*log2(SatBW*RTT) when every TCP segment is
acknowledged[2,14]. For a connection with large RTT, it
spends a long time in slow start before reaching the
available bandwidth. For short transfers, they could be
finished in slow start, which obviously does not use the
bandwidth efficiently. Some researchers propose to use a
larger initial widow [3] up to roughly 4K bytes rather
than one MSS1 for slow start. So files less than 4K bytes
can finish their transfers in one RTT rather than 2 or 3.
Another proposal [4] is to cancel the delayed acknowle-
dgement mechanism in the slow start so every packet is
acknowledged and the sender can increase its congestion
window (CWND) more quickly. For bulk transfers, TCP
throughput is inverse proportional to RTT [5]. So TCP
connections with larger RTTs do not get their fair share
of the bandwidth when they compete with the connec-
tions with smaller RTTs. Using simulations, Henderson
claims the ‘Constant-rate’ additive increase policy can
correct the bias against connections with long RTTs [6].
However it is difficult to implement this policy in a
heterogeneous network.

The bandwidth delay product in the satellite hybrid
network is very large. In order to keep the large pipe full,
the window should be at least the bandwidth delay
product. However, the receiver advertised window that is
16 bits in the TCP header cannot be more than 64k
bytes, which limits the two-way system throughput to
64k/580ms i.e. 903Kbps.Window scaling [7] is proposed
to solve this problem. But when the window is large, it is
more likely that multiple packets are lost in one window
caused either by congestion or link layer corruptions or
both. The multiple losses will trigger TCP congestion
control algorithms and lead TCP to actually operate with

1 Maximum segment size

ServerClient SGW

a small average window. For the same reason, the sender
buffer size can also limit the TCP connection throughput
if it is less than the bandwidth delay product, which is
usually the case in a lot of operating systems.

Ka band satellite channel is noisier than fiber channel.
Bit error rates of the order of 10-6 are often observed [8].
Because TCP Reno treats all losses as congestion in the
network, this kind of link layer corruptions can cause
TCP to drop its window to a small size and leads to poor
performance. TCP SACK[9] can convey non-contiguous
segments received by the receiver in the acknowledge-
ments (ACKs) so that the sender can recover error much
faster than TCP Reno, which well known can recover
only one loss per RTT. Forward error correction (FEC)
coding is usually used in satellite communication to
reduce the bit error rate. However, FEC consumes some
bandwidth by sending redundant information together
with the data and transforms the original random error
nature to one with bursty errors.

In the satellite link layer, time division multiplex
(TDM) is used for the downlink and multiple frequency
time division multiple access (MF-TDMA) is used for
the uplink. The downlink bandwidth from the satellite to
the earth terminals is much larger than the uplink
bandwidth. When the uplink traffic load is greater than
the uplink bandwidth, congestion could happen. The
congestion in uplink may cause poor performance in the
downlink because TCP uses ACKs to clock out data. In
the best case, the ACKs are not lost, but queued, waiting
for available bandwidth. This has a direct consequence
on the retransmission timer and slows down the
dynamics of TCP window. In one way transfer, most of
the time the uplink is transferring pure ACKs. To
alleviate this problem, ACK filtering [10] was proposed
to drop the ACKs in the front of the IP queue by taking
advantage of the cumulative acknowledgement strategy
in TCP. The situation is even worse for two-way
transfers. When the users are sending data (say email
with large attachment or upload file using FTP) and
browsing the web at the same time, a lot of data packets
could be queued in front of ACKs in a FIFO queue,
which increases the ACKs delay dramatically. In this
case, a priority queue can be used to schedule the ACK
to be sent first [10].

In this paper, we present a connection splitting based
solution [18,20,8,16] to the above problems in the
satellite hybrid networks. A modified version of TCP
with newly designed congestion control and error
control algorithms is used for the satellite connections. A
selective acknowledgement (SACK) based flow control
scheme is used to couple the satellite connections and
the terrestrial connections, which can maintain smoother
flows with less buffer requirement at the satellite
gateway than using TCP for both sides.

The rest of this paper is organized as follows. Section
II provides the motivation for connection splitting sche-
mes and describes the queuing model at the satellite
gateway. Section III presents the congestion control and
error control algorithms in the modified TCP for the
satellite connections. Section IV presents the flow
control algorithm at the satellite gateway. Section V
gives the simulation results. Section VI relates our work
to other proposed schemes for improving TCP over
satellite links. Finally, Section VII concludes this paper.

II. CONNECTION SPLITTING AND QUEUING MODELS

Satellite TCP connections need large windows to fully
utilize the available bandwidth. However it takes much
longer for satellite TCP connections than for terrestrial
TCP connections to reach the target window size
because of the large propagation delay and the slow start
algorithm in TCP. And the window multiplicative decr-
ease strategy makes the hard gained large TCP window
very vulnerable to congestion. The misinterpretation of
link layer corruption as congestion makes this situation
even worse. In the best case, the packet loss does not
cause timeout and TCP can stay in congestion avoidance
phase rather than in slow start, the additive increase
strategy makes the window to grow very slowly. From
the above observations, we can see that even if the
window scaling option is available, it is difficult for
satellite TCP connections to actually operate with large
windows. Therefore satellite connections cannot get their
fair share of bandwidth when they compete with
connections with smaller RTTs. It is difficult for end-to-
end solutions to solve this fairness problem [6].

Because the feedback information of the satellite
networks is either delayed too long or too noisy or both,
end-to-end schemes cannot solve these problems very
effectively. An alternative to end-to-end schemes is to
keep the large window of packets in the network such as
at the satellite gateway between the satellite and
terrestrial networks. Considering the interoperability
issue, we propose a connection splitting based scheme
and design a flow control algorithm for the satellite
gateway, which couples multiple terrestrial and satellite
connections together to improve fairness among connec-
tions and to maintain high utilization of the satellite link.
Basically the satellite gateway tries to hide the long
propagation delay and link layer corruptions from the
Internet servers.

In our scheme, an end-to-end TCP connection is split
into two connections at the satellite gateway (figure 1).
One connection is from the Internet server to the satellite
gateway and another one is from the satellite gateway to
the client. Observe that the users consume more data
than they generate. We consider only the data transfer

2

from the Internet servers to the very small aperture
terminal (VSAT) clients. Satellite gateway sends
premature acknowledgements to the Internet servers and
takes responsibility to relay all the acknowledged
packets to the clients reliably. Although the Ka band
satellite can provide higher bandwidth than Ku band
satellite, satellite bandwidth is still a scarce resource
compared to the bandwidth provided by optical fibers in
the terrestrial networks. Therefore we assume the
satellite link is the bottleneck of the system and the
terrestrial networks have enough bandwidth. However
our scheme still takes into account bottlenecked or idle
terrestrial connections to achieve the efficient use of
satellite link.

Based on the observation that the number of TCP
connections is small at the client compared to that at the
satellite gateway, we assume large buffer is available for
each TCP connection at the client.

A. Queuing Model at the Satellite Gateway

For a normal router, only those packets waiting for
transmitting are buffered at the IP layer. However, the
satellite gateway has to buffer the packets waiting for
transmission as well as those packets, which have been
transmitted but not acknowledged. A normal router
keeps all the packets in a FIFO queue while the satellite
gateway has a queue for each TCP connection.

All the TCP packets received from the servers are
forwarded to the TCP receive buffer of the SERVER-
SGW connection and they are moved from the receive
buffer to the send buffer of the SGW-CLIENT
connection. Then the packets are sent from the send
buffer to the clients over the satellite. From figure 2, we
can see that the IP input queue should be empty if we
assume the processing rate of the satellite gateway is not
the bottleneck. The receive buffer and send buffer can be
implemented by one physical buffer and data copy can
be avoided by passing pointers. The queuing model at
the satellite gateway can be simplified as in figure 2, in
which the receive buffer and the send buffer are
represented by one buffer.

The buffer size assigned to each connection at the
satellite gateway has a direct impact on the end-to-end
TCP throughput. Although memory is cheap, infinite
buffer for each connection cannot be assumed because
the satellite gateway is designed to support a large
number of connections. If there is not enough memory
available at the satellite gateway, newly arrived
connections may have to be rejected or queued.

Firstly, assume there is only one connection in this
system, the buffer size assigned to the TCP connection is

 TCP Send Buffer and Receive buffer

 IP Layer

Figure 2 Simplified queuing model at satellite gateway

Buff and the effective satellite bandwidth2 is SatBW.
The data in the satellite pipe is SatWin3 and the
advertised receiver window for the server is RecvWin.
The round trip time for the satellite connection is
SatRTT and the round trip time for the terrestrial
connection is TerrRTT. When the system reaches the
steady state, the input rate of the queue at the SGW
should be equal to the output rate of the queue, i.e.
RecvWin/TerrRTT = SatWin/SatRTT. From [11], we
know the throughput of the connection is MIN(SatBW,
Buff/(SatRTT+TerrRTT)) and the backlog packets are
MAX(0, Buff - SatBW* (SatRTT+TerrRTT)). From the
above analysis and simulations results in figure 5 and
figure 6, we can see that the buffer size can become the
bottleneck of the end-to-end TCP performance if it is
less than the bandwidth delay product. However when
the buffer size is greater than the bandwidth delay
product, there are packets backlogged at the satellite
gateway and these backlogged packets cannot contribute
to the throughput and only increase the queuing delay.

When there are multiple connections in this system,
the bandwidth available to each connection is a function
of the number of connections and their activities. One
possible buffer allocation scheme is to use adaptive
buffer sharing [12] to dynamically allocate a memory
pool to TCP connections based on their bandwidth
usage. While this scheme can dramatically decrease the
buffer requirement, it does increase the implementation
complexity. Based on our measurements at satellite
gateway, although the mean of the number of active
connections is large, the variance is small. Therefore the

2 Effective satellite bandwidth is the raw satellite bandwidth
deducted by the bandwidth consumed by the protocol headers.

3 SatWin is neither congestion window nor the receiver
advertised window. It is the number of packets in flight over
the satellite link.

IP Output Queue IP Input Queue Data to the client Data from the server

3

bandwidth available to each connection does not vary
dramatically. We propose to assign each connection a
static peak rate, which is the maximum bandwidth it can
achieve and is much smaller than the total satellite
bandwidth, and the buffer size is set corresponding to
this peak rate. In practice, the peak rate can be set based
on the measurements of the traffic characteristics and the
target satellite link utilization.

III. RATE BASED RELIABLE PROTOCOL FOR SATELLITE
CONNECTIONS

TCP is a generic reliable protocol designed for wide

area networks with optical channels in mind. Although
TCP congestion control algorithms can guarantee
network stability and fairness among TCP connections
in terrestrial fiber networks, it is not efficient and
effective in satellite networks.

Besides the inefficient congestion control, TCP
windowing scheme ties the congestion control and error
control together and errors can stop the window from
sliding until they are recovered. The above observations
motivate us to decouple the congestion control and error
control in TCP first and then design more efficient and
effective congestion and error schemes with our specific
network characteristics in mind. Our goal is to maintain
high utilization of the satellite link and to improve
fairness among competing TCP connections. We chose
to modify TCP to fit in the satellite networks rather than
to design a new protocol from scratch because TCP is
well understood and is the dominant transport layer
protocol of the Internet.

A. Congestion Control

For the satellite connections, the satellite link band-
width to be shared among them is fixed and known.
Besides the number of connections and the traffic arrival
pattern are known. All this information is available at the
satellite gateway. Therefore there is no need to use slow
start to probe the bandwidth and use additive increase
and multiplicative decrease congestion avoidance to
guarantee fair resource sharing as in the distributed case.

In our scheme, we cancel all the congestion control
algorithms in TCP and substitute them with a scheduler
as a centralized congestion manager. Also there is no
need to exponentially back off the timer after timeout
because congestion is taken care of by the scheduler i.e.
congestion is impossible over the satellite link. Timer is
used only for error recovery. The scheduler pulls the
packets from the queues at the satellite gateway. When
the scheduler encounters an empty queue, it goes on to
serve the next one. As long as there are packets buffered
at the satellite gateway, the satellite link can be fully

utilized. Although weighted fair queuing (WFQ) can be
used to provide fair sharing of the satellite bandwidth,
we choose round robin as our scheduler because of its
simplicity. Fairness is guaranteed by using the same
maximum segment size for all the TCP connections.
When the traffic load increases, the buffers begin to be
filled up and the congestion is back pressured to the
sources through the advertised receiver windows. When
the traffic load decreases, the buffers begin to be
emptied and larger advertised receiver windows are sent
to the source so the sources can speed up. If some
connections are bottlenecked upstream to the satellite
gateway or are idle because the application layers do not
have data to send, the scheduler can send packets from
other connections. This way satellite link efficiency is
achieved.

We assume large but not infinite buffer is available at
the client and the TCP flow control is still enforced so
that the open looped scheduler will not overflow the
receiver's buffer. We do not use Window scaling to
advertise large windows to the satellite gateway because
large window scale factor can produce inaccurate values.
In our scheme, the 16-bit receiver window field is still
used but its unit is maximum segment size rather than
byte. As long as the advertised receiver window allows,
the packets are sent from the TCP layer to the IP layer
and other packets are still buffered at the TCP layer.
Only those packets at the IP layer can be sent by the
round robin scheduler. The packets at the IP layer are
just logical copies of the TCP layer packets with added
IP headers. The packets are released from the buffer only
when they are acknowledged by the clients. Essentially,
the congestion control in our scheme is enforced at the
IP layer rather than at the TCP layer.

B. Error Control

TCP depends on duplicate acknowledgements and
timer for error control. Because out of order packet
arrivals are possible in the wide area networks, the fast
retransmit algorithm is triggered after three rather than
one or two duplicate acknowledgements are received.
The three duplicate acknowledgements requirement puts
a high burden on the return channel bandwidth. The high
bit error rate of the satellite link can cause multiple
packet losses in one RTT and may lead to timeout.
Furthermore the loss probability over the satellite link is
determined totally by the bit error rate and packet size,
so the retransmission packets can be corrupted as
probable as original packets when the error rate is high
[13]. When the retransmitted packets are lost, timer
could be the only means for error recovery. However,
timer has to be conservative and is usually set much
larger than the round trip delay to make sure the packet

4

does leave the networks. These conservative loss
detection and recovery schemes in TCP are not effective
in satellite networks and should be enhanced.

In our scheme, we explore the specific characteristics
of our network. Firstly, because the congestion control is
taken care of by the scheduler, congestion is impossible
for the satellite connections and any loss must be caused
by the link layer corruption. So the error recovery
scheme can operate independently with the congestion
control scheme. Secondly, the satellite link is a FIFO
channel and out of order packet arrivals are impossible.
We design a scheme similar to the scheme in [13]. The
in order delivery information is used for error detection.
All sent packets including retransmission packets are
sorted in the order they leave scheduler. We keep track
of the right most packets in sequence space of all
selectively acknowledged packets. Whenever an
acknowledgment is received, we compare the current
right most packet in the ACK with previous one in
sequence space. If the sequence number does not
advance, our scheme does nothing. While the sequence
number does advance, our error recovery scheme is
triggered. The first match of the current right most
packet in the sorted list must have arrived at the client. If
a packet before the right most packet in the sorted list is
neither cumulatively acknowledged nor selectively ackn-
owledged, our scheme assumes the packet is lost and
retransmits it. This way, our scheme cannot only recover
the first time losses but also the retransmission losses.
The lost packets are tagged for retransmission and they
are sent with higher priority than new packets. Timer is
still used as the last resort for loss recovery. However
the timer has a finer granularity. After timer expires, two
copies of the lost packet are sent to increase redundancy.

However, when a packet does reach the client but all
the acknowledgments for it are lost, our scheme can
retransmit this packet unnecessarily. In our scheme, one
acknowledgement can carry up to four SACK blocks. As
long as the acknowledgements are not sent very
infrequently, this situation should be rare.

IV. FLOW CONTROL AT THE SATELLITE GATEWAY

The strategy of connection splitting is to divide a
system into two sub-systems and tries to find an optimal
solution for each of these sub-systems. Simply putting
two optimized sub-systems together does not necessarily
give the optimal solution from the system perspective.
This is because there are interactions between these sub-
systems. In figure 3, we show this phenomenon between
a satellite connection, which uses the reliable protocol in
section III and a terrestrial connection, which uses
regular TCP. In this simulation, the satellite link
bandwidth is 600kbps and the terrestrial link bandwidth

is 1.2Mbps (figure 1). The RTT of the satellite
connection is 500ms and the RTT of the terrestrial
connection is 80ms. The segment sizes are 512bytes.
The buffer size at the SGW is 87 segments, which is
about the bandwidth delay product. The bit error rate is
10-6 and the file size is 3M bytes.

When the system reaches equilibrium, the data in
flight for the terrestrial connection is about 12 segments.
While in figure 3, we see large oscillation around the
equilibrium points. The reason for this is as follows. In
TCP SACK, only segments cumulatively acknowledged
are released from the retransmission buffer. Segments
selectively acknowledged are still kept in the buffer
because the TCP receiver may renege and discard the
SACKed segments when it runs out of buffer. The buffer
occupied by these SACKed segments can cause the
SGW to advertise a smaller or even zero window to the
Internet servers. This actually slows down or even stalls
the servers. This corresponds to the period when the
number of segments in flight falls below the equilibrium
points in figure 3. After the error is actually recovered,
the cumulative acknowledgement may cover a large
number of packets. A large advertised window will be
sent to the servers and cause the server to send a large
burst (spikes in figure 3). This large burst may overflow
the edge routers in the terrestrial networks and cause
server TCP to drop its window. Now the terrestrial
connection could cause starvation of the SGW queue and
become the bottleneck.

Another point of view to this problem is as follows:
during the error recovery phase, the cumulative
acknowledgement does not advance and the TCP Inter-
net server interprets this as sending rate slowing down
on the satellite side which actually is not right and leads
to stall. However after the error is recovered, it is
equivalent to the sudden increase of the output rate of
the SGW queue. Because we don’t have infinite buffer at
the SGW, the packets are not local and starvation
happens when the scheduler has to wait for the new
packets to arrive. ACK pacing [4], which advertises the
suddenly increased available buffer in several packets,
does not help too much here because it only tries to
bring the system back to the equilibrium after the
starvation has already happened while it cannot prevent
starvation from happening. Increasing the buffer size at
the SGW can help to improve the throughput because
the large buffer size allows some packets backlogged at
the SGW, which can be sent during the starvation.
However when the error recovery of the satellite
connection is slow, it will eventually stall the Internet
server and may cause even larger oscillation. A flow
control scheme is needed to couple these two
connections to eliminate the stall-starvation cycles.

5

Figure 3 Data in flight of the server with normal SACK

Figure 4 Data in flight of the server with modified SACK

The SACKed segments actually represent the output
rate of the SGW queue. In our scheme, we change the
SACK semantics. The TCP receiver never reneges and
the TCP sender does not clear the SACK state
information after timeouts. So the SACKed segments
can be released from the retransmission buffer. Thus
only those segments actually corrupted over the satellite
link are still kept in the SGW buffer. The number of
corrupted segments is much smaller than that of the
SACKed segments. From figure 4, we can see our
scheme can maintain a much smoother flow and can
finish the transfer within a shorter time period.

Because of the uplink and downlink bandwidth
asymmetry of the satellite channel, it is desirable to send
fewer acknowledgements in the bandwidth limited return
channel. However when fewer acknowledgements are
sent, the number of segments acknowledged by each
acknowledgement is increased. In order to maintain
smooth data flow for the terrestrial connections,
acknowledgements are paced out to the Internet servers
based on the number of packets acknowledged by each

Figure 5 Satellite link utilization for different buffer sizes at

satellite gateway

Figure 6 Backlogged packets for different buffer sizes at

satellite gateway
acknowledgement and the acknowledgement inter-arrival
time of the satellite connections. Although acknowledge-
ments are not used to clock out data in our scheme, they
are still used to recover the errors and to clear buffers.
Less frequent acknowledgments could delay the error
recovery and increase the buffer requirement at the
SGW. Therefore there is a tradeoff between the return
channel bandwidth requirement and the error recovery
time as well as the buffer requirement.

V. Performance evaluation

In this section, we evaluate the performance of our

scheme. The metrics we are interested in are satellite
link utilization, end-to-end throughput and fairness.

A. Single connection case

Only one satellite connection and one terrestrial conn-
ection are set up for a bulk file transfer. The satellite link
bandwidth is 600kbps and the terrestrial link bandwidth

6

is 1.2Mbps. The RTT of the satellite connection is
500ms and the RTT of the terrestrial connection is 80ms.
The segment sizes are 512bytes and the file size is 3M
bytes. Timer granularity is 100ms.

1) SGW buffer requirement and link utilization
In this section, the satellite link is set to be error free to

get the buffer requirement at the SGW. When the buffer
size at the SGW is set to 41K bytes, which is about the
bandwidth delay product for the end-to-end connection,
from figure 5 and figure 6 we can see that the satellite
link is fully utilized and there are very few backlogged
packets buffered at the SGW after the connection
reaches the stable state. When the buffer size is
decreased to 31K bytes, the connection becomes buffer
bottlenecked and the satellite utilization is about 75%.
This small buffer size limits the input rate of the SGW
and there are no backlogged packets at SGW. However
when the buffer size is increased to 50K, the connection
becomes link bottlenecked and there are about 9K bytes
data buffered at the SGW. The buffered data only
increases the queuing delay at the SGW.

2) Return channel bandwidth requirement
The link rate in figure 7 is the raw satellite bandwidth

deducted by the bandwidth consumed by the protocol
headers and it is the upper limit of any achievable throu-
ghput. An acknowledgement is sent every N packets are
received no matter they are in order or out of order. By
changing N, we can change the acknowledgement
frequency. Figure 8 shows that when the ACK frequency
decreases exponentially, the return channel usage
decreases exponentially. It is shown in figure 7 that the
forward channel throughput is very insensitive to the
return channel usage. Only when N increases up to 16,
the forward channel throughput begins to decrease. This
holds for both low bit error rate (i.e. BER = 10-6) and
high bit error rate (i.e. BER = 10-5). Another interesting
observation is that in order to get comparable forward
channel throughput for higher bit error rate, more return
channel bandwidth is required to provide timely infor-
mation of the receiver buffer status.

B. Multiple connections case

Five servers communicate with five clients over the
satellite link (figure 1). The raw satellite bandwidth is set
to 3Mbps and the terrestrial bandwidth from each server
to the SGW is 2Mbps. The RTTs for the five terrestrial
connections are 2, 20, 40, 80 and 160ms respectively.
The RTTs for all the five satellite connections are
500ms. The receiver buffer size at each client is 256K
bytes. The buffer size for each connection at the SGW is
set so that it can reach peak rate 900kbps.

0

100

200

300

400

500

600

1 2 4 8 16
Number of segments per ack

Th
ro

ug
hp

ut
 (k

bp
s)

BER = 10e-6
BER = 10e-5
Link rate

Figure 7 End-to-end throughput for different

acknowledgement frequency

0

10

20

30

40

50

60

70

1 2 4 8 16
Number of segments per ack

Th
ro

ug
hp

ut
 (k

bp
s)

BER = 10e-6
BER = 10e-5

Figure 8 Return channel usage for different acknowledgement

frequency

1) Throughput and fairness for bulk transfers
In this section, we use persistent traffic sources to test

throughput and fairness. To focus on the forward
channel performance, we choose the same acknowledge-
ment frequency as in TCP, i.e. every other in sequence
packet is acknowledged and every out of sequence
packet is acknowledged. Figure 9 shows the aggregate
throughput for the five transfers for our scheme and for
TCP connection splitting scheme. The TCP connection
splitting scheme uses TCP SACK for both the satellite
connections and terrestrial connections. When the bit
error rate is very low, both schemes can achieve very
high throughput. For TCP connection splitting scheme
when the bit error rate increases up to 10-6, the link layer
corruption causes the SGW TCP to drop its congestion
window and the satellite connection occasionally stalls
the terrestrial connection, which leads to degraded
performance. When the loss rate is very heavy such as
greater than 10-5, the retransmitted packets can get lost
again and TCP may have to wait for the timeout to
recover the error. After timeout, the congestion window
is set to one and TCP enters slow start. Therefore the
satellite link utilization is very low for high loss rate.

7

0

0.5

1

1.5

2

2.5

3

1.00E-08 1.00E-07 1.00E-06 3.00E-06 5.00E-06 1.00E-05 2.00E-05 3.00E-05 5.00E-05

Bit error rate

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (M
bp

s)
our scheme

TCP connection splitting

 Figure 9 Aggregate throughput for different bit error rates

Figure 10 Received sequence number for BER =10-6

For very low error rate such as 10-7 and 10-8, the

fairness indexes we computed are very high for both
schemes. While for error rate higher than 10-5, the
performance is so poor for TCP connection splitting sch-
eme that fairness does not mean too much. Figure 10
plots the received sequence number at the clients for the
five satellite connections when BER equals 10-6. The
results generated by our schemes are plotted in solid
lines while those generated by TCP connection splitting
scheme are plotted in dashed lines. It shows that our
scheme can improve not only the throughput but also the
fairness.

In our scheme, the scheduler continues to send packets
as long as there are packets queued at the SGW and there
is available buffer at the client. Figure 11 and figure 12
plot the out of order buffer size for the third connection.
Figure 11 shows the out of order buffer size for BER
equals 10-6. Occasionally there is about one window of
packets in the reorder buffer. This means that the error is
recovered in one RTT. However when the error rate is
too heavy such as 5e-5, retransmissions can get lost

Figure 11 Out of order buffer size for BER = 10-6

Figure 12 Out of order buffer size for BER = 5e-5

again. Figure 12 shows retransmission could be lost twi-
ce because sometimes there are about three windows of
out of order packets. In order to enable the scheduler to
continue sending new packets, the client receiver buffer
should be set about four times the bandwidth delay
product of the satellite connection.

2) Average response time for short transfers
In addition to the bulk file transfers, another popular

application is web browsing, which is characterized by
the clients send small requests and the servers reply with
small files. We use the same topology as in last section
to test the average responsive time for short transfers. By
response time, we mean the time interval between the
beginning of connection establishment and the time
when the last segment of the file is received. For
HTTP1.0, each file of the web page requires a separate
connection. While for HTTP1.1, a single persistent
connection is used for all the files of the web page. For
HTTP1.1, the response time we are interested in is that
of the first file.All the links are error free so the response

8

Figure 13 Average responsive time for short transfers

Figure 14 Average response time ratio for short transfers

times are the best case. Figure 13 shows the average
response time for the third connection. If the file size is
just one segment, both schemes have the same average
response time (i.e. ratio=1 point in figure 14). When the
file size increases, the slow start phase becomes a
dominant portion of the end-to-end response time for
TCP connection splitting scheme. While in our scheme,
the packets are not limited by the congestion window
and can be sent over the satellite link as long as the link
is available. For these small files, our scheme can
perform 2 to 2.5 times better (figure 13 and figure 14).
When the file size is more than 150K bytes, the transfer
is more or less like a bulk transfer and the slow start
phase is beginning to be amortized by the long transfer
time and the response time increases almost linearly
for both schemes.

VI. Related work

TCP peach [14] is an end-to-end scheme and it has
two new algorithms sudden start and rapid recovery,

which replace the slow start and fast recovery algorithm
in TCP Reno respectively. Essentially TCP Peach has
two logical channels, one is for the data transmission and
another one is for bandwidth probing. TCP peach uses
low priority dummy segments to probe the bandwidth in
sudden start and rapid recovery. The problem with TCP
peach is that dummy segments do not carry any
information and they are overhead to the data. Another
problem is that all the routers need to implement some
kind of priority mechanism, which makes it difficult to
deploy.

Space communication protocol standards-transport
protocol (SCPS-TP) [15] is a set of TCP extensions for
space communications. This protocol adopts the
timestamps and window scaling options in RFC1323 [7].
It also uses TCP Vegas low-loss congestion avoidance
mechanism. SCPS-TP receiver doesn’t acknowledge
every data packet. Acknowledgements are sent
periodically based on the RTT. The traffic demand for
the reverse channel is much lighter than in the traditional
TCP. However it is difficult to determine the optimal
acknowledgement rate and the receiver may not respond
properly to congestion in the reverse channel. It does not
use acknowledgements to clock out the data rather it
uses an open-loop rate control mechanism to meter out
data smoothly. SCPS-TP uses selective negative
acknowledgement (SNACK) for error recovery. SNACK
is a negative acknowledgement and it can specify a large
number of holes in a bit-efficient manner.

Satellite transport protocol (STP) [8] adapts an ATM-
based protocol for use as a transport protocol in satellite
data networks. STP can get comparable performance to
TCP SACK in the forward path with significantly less
bandwidth requirement in the reverse path. The
transmitter sends POLL packets periodically to the
receiver, the receiver sends STAT packet as acknowled-
gements and the reverse path bandwidth requirement
depends mainly on the polling period, not on the forward
path data transmission rate. Therefore the bandwidth
demand for the reverse path decreases dramatically. STP
uses a modified version of TCP slow start and
congestion avoidance algorithms for its congestion
control. While in our scheme we use a round robin
scheduler for the congestion control.

Because GEO satellite channel is a FIFO channel,
there is no out-of-order routing. And congestion over the
satellite link is impossible if the packets are sent at the
rate of the satellite bandwidth. In [16], a connection
splitting based solution is proposed to use one duplicate
ACK to trigger the fast retransmission at the satellite
gateway (SGW) and to use a fixed window size for the
satellite TCP connection. If there is only one connection
in the system, the fixed window can be set to the satellite
bandwidth delay product. However multiple connections

9

with different terrestrial round trip time and different
traffic arrival pattern have not been addressed. The paper
proposes a new sender algorithm using the same idea as
in TCP new Reno [17]. It uses partial ACKs to calculate
the bursty loss gap and sends all the potentially lost
packets beginning from the partial acknowledgement
number. Although it is possible that the sender could
retransmit packets that have already been correctly
received by the receiver, it is shown that this algorithm
performs better than TCP SACK in recovering bursty
errors.

VII. CONCLUSIONS AND FUTURE WORK

Because it is difficult for an end-to-end scheme to
solve the problems in the satellite hybrid networks, we
purpose a connection splitting based solution. A reliable
protocol, which decouples the congestion control and
error control, is designed for the satellite connections by
taking advantage of the specific characteristics of the
satellite networks. A SACK based flow control scheme
is used to maintain smooth traffic flows. Our results
show that our scheme can improve the performance of
both bulk and short transfers over the GEO satellites.

Connection splitting does break the end-to-end seman-
tics of TCP. However many applications such as FTP
use application layer acknowledgements in addition to
the acknowledgements provided by TCP. Therefore the
connection splitting based solution still preserves the
end-to-end reliability of TCP [18]. Because satellite
gateway needs to access the TCP header for connection
splitting, it will not work if IPSEC is used. One possible
way out is layered IPSEC technique [19]. TCP header in
the packet is encrypted with one key, and the data of the
packet is encrypted with a different key. The satellite
gateway only has the key to decrypt the TCP header.
Because the satellite link is still a scarce resource, loss-
less compression can be used to improve the efficient
use of the satellite link. The encryption, compression and
the checksum computation for connection splitting are
all expensive operations. It has been shown that the
processing time without compression and encryption is
small and a moderate machine can adequately support
numerous split connections with little performance
degradation [20]. Future work will address this scalabi-
lity problem by taking into account all processing over-
head.

REFERENCES

1. V. Arora, N. Suphasindhu, J.S. Baras, D. Dillon,

“Asymmetric Internet Access over Satellite-Terrestrial
Networks”, CSHCN Technical Report 96-10 available at
http://www.isr.umd.edu/CSHCN

2. Partridge and T. Shepard, “TCP performance over
satellite links,” IEEE Network, vol. 11, pp. 44–49, Sept.
1997.

3. M. Allman, S. Floyd, C. Partridge, “Increasing TCP's
Initial Window,” Internet RFC 2414, September 1998.

4. M. Allman et al., “Ongoing TCP research related to
satellites,” RFC2760, Feb. 2000.

5. Padhye, J.; Firoiu, V.; Towsley, D.F.; Kurose, J.F.
“Modeling TCP Reno performance: a simple model and
its empirical validation,” IEEE/ACM Transaction on
Networking, April 2000.

6. T. Henderson, E. Sahouria, S. McCanne, and R. Katz,
“On improving the fairness of TCP congestion
avoidance,” in Proc. IEEE GLOBECOM’98 Conf., 1998.

7. V. Jacobson, R. Braden, and D. Borman, “TCP extensions
for high performance,” Internet RFC 1323, 1992.

8. T. R. Henderson and R. H. Katz, “Transport protocols for
Internet-compatible satellite networks,” IEEE J. Select.
Areas Comm., vol. 17, pp.326–344, Feb. 1999.

9. M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP
selective acknowledgment options,” Internet RFC 2018,
1996.

10. H. Balakrishnan, V. Padmanabhan, and R. Katz, “The
effects of asymmetry on TCP performance,” in Proc. 3rd
ACM/IEEE MobiCom Conf., Sept. 1997, pp. 77–89.

11. Xiaoming Zhou and John S. Baras, “ TCP over GEO
satellite hybrid networks”, in Proc. IEEE Milcom Conf.
2002.

12. Kung, H. T. and K. Chang, Receiver-Oriented Adaptive
Buffer Allocation in Credit-Based Flow Control for ATM
Networks, Proceedings of INFOCOM '95, April 2-6,
1995, pp. 239-252.

13. N Samaraweera and G Fairhurst, Reinforcement of
TCP/IP Error Recovery for Wireless Communications,
Computer Communications Review (CCR), 1998. 28(2),
pp30-38.

14. Akyildiz, I.F., Morabito, G., Palazzo, S., “TCP Peach: A
New Congestion Control Scheme for Satellite IP
Networks,” IEEE/ACM Transactions on Networking, Vol.
9, No. 3, June 2001

15. R. C. Durst, G. Miller and E. J. Travis, “TCP extensions
for space communications,” Proc. ACM Mobicom, ’96,
Nov 1996.

16. I. Minei and R. Cohen “High-speed internet access
through unidirectional geostationary satellite channels”,
IEEE J. Select. Areas Commun., Vol. 17 Feb 1999.

17. S. Floyd and T. Henderson, "The NewReno Modification
to TCP's Fast Recovery Algorithm," Internet RFC 2582
(Experimental), April 1999.

18. A. Bakre and B. R. Badrinath, “Implementation and
performance evaluation of indirect TCP” IEEE
Transactions on Computers Vol. 46 No. 3, March 1997.

19. Y. Zhang, B. Singh, "A Multi-Layer IPsec Protocol,"
Proc.proceedings of 9th USENIX Security Symposium,
Denver,Colorado, August 2000. http://www.wins.hrl.com
/people/ygz/papers/usenix00.html

20. K. Brown and S. Singh, “M-TCP: TCP for mobile cellular
networks,” ACM Comput. Commun. Rev., vol. 27, pp. 19–
43, Oct. 1997.

10

