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Abstract 

 

Satellite is going to play an important role in the global information infrastructure. Satellite can 

provide direct to home Internet service (i.e. DirecPC from Hughes Network System) and it can also 

serve as traffic trunk in the middle of the network. About 98 percent of the Internet traffic is TCP 

traffic. TCP works well in the terrestrial fiber network. However, in the satellite hybrid networks, 

because of the long propagation delay, large bandwidth-delay product, high bit error rate and 

downstream/upstream bandwidth asymmetry, TCP performance degrades dramatically. This paper 

addresses the problems of TCP in satellite data networks and reviews the proposed solutions in the 

literature.  For each solution, the advantages and disadvantages are pointed out. In addition, 

extensive simulations have been done for the proxy based scheme currently used in the industry to 

find out how and to what extent the enhancements, such as connection splitting, window scaling 

and selective acknowledgement, benefit the TCP throughput.  

 

 

I. Introduction 
 

A. Overview of TCP 

 

TCP is a connection-oriented, end-to-end, process-to-process reliable transport protocol. TCP 

source and destination port combined with IP source and destination addresses uniquely identify 

each TCP connection. There are several mechanisms in TCP, such as flow control, congestion 

control and error control [1,2,3,4]. 

 

•= Flow control: TCP uses a sliding window to achieve flow control. The TCP receiver sets 
the receive window field (RCVWND) in the acknowledgement to its free buffer size so that 

the sender will never overflow the receiver's buffer. 

 

•= Congestion control: The TCP sender maintains a state variable CWND for congestion 
window size. While RCVWND is used to guard that the sender will not overflow the 

receiver buffer, the CWND is used to guard the sender will not overload the network. The 

TCP sender can send at most the minimum of RCVWND and CWND window worth 

packets without receiving any acknowledgement. In the most popular TCP Reno, there are 

four algorithm used for congestion control which are slow start, congestion avoidance, fast 

                                                 
1 The material is based upon work supported by NASA under award No NCC3528.
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retransmit and fast recovery. Slow start is used upon the start of a new connection to probe 

the network bandwidth, it increases the CWND by one maximum segment size (MSS) when 

an acknowledgement is received, which results in increasing congestion window 

exponentially. TCP stays in slow start until its CWND is greater than the slow start 

threshold. After that TCP gets into congestion avoidance, it increases CWND about one 

MSS per round trip time (RTT). Fast retransmit algorithm is triggered when a fixed number 

of duplicate acknowledgements (usually 3) are received. TCP retransmits the potential lost 

packet indicated by the acknowledgement and cuts its CWND to half. After that, it inflates 

its CWND by one MSS when a duplicate acknowledgement is received. If there is one and 

only one packet lost in a single window, the inflation can increase the CWND to the 

original CWND before the loss after about half RTT. After that TCP can send a new packet 

when each duplicate acknowledgement is received if allowed by the RCVWND. Finally it 

will send half a window new packets when it receives the first non-duplicate 

acknowledgement. TCP Reno doesn't like TCP Tahoe, which does not have the fast 

recovery algorithm and sends half a window packets in burst after the loss has been 

recovered. 

 

•= Error control: Error control is the main component of reliable protocols, which includes 
error detection and error recovery. TCP uses acknowledgement packet, timer and 

retransmission to achieve error control. TCP uses cumulative acknowledgement, which 

means when a packet gets lost, it prevents the acknowledgement from being advanced and 

the window cannot slide until the lost packet is recovered. The sliding window mechanism 

actually ties the flow control, congestion control and error control together and it becomes 

vulnerable when there are losses including congestion loss and packet corruptions in the 

network [29]. 

 

 

B. Overview of satellite hybrid network 

 

For the home users or small enterprise, using dial-up modem to access the Internet is too slow. In 

order to provide broadband Internet service for these customers, satellite hybrid network was 

proposed to solve this last-mile problem (Figure 1). This kind of hybrid network exploits three 

observations [5]: 1) some rural area may not be reached by fiber network or it may be too 

expensive to do so 2) satellite hybrid network can provide higher bandwidth to a large geographical 

area and it is easy to deploy 3) home users usually consume much more data than they generate. So 

this asymmetric hybrid network fits in the need very well.  

 

 

 

 

 

 

 

 

 

 

Client 
Hybrid Gateway Server

Figure 1: Direct to User satellite hybrid network
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Satellites can also be in the middle of the data networks to provide communication between two 

gateways located geographically far away from each other [6] (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. TCP problems in satellite hybrid network 
 

•= Long propagation delay GEO satellite is about 36,000km above the earth. The propagation 

delay from the earth up to the satellite and from the satellite down to the earth is about 

125ms. Therefore a typical round trip time for two-way system is about 580ms including 

about 80ms RTT for the terrestrial networks. The time TCP spends in slow start equals 

RTT*log2SSTHRESH when every segment is acknowledged and equals 
RTT*log1.5SSTHRESH [7] when every other segment is acknowledged. For a connection 

with large RTT, it spends a long time in slow start before reaching the SSTHRESH. For 

short transfers, they could be finished in slow start, which obviously does not use the 

bandwidth efficiently. Some researchers propose to use a larger initial widow [8] (i.e. 4 

MSS) rather than one for slow start. So files less than 4K bytes can finish its transfer in one 

RTT rather than 2 or 3. Another proposal [9] is to cancel the delay acknowledgement 

mechanism in the slow start so every packet get acknowledged and the sender can increase 

its CWND more quickly. For bulk transfer, TCP throughput is inverse proportional to RTT 

[10]. So TCP connection with larger RTT does not get its fair share of the bandwidth when 

it competes with the connections with shorter RTT. Using simulations, Henderson claims 

the ‘Constant-rate’ additive increase policy can correct the bias against connection with 

long RTT [11]. However it is difficult to implement this policy in a heterogeneous network.  

 

•= Large bandwidth-delay product The bandwidth delay product in this system is very large. 

In order to keep the pipe full, the window should be at least the bandwidth delay product 

[9,12]. However the receiver advertised window which is 16 bits in the TCP header cannot 

be more than 64k, which limits the two-way system throughput to 64k/580ms=903Kbps. 

Window scaling [18] is used to solve this problem. However when the window is large, it is 
quite possible for multiple losses in one window, which leads to poor performance.  

Figure 2: satellite in the middle of the network 

Hybrid Gateway Server
Hybrid Gateway Client 
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•= High Bit Error Rate Ka band satellite channel is noisier than fiber channel. Bit error rates 
of the order of 10E-6 and of 10E-4 as worst case are often observed [13]. Because TCP 

Reno treats all losses as congestion in the network. This kind of link layer corruption can 

cause TCP to drop its window to a small size and leads to poor performance. Forward error 

correction (FEC) coding is usually used in satellite communication to reduce the bit error 

rate. FEC can reduce the BER to 10E-10 for about 99.5% of the time for the terminals and 

99.75% of the time for the gateways. However, FEC consumes some bandwidth by sending 

redundant information together with the data and transforms the original random error 

nature to one with bursty errors [14,15]. TCP SACK [16] was proposed to convey non-

contiguous segments received by the receiver in the ACKs so that the sender can recover 

error much faster than TCP Reno, which well known can recover only one loss per RTT.  

 

•= Bandwidth Asymmetry The downstream bandwidth from the satellite to the earth terminals 
is much higher than the upstream bandwidth. The upstream link is shared by all terminals, 

and it could get congested. The congestion in upstream could lead to poor performance in 

the downstream link because TCP uses ACKs to clock out data. In the best case, the ACKs 

are not lost, but queued, waiting for available bandwidth. This has a direct consequence on 

the retransmission timer and slows down the dynamics of TCP window. Most of the time 

the upstream is transferring pure ACKs. However if the users are sending data (say email 

with large attachment or upload file using FTP), a lot of data packets could be queued in 

front of ACKs in a FIFO queue, which increases the ACKs delay dramatically. To alleviate 

these problems, ACK filtering was proposed to drop the ACKs in the front of the queue. In 

the two-way transfer, a priority queue can be used to schedule the ACK to be sent first [17]. 

 

 

III. Proposed solutions 
 

A. End-to-end window based solutions 

 

•= TCP enhancements TCP enhancements include large initial window [8], byte counting, 
delayed ACKs after slow start [9], TCP for transaction [19], selective acknowledgement 

[16, 33] and forward acknowledgement [20]. Read the appendix for details.  

 

•= TCP Peach TCP peach [21] has two new algorithms sudden start and rapid recovery, 

which replace the slow start and fast recovery algorithm in TCP Reno respectively. 

Essentially TCP Peach has two channels, one is for the data transmission and another one is 

for bandwidth probing. TCP peach uses low priority dummy segments to probe the 

bandwidth. The dummy segment is the last transmitted data segment and does not carry any 

new information. All the routers along the path should implement some kind of priority 

mechanism. During the sudden start upon the connection establishment, the sender sends 

one data segment as in TCP Reno as well as RWND-1 dummy segments. The timing for 

sending these segments is uniformly distributed in one RTT. If there is no congestion along 

the path, the acknowledgements of the dummy segments will get back to the sender, which 

are used to increase the CWND so that the CWND could reach the RWND one RTT later. 

If one or more routers along the path are congested, the low priority dummy segments are 
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dropped so that they do not affect the bandwidth of the data channel. Rapid recovery can 

distinguish link error corruption from congestion loss using the same idea. After the fast 

retransmit, the sender sends dummy segments to probe the channel. If the loss is due to link 

layer, most of the dummy segments should arrive the destination and their ACKs are used 

to increase the CWND. If the loss is due to congestion, all the dummy segments will be 

dropped and rapid recovery just behaves as fast recovery. The problem with TCP peach is 

that dummy segments do not carry any information and they are overhead to the data. 

Another problem is that all the routers need to implement priority mechanism, which 

makes it difficult to deploy. Finally TCP peach just addresses the slow start and link layer 

error problem. The bandwidth asymmetry problem has not been addressed. 

 

B. TCP connection splitting 

 

•= I-TCP. The basic idea of indirect TCP [22] is that the end-to-end TCP connection is now 
divided into two connections, one is from the server to the base station and another one is 

from base station to the mobile users. The base station sends premature acknowledgements 

to the server and takes responsibility to relay the data to the mobile host reliably. The 

advantages are separation of flow control and congestion control of wireless and wired 

network, faster reaction to link layer loss. However this scheme violates the end-to-end 

semantics of TCP. In I-TCP, it is possible the sender receives an acknowledgement of a data 

packet while the data packet has not reached the destination rather is buffered at the base 

station. The authors argue that many applications such as FTP and HTTP use application 

layer acknowledgements in addition to end-to-end TCP acknowledgements. Using I-TCP 

for these applications does not comprise end-to-end reliability.  

 

•= M-TCP. M-TCP [23] also uses connection splitting. One novel idea in M-TCP is that the 
base station may set the advertised receiver window size to zero so that it can choke the 

sender and force it into persist mode. While in this state, the TCP sender will not suffer 

from timeouts, retransmission timer back off and the congestion window stays open. This 

idea can be used as a flow control mechanism by the base station when there is congestion 

at the base station. TCP Connection splitting is always criticized for extra processing 

overhead and scalability problem. Using simulation, this papers shows that a 100 MHz 

Pentium PC can adequately handle numerous simultaneous connections with little 

performance degradation.  

 

•= Super TCP Because satellite channel is a FIFO channel, out-of-order routing and 

congestion on the satellite link are impossible. [24] proposes to use one duplicate ACKs to 

trigger the retransmission at the base station and to use a fixed window size for the satellite 

TCP connection. In order for the fast retransmit algorithm to recover the loss, the 

congestion window size has to be greater than four for single packet loss and has to be 

greater than ten for two consecutive losses in one window. While for three or more 

consecutive losses in one window, the TCP sender has to wait for timeout to recover the 

loss. The paper proposes a new sender algorithm using the same idea as in TCP new Reno 

[25,26]. It uses partial ACKs to calculate the bursty loss gap and sends all the potential loss 

packets beginning from the partial acknowledgement number. Although it is possible that 

the sender could retransmit packets that have already been correctly received by the 
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receiver, it was shown that this algorithm performs better than TCP SACK in recovering 

bursty errors. 

 

 

C. Rate based solutions 

 

•= TCP Vegas TCP Vegas [27] addresses the congestion problem from another perspective. It 
does not use packet loss as the indication of congestion. Rather it uses the transmission rate 

for congestion control. Every round trip time, the sender calculates its transmission rate 

based on the sending window and the measured RTT. This rate is compared with the 

expected rate, which is Transmission window/Base RTT. Base RTT is the smallest RTT 

measured so far. The basic idea is that if there is no congestion in the network the measured 

rate should be closed to the expected rate. Two thresholds are used to trigger additive 

increase or decrease, depending of whether the channel is under-utilized or over-utilized. 

TCP Reno always increases its congestion window if there is no loss and periodically 

causes the packet dropped and window oscillation. TCP Vegas can decrease its window in 

congestion avoidance, it does not cause window oscillation once it reaches the equilibrium. 

The RTT measured by the sender may be caused by the congestion in the reverse path rather 

than the forward path. So TCP Vegas does not work well in the asymmetric path case. 

 

•= SCPS-TP Space communication protocol standards-transport protocol (SCPS-TP) [28] is a 
set of TCP extensions for space communications. This protocol adopts the Timestamps and 

window scaling options in RFC1323 [18]. It also uses TCP Vegas low-loss congestion 

control mechanism. SCPS-TP receiver doesn’t acknowledge every data packet. ACKs are 

sent periodically based on the RTT. The traffic demand for the reverse channel is much 

lighter than in the traditional TCP. However it is difficult to determine the optimal 

acknowledgement rate and the receiver may not respond properly to congestion in the 

reverse channel. Because there is no regular acknowledgement-driven clock, it uses an 

open-loop rate control mechanism to meter out data smoothly. To transmit data 

continuously in the presence of link layer loss rather than congestion loss is especially 

important. SCPS-TP uses selective negative acknowledgement (SNACK) to address this 

problem. SNACK is a negative acknowledgement and it can specify a large number of holes 

in a bit-efficient manner. 

 

•= STP Satellite transport protocol (STP) [13] is very familiar to SCPS-TP. STP adapts an 
ATM-based protocol for use as a transport protocol in satellite data networks. STP can get 

comparable performance to TCP SACK in the forward path. However STP consumes 

significantly less bandwidth in the reverse path. The transmitter sends POLL packets 

periodically to the receiver, the receiver sends STAT packet as acknowledgements and the 

reverse path bandwidth requirement depends mainly on the polling period, not on the 

forward path data transmission rate. Therefore the bandwidth demand for the reverse path 

decreases dramatically. STP can be used as the proprietary protocol in the satellite 

connection. 

 

•= NETBLT. NETBLT [29] is a reliable transport layer protocol designed for bulk data 
transfer over satellite IP networks. Based on the observations that window and timers 
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perform poorly in synchronizing the end states and widow mechanism, which ties flow 

control and error control together, becomes vulnerable in the face of data loss, NETTBLT 

decouples flow control from error control. It uses rate rather window for flow control and 

the rate control parameters are negotiated during the connection setup and periodically 

updated. Data is divided into large fixed sized blocks called “buffers” not like TCP, which 

is a stream data protocol. 

 

D. Link Layer solution 

 

•= Snoop.  Snoop TCP [30,31] was originally designed for last-hop wireless network. Wireless 
network has a lot of similarities to satellite network. Both of them have link layer 

corruption, wireless communication media and bandwidth asymmetry. However the satellite 

network has a much longer round trip delay than the wireless network and the satellite 

network does not have the handoff problem as in wireless network. Snoop essentially uses 

the TCP acknowledgements to trigger the link layer retransmission at the base station and 

suppresses the duplicate ACKs from propagating to the TCP sender therefore it can shield 

the link layer loss and does not drive the TCP sender to cut its window to half as end to end 

TCP does. Although Snoop does not have any TCP layer code running at the base station, it 

still need to access the TCP header to get the sequence number and acknowledgement 

number. It does not work if IPSEC is used. Snoop preserves the end-to-end semantics of 

TCP. However Snoop cannot be used for satellite network because the long propagation 

delay of the satellite link could cause fairness problem if the base station keep the ACKs to 

transmit end to end. 

 

•= Reliable link layer protocol Another solution to shield the link layer corruption from TCP is 

to implement a reliable link layer protocol. The problem with this solution is that it needs to 

be designed very carefully for it to work together with TCP. It is possible for the error to 

trigger the link layer retransmission while the duplicate ACKs of TCP propagate to the TCP 

source and cause TCP to halve its window and to retransmit the same packet. Another 

problem is that not all the up layers need reliable link layer service, e.g. real-time traffic 

using UDP does not need reliable data transmission. According to the end-to-end argument 

[32], the reliable service can completely and correctly be implemented only with the 

knowledge and help of the application at the end hosts. However link layer can implement 

an incomplete version of the reliable service for a performance enhancement. 
 

•= Adaptive forward error correction Usually FEC uses K symbols for information and N-K 

symbols for redundancy. When more redundancy is added or a strong error correction code 

is used, the packet error rate is decreased. However the effective bandwidth for useful 

information transmission is reduced given the total raw bandwidth is fixed.  [10] gives a 

TCP throughput formula in which the throughput is proportional to 1/(RTT* p ). The 

throughput in this formula is the maximum achievable throughput, which increases 

monotonically when the packet error rate decreases. The actual throughput is the minimum 

of the effective throughput and the achievable throughput. The basic idea in AFEC [15] is to 

find a code (K,N) so that the effective throughput is equal to the achievable throughput 

which is actually is maximum throughput of the TCP connection. The problem with this 

scheme is that it increases the coding and decoding overhead both at the base station and at 
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the mobile hosts. And like Snoop, it still has the unfairness problem when used for the 

satellite network. 

 

Conclusion: 

 

Because of the long propagation delay, large bandwidth-delay product, high bit error rate and 

upstream/downstream bandwidth asymmetry, TCP performance degrades significantly over 

satellite data networks. There are several proposals in the literature target to solve these problems, 

which include end-to-end window based, rate based, proxy-based protocols as well as link layer 

enhancements. All these proposals are not independent of each other. A better solution can combine 

some of them and comes up with a new protocol for satellite network. All in all, the new protocol 

should decouple the flow control from error control and fill the long-fat pipe with enough data 

packets to improve throughput as well as keep the upstream channel bandwidth requirement small. 

For short transfers, such as HTTP, new protocol can use a streamline handshake mechanism, which 

combines the handshake of application layer and transport layer together. This mechanism can save 

one or two round trip time, which is significant for short transfers considering the large end-to-end 

delay of satellite networks. 
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Appendix: 

 

TCP over Satellite Simulations  

 

/* ***************************************************************** */  

Note:  

            SACK in OPNET 7.0 does not work.  

           It has been fixed in the following simulations.  

 

            Window Scaling does not work either.  

            It has also been fixed in the following simulations.  

 

/* ***************************************************************** */  

All the following simulations are done with OPNET 7.0. The goal is to test which TCP 

enhancements will benefit the TCP performance over satellite. The TCP enhancements are 

connection splitting, window scaling, SACK etc.  

 

The options we have in OPNET 7.0:  

 

> Path MTU Discovery  

NO. We can just set TCP payload Maximum Segment Size (MSS), which is usually equal to 

Maximum size MAC layer can handle, minus the size of TCP and IP headers.  

 

> T/TCP  

NO.  

 

> Larger Initial Window  

YES. We can set it to 1, 2, or 4 etc. We also can use the algorithm defined in RFC-2414 where the 

initial window is set to min [4*MSS, max (2*MSS, 4380)].  

 

> Delayed ACKs after Slow Start  

No. Delayed ACKs mechanism can be Clock Based or Segment/Clock based. However, there is no 

option to disable delayed ACKs while in slow start. The delayed ACKs mechanism in OPNET 7.0 

is used for both slow start and congestion avoidance.  

 

> Window Scaling  

YES. As defined in RFC-1323.  

 

> FEC  

NO.  

 

> SACK  

YES. As defined in RFC-2018.  

 

> TCP header compression  

NO.  
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We can also choose different TCP flavors such as Tahoe, Reno. However there is no New Reno 

and Vegas. We also can set the Receiver Buffer size and receiver buffer usage threshold. These are 

important parameters that the application delay is sensitive to. It also affects the window size.  

 

All the following protocol-specific algorithm can be either enabled or disabled in a given TCP 

implementation:  

•= Fast Retransmit  

•= Fast recovery  

•=  Window Scaling  

•= SACK  

•= Nagle's Silly Window Syndrome Avoidance  

•= Karn's algorithm to avoid Retransmission ambiguity. 
 

1. Simulation Topology 
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2. Enhanced hybrid gateway internal structure 

 

 
 

 

3. Simulation parameters and baseline model  

A. Application: An FTP application (16M bytes) 

 

B. Transport protocol: TCP Reno 

 

C. All the link bandwidth is DS1 

 

D. All receive buffer sizes are set to 64K bytes. 

 

E. The link delay between the hybrid gateway and the client is 250ms and the link delay between 

server and hybrid gateway is 40ms. Therefore the RTT between server and client is 580ms, the 

RTT between hybrid gateway and client is 500ms. 

 

F.    The statistics we collect is link utilization and link throughput of the two downstream links 

 

In the baseline model, the link delay is distance based. So it is almost 0ms. It is the best throughput 

and end-to-end delay we can get. It is used to compare with other scenarios. 
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3.1 Without Connection Splitting 

 

           
 

                Gateway to Client                                                                  Server to Gateway 

 

3.2 With Connection Splitting 

 

         
 

            Gateway to Client                                                                  Server to Gateway 

 

In the baseline model, we can see from the above figures that both links' throughput reaches DS1 

and link utilizations are 100%. Because the file size is very large (16M bytes), the slow start phase, 

which does not utilize the bandwidth efficiently, is amortized by the congestion avoidance phase. 

Because we do not model the processing overhead of the connection splitting, we got the same 

results above. If the processing overhead is considered, the throughput is expected to be smaller. 
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4. Error free case 

4.1 No connection Splitting and No window scaling 

 

            
        

Gateway to Client                                                                  Server to Gateway 

 

Because we set the receiver buffer size to 64K bytes, without window scaling, the maximum 

throughput we can get is 64kbytes/580ms=903,944bps. And DS1=1,544,000bps. So the maximum 

link utilization is 903,944/1,544,000=58.55%.  This MSS is 512 bytes, the TCP header is 20 bytes 

and the IP header is 20 bytes, so the actual throughput is (512+20+20)/512*58.55% = 63.12%. 

 

4.2. No connection Splitting and Window Scaling 

 

               
 

Gateway to Client                                                               Server to Gateway 
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4.3 Connection Splitting and no window scaling 

 

            
 

            Gateway to Client                                                             Server to Gateway 

Because we set receiver buffer size to 64K bytes, without window scaling, the maximum 

throughput we can get is 64kbytes/500ms=1,048,576bps. And DS1=1,544,000bps. So the 

maximum link utilization is 1,048,576/1,544,000=67.91%.  This MSS is 512bytes, the TCP header 

is 20 bytes and the IP header is 20 bytes, so the actual throughput is (512+20+20)/512*67.91% = 

73.21%. 

 

4.4 Connection Splitting and window scaling 

 

           
 

Gateway to Client                                                            Server to Gateway 
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5. Introduce BER 10E-7 over the download between Hybrid gateway and client 

 

5.1 No Connection Splitting, No Window scaling and No SACK 

 
               CWND                                     Gateway to Client                          Server to Gateway 

 

5.2 No Connection Splitting, No Window scaling and SACK 

 

 
CWND                                     Gateway to Client                          Server to Gateway 

 

5.3 No Connection Splitting, Window scaling and No SACK (Rcv_buf = 160 k) 

 

 
CWND                                     Gateway to Client                          Server to Gateway 

 



 17

5.4 No Connection Splitting, Window scaling and SACK (Rcv_buf = 160 k) 

 

 
CWND                                     Gateway to Client                          Server to Gateway 

 

5.5 Connection Splitting, No Window scaling and No SACK 

 

 
CWND                                     Gateway to Client                          Server to Gateway 

 

5.6 Connection Splitting, No Window scaling and SACK 

 

 
CWND                                     Gateway to Client                          Server to Gateway 
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5.7 Connection Splitting, Window scaling and No SACK (rcv_buf = 160K) 

 

 
CWND                                     Gateway to Client                          Server to Gateway 

 

5.8 Connection Splitting, Window scaling and SACK (rcv_buf = 160K) 

 

 
CWND                                     Gateway to Client                          Server to Gateway 


