
Modeling Vulnerabilities of Ad Hoc Routing Protocols

Shahan Yang
Electrical and Computer Engineering

Department and
Institute for Systems Research

University of Maryland College Park
College Park, MD 20742, USA

syang@isr.umd.edu

John S. Baras
Electrical and Computer Engineering

Department and
Institute for Systems Research

University of Maryland College Park
College Park, MD 20742, USA

baras@isr.umd.edu

ABSTRACT
The purpose of this work is to automate the analysis of ad
hoc routing protocols in the presence of attackers. To this
end, a formal model of protocol behavior is developed in
which time is modeled by a set of constraints on the time
of occurrence of events, enabling the representation of par-
tially ordered timed events and asynchronous communica-
tion. Data variables are represented symbolically, capturing
a range of distinct executions in each expression. Given a
formal description of Ad Hoc On Demand Distance Vector
Routing Algorithm (AODV) and a desired safety property
(route stability), an analysis by a naive semi-decision pro-
cedure discovers an instance of an attack that leads to a
violation of the property.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-
Communication NetworksNetwork Protocols[protocol veri-
�cation, routing protocols]

General Terms
Ad Formal Veri�cation, Ad hoc Wireless Networks, Security

1. INTRODUCTION
Current approaches to securing ad hoc routing protocols fo-
cus on using secure signatures to authenticate routing in-
formation and some built in mechanisms for resisting or de-
tecting Byzantine attacks. However, authentication is not
always su�cient to safeguard the network from malicious
nodes, as in the case of publicly accessible wireless networks
or in the case of physical compromise, to which mobile de-
vices are thought to be more susceptible. Also, methods for
detecting Byzantine attacks are often susceptible to attack
themselves.

This work focuses on developing formal models for ad hoc
networks routing protocols with the objective of modeling

Byzantine or insider attacks. Such a model may aid protocol
designers in mitigating their e�ects or reducing the number
of vulnerabilities of this type. In addition, formal models
have been used previously in intrusion detection to protect
routing in �xed networks. A formal model for ad hoc net-
work routing may also prove useful in constructing intrusion
detection systems in a mobile environment.

2. RELATED WORK
This work is closely related to veri�cation of routing proto-
cols. A notable example is the work on verifying the loop
freedom of AODV [2] [8]. The authors used formal models
of AODV to discover conditions leading to the formation of
routing loops by model checking �nite models of AODV in
SPIN [6]. They proceeded to design a repair for AODV that
eliminates this problem and veri�ed that the repaired ver-
sion of AODV is loop free under some assumptions (prior to
restarting its AODV process, a node must ensure that all of
its neighbors detect the restart). The veri�cation combines
a mechanically assisted proof using HOL with �nite state
model checking performed by SPIN.

The approach that this work draws most heavily from is
the automated tool Athena, which has been used to verify
secrecy and nonrepudiation in security protocols [10]. The
tool Athena is based on the Strand model [3], which pro-
vides a framework for proving properties of security proto-
cols. Athena has several advantages over other approaches
that would be useful in the study of routing protocols. For
instance, since the model of variables is symbolic, it is possi-
ble to describe an in�nite range of executions within a �nite
expression. Also, partial order reduction is an inherent part
of the model. Rather than representing time as a linear or
branching structure, time is implicit and only appears as a
set of constraints on the causal ordering of events. Athena is
so e�cient at checking protocols that it is possible to search
the space of possible protocols to automatically generate
them [9].

As a combination of model checking and theorem proving,
Athena uses only symbols and simple operations on these
symbols to represent the variables occurring in the system.
Athena then uses a model checking procedure to check the
satis�ability of these logical formulas that describe scenar-
ios in their system. It manipulates the data variables sym-
bolically, but explores the control paths explicitly. Conse-
quently, only a �nite number of control paths can be checked

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full cit ation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
Proceedings of the 1st ACM Workshop Security of Ad Hoc and Sensor
Networks Fairfax, Virginia
© 2003 ACM-1-58113-783-4/03/0010…$5.00

12

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 5.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

by Athena. It is possible to show under certain assumptions
that this su�ces to capture all possible behaviors of a proto-
col that could satisfy a given formula. However, it is doubt-
ful that the same result applies to the problems addressed
in this paper, because in routing algorithms, the number of
control paths includes all the in�nite possible sequences of
topology changes.

An alternative to verifying protocols is subjecting them to
automatically generated fault oriented tests [4] [5]. The pro-
tocols are modeled as �nite state machines and rather than
checking the entire state space for violations of the correct-
ness criteria, one only checks states reachable from faults
(low level anomalous, but correct behavior). Once incor-
rect states reachable from faults are identi�ed, a backwards
search is performed from the fault to determine if it is reach-
able. This search is performed for each type of fault and each
message of the system and yields a set of tests that lead to
error states. The idea of restricting the search to faults
helps to mitigate the e�ect of state space explosion in blind
searches of the protocol state space. This work places em-
phasis on simulation of the system using the test sequences
leading to realistic examples of protocol errors.

The example protocol chosen for study is the distance vector
routing algorithm AODV. A secure variant of AODV called
SAODV has been proposed [11]. This approach assumes
that nodes have public and private keys and that each node
is able to securely determine if a given public key belongs to
another given node. Security is improved over AODV, which
has no security provisions by signing routing messages and
using hash chains to sign mutable �elds of routing messages.
However, SAODV does not address the problem of malicious
insiders.

3. CRITERIA FOR SECURE ROUTING
Attacks may come in many forms in an ad hoc routing pro-
tocol. It is possible that an attacker may compromise nodes
and make them behave arbitrarily. It is also possible for an
attacker to jam the physical medium. Survivability demands
of an ad hoc routing protocol that it is able to maintain ser-
vice under hostile conditions. Eavesdropping is always pos-
sible by passive snooping on the broadcast medium, so it is
not an attack that is considered here. The attacks of inter-
est are those that disrupt routing services provided by the
protocol even if there exist uncompromised routes through
the network.

Given the above assumptions, it would be desirable for se-
cure routing protocols to provide routing service even in
the presence of attackers. Most of the secure routing algo-
rithms require authentication of routing messages. Based
on whether or not they may generate these authenticated
messages, there are two categories of attackers, outsiders
and insiders. A malicious outsider is unable to generate
authentic routing messages. However, he is able to replay
messages that are generated by legitimate parties and to
degrade communication between nodes within his broadcast
range by jamming the lower layers of communication. A ma-
licious insider can perform all the attacks that an outsider
can. Additionally, a malicious insider has the keys necessary
to generate authentic messages for his own identity. If ma-
licious insiders cooperate and share their keys, each insider

src

dest

Regular Node

Malicious Node

Figure 1: Uncompromised path.

may generate any message appearing to originate from any
of the compromised nodes.

In secure environments, it is possible to apply su�cient safe-
guards to the nodes themselves to prevent compromise, and
it is only necessary to consider outsider attacks. However,
malicious insiders are a more realistic threat in less con-
trolled environments, such as public access networks.

An ideal routing protocol should be able to provide routing
service in the presence of any number of attackers, as long
as there is a stable, uncompromised path through the net-
work. There are two criteria that de�ne an uncompromised
path through the network expressed as safety and liveness
conditions. For safety, every node in the path is normal,
that is non-malicious and its key has not been disclosed. If
there are malicious nodes in the path, then there is always
a way for that node to block the route discovery process
along that path. For liveness, communication must be pos-
sible along the path. This is necessary because it is possible
for malicious nodes not belonging to the path to compro-
mise it by either jamming lower protocol layers or denial
of service attacks at the routing message level. For exam-
ple, continuous routing messages that �ll message queues or
require processing may prevent legitimate routing messages
from ever being processed, as a malicious node is unlikely
to respect fairness requirements. More precisely, there must
be an upper bound on the amount of delay between nodes
in the path.

These requirements are very strong and it may be the case
that for certain routing algorithms to operate in the pres-
ence of attackers, it is necessary for there to be redundancy
in the paths available. It could also be the case that rout-
ing through compromised nodes is the only option or the
most e�cient. This work currently addresses neither of these
cases.

In both cases, with or without malicious insiders, a possi-
ble su�cient condition for security comprises two assertions:
safety and liveness. The safety condition asserts that discov-
ered routes are stable. Otherwise, paths that are discovered
can be broken by the attacker as they are formed. This can
result in inde�nite denial of routing service. The liveness
condition asserts that it is possible to discover the route.

These conditions can be expressed formally with sentences

13

of CTL. The safety condition can be expressed with the
sentence

A2(R→ A©R)

where R is a state predicate describing the state in which
the routing table has an uncompromised route to the desti-
nation. The precise de�nition of R depends on the speci�c
topology and how the routing protocol de�nes routes. The
liveness condition is expressed in terms of a collection of as-
sertions parameterized on a well founded set W . The state
predicate R is similar to the one de�ned above and asserts
that in the current state, the route exists. The predicates
ϕi where i ∈ W are a chain of assertions that describe a
set of actions, whose inevitable outcome is R. The liveness
condition is given below.

A2(Aϕi U R ∨
_
j<i

ϕj)

The de�nition of state predicates ϕi and W depends on
the particular protocol and topology. These two rules are
complete for describing safety and liveness properties [7], so
these sentences should be su�cient for describing any pro-
tocol.

4. EXTENDED STRANDS MODEL
The Strand model exploits the nonbranching behavior of se-
curity protocols where each participant executes a �xed se-
quence of input and output events. However, this will not be
entirely appropriate for routing protocols. Since the behav-
ior of routing protocols contains branches, it is necessary to
extend the Strand model. This work presents an extension
of the strand model that enables it to capture the behavior
of routing protocols for the purposes of veri�cation.

4.1 Partial Order Semantics and CTL
The model of concurrent execution for the proposed model
is similar to the Strand model, where events are partially
ordered by the transitively closed causality relation. Since
constructs from temporal logic are used, it is necessary to
ensure that the semantics are compatible. The technical is-
sue concerns true concurrency. In CTL, every execution,
corresponding to one path through the tree, must admit a
total ordering of events. This is in con�ict with the idea of
modeling events by a system of constraints because in the
constraint model it is possible for two events to occur ex-
actly simultaneously. For very straightforward reasons, this
technical discrepancy is immaterial for the systems under
consideration.

Let < be the binary causal relation on the time of occurrence
of events. There are three categories of events in the par-
tially ordered model of time: causally independent, causally
dependent and mutually causally dependent.

If two events, α and β are causally independent, ¬α < β and
¬β < α, then there are three possible executions: < α, β >,
< β,α > and α|β. α|β denotes true concurrency of the
events α and β. Suppose that the ordering of the events
α and β may a�ect the state reached. This implies that
α and β must both a�ect some common process p. This
can only occur if α and β synchronize in the timeline of p
so they are causally dependent contradicting the hypothe-
sis. The case where α|β is ruled out by the same argument

because synchronization in a single process implies a total
ordering of events. This behavior is easily captured by the
branching time semantics. The argument may be extended
to encompass sets of causally independent events.

If two events, α and β are dependent, then they are to-
tally ordered, which easily captured by the branching time
semantics.

Finally, if events α and β are mutually causally dependent,
that is, they must occur simultaneously, then in the branch-
ing time semantics, the events must be treated as a single
event with a shared label. This might create di�culties if
the causal constraints indicate that events must be concur-
rent, as in a causal loop. This is impossible though because
a loop including α requires an event in process a that pre-
cedes α to be caused by α and all events preceding α in a
strictly precede it.

4.2 Messages and events
The proposed model, in the context of a LTS has an al-
phabet Σ consisting generally of tuples of integers. These
tuples have special structure however, associated with their
semantics. The terms �event�, �action� and �message� refer
to syntactic constructs rather than the particular events, ac-
tions or messages of an execution. The term �event instance�
will be used to refer to an actual occurring event.

Events are composed of an action and a message. The action
describes what the event does. It may be a communication
or a synchronization point in the process. The message em-
bodies the information that is associated with the event.

The following are the de�ned action symbols representing
di�erent kinds of events.

+ directed message send.

− message receipt.

? message broadcast.

/ state precedence.

. state succession.

A message is a set of symbols. Each symbol in the message
represents some data �eld that is included in the message.
For example, σ = {s, d, f1, . . . , fm} is a directed message.

An event is formally a tuple (a, V), written aV , where a is
one of the action symbols and V is a message. For events
with + actions, the message must be directed and include
at least an element for both source and destination. For
? actions, the message is broadcast so it must include the
source but not necessarily the destination. Finally, for /
or . actions, the message must be a set containing a single
symbol representing the identity of the process such as {p}.
For example, /{p} is an event and if σ is a directed message
then +σ and −σ are both events.

14

4.3 Role
Roles describe implicitly the state space and the behavior of
processes in the protocol. In a general sense, this extended
role de�nition combines actions of TLA with the behavioral
model of Strands. The TLA action is used to describe the
change in state variables, which the Strand model does not
have, while Strands are used as a partially ordered, goal
driven model of execution.

Formally, a role R is a tuple R = (Xi, Xf ,M,Φ(L)).

Xi set of state symbols representing values of the state vari-
ables prior to the execution of the role.

Xf set of state symbols representing values of the state vari-
ables after the execution of the role.

M a sequence of events. If an event with the action . occurs
in this sequence, then it can only be the �rst event and
it must be of the form .{p} where p is a participant
symbol. Similarly, if / occurs, then it must be the last
event and of the form /{p}.
For some �nite sets Σd of directed messages and Σb of
broadcast messages, the rest of the events are of the
form +σ1, ?σ2 or −σ3 for some σ1 ∈ Σd, σ2 ∈ Σb and
σ3 ∈ Σd ∪ Σb. For example

〈.{p},+σ1, . . . ,+σm, /{p}〉

where σ1, . . . , σm ∈ Σd, is such a sequence.

De�ne the length of a role R, written l(R) as the length
of the sequence of events M . Also de�ne the ith event
of role R, written R[i], where 1 ≤ i ≤ l(R) as the ith

event in the sequence of events M .

Φ a formula of �rst order logic with free variables from the
set of symbols L.

L the complete set of uniquely labeled symbols included in
Xi, Xf and M . Let M = 〈a1V1, . . . , amVm〉. Let the
distinguishable message symbols Ω =

Sm
i=1{i} × Vi.

The following mappings de�ne L.

gi X
i → Li where gi is 1-1 onto.

gf Xf → Lf where gf is 1-1 onto.

gM Ω → LM where gM is onto but generally not 1-1.
There is a particular element of LM that would
not have a well de�ned inverse mapping, though
the rest of the elements of LM would. Let α de-
note this symbol in LM . If ai = . or ai = /, then
Vi = {p} for some symbol p and gM (i, p) = α. If
ai = + or ai = ? then Vi contains s where s is
a symbol for the sender and gM (i, s) = α. Simi-
larly, if ai = − and Vi is a directed messsage, then
the Vi contains a symbol r corresponding to the
recipient and gM (i, r) = α. Every other element
of Ω maps to a distinct element of LM that is not
α.

All pairs of ranges from Li, Lf , LM should have empty
intersections. Let g be the union of gi, gf , gM . L =
Li ∪ Lf ∪ LM , the range of g.

The shared symbol α represents the id of the participant,
which should remain constant throughout. In constrast,
�elds associated with state variables and message �eld val-
ues are potentially di�erent and therefore labeled distinctly.

4.3.1 Logical Theories forΦ
The description of roles has so far been syntactic. The ac-
tual logical theory of Φ will depend on the protocol being
studied. For most protocols, this theory will be some reduct
of number theory but it is possible to have other theories,
such as the theory of real numbers. The formula Φ(L) is
always decidable because it models the next state function
of a protocol for which an e�ective decision procedure must
exist.

It is possible that Φ is merely a set of formulas as with an
integer program. For example

l1 + l1 + l2 + l2 + l2 = 0

where l1, l2 ∈ L is such a formula which is equivalent to

2l1 + 3l2 = 0

in terms of what relation it de�nes on l1 and l2. This is
a subset of Presburger arithmetic, NA = (N; 0, S,<,+) for
which satis�ability is exactly the same thing as solving an in-
teger program. While decidable, like Presburger arithmetic,
no decision procedure is fast enough for very long formulas.

In the case of routing protocols such as AODV and TORA,
it su�ces to consider the theory of the structure

NL = (N; 0, S,<).

This theory admits the elimination of quanti�ers, which is
stronger than decidability. Some examples of atomic formu-
las of this structure include

l1 = l2,

l1 ≤ l2,

l1 < l2,

l1 +k = l2

where l1, l2 ∈ L∪Z, k ∈ Z. The formula l1 ≤ l2 is equivalent
to the formula l1 < l2∨ l1 = l2 and the formula l1 +k = l2 is
merely a suggestive way of writing the formula skl1 = l2. It
is possible to extend the language to include relations +k =
as de�ned. Observe that on the structure NL, (+k =) ⊂ (<)
⊂ (≤) for any k ∈ Z. The inclusion of these extra relational
symbols does not change the expressiveness of the language
but they do facilitate the description of an e�cient satis�-
ability procedure for terms of this language to be described
in Section 4.10.

BDDs might also be a good choice for the representation Φ.
In this representation, each variable represented in L is a set
of Boolean variables, and Φ can then be expressed in terms
of the characteristic function of a Boolean function on L,
which may be easily represented by a BDD.

4.4 Protocol
De�ne a protocol as the tuple P = (Σ,∆).

15

Σ set of messages. Σ = Σd ∪ Σb ∪ {p} where Σd is a set of
directed messages, Σb is a set of broadcast messages
and p is a symbol representing a participant.

∆ set of roles of the protocol where for all R ∈ ∆ where
R = (Xi, Xf ,M,Φ) the messages of events in M are
all in Σ.

4.5 Strand
A strand is a pre�x of an execution of a role. Formally, a
strand is a tuple θ = (R, k, I), where

R a role, R = (Xi, Xf ,M,Φ(L)).

k a number 1 ≤ k ≤ l(R) giving the number of events of
the role that this strand instantiates.

I some set of instance symbols. I has an element for each
symbol occurring in L such that there is a 1-1 onto
mapping h : L→ I.

Each instance symbol is unique. For any two strands θ1 =
(R1, k1, I1) and θ2 = (R2, k2, I2) I1 ∩ I2 = φ. Even though
the strand represents only the execution of the �rst k events
of the role, set I still contains all the symbols associated
with L, because it might not be possible to express all the
applicable constraints from Φ otherwise.

t = (θ, i), where θ = (R, k, I) is a node of θ if 1 ≤ i ≤ k,
written t ∈ θ. t refers to the execution of event R[i].

4.6 Goal binding
A goal is an event required to occur by a particular node in
order for that node's event to occur. For a node t = (θ, i),
where θ = (R, k, I), 1 ≤ i ≤ k and R[i] = aV , the the goal
is bV , where b is some event depending on the action a as
described below.

a = + No goals are associated with actions of this type.

a = − Message receipt has as its goal the sending of the
same message, either through a broadcast or a directed
send, depending on the message type. If V is a directed
message, then the goal is +V , if it is a broadcast mes-
sage, then the goal is ?V . There is exactly one goal
instance for nodes having this action.

a = . The single goal of nodes having this kind of event is
/{p}.

a = / This type of node has no goals.

Binders are also events, and these will satisfy the goals
described above. Nodes having certain actions will have
binders, and for these nodes the binder is R[i]. The number
of instances of the binder depends on the binder's action
symbol.

a = + Exactly one instance of the binder.

a = ? The number of instances of this binder depends on
the topology of the network.

a = − Zero binder instances.

a = . Zero binder instances.

a = / Exactly one instance of the binder.

The general idea is that in an execution, all the goals must
be satisi�ed by binders. Also, the binders with actions + or
? require goals to be bound to them, while binders with the
action / do not.

For any goal and binder pair, the binder may bind the goal
when the events are equal, meaning that the actions are
identical and the sets of variables are identical.

When a binder of node t1 binds a goal of node t2, it can be
written as t1 → t2. In the special case where t1 = /{p} and
t2 = .{p} for some symbol p, this may also be written as
t1 ≺ t2. Since each strand may have at most one occurrence
of an event with action . and one occurrence of an event
with action /, there is no confusion in also writing θ1 ≺ θ2
if for some t1 ∈ θ1, t2 ∈ θ2 t1 ≺ t2.

De�ne the binary relation → on nodes to hold for pairs of
nodes where t1 → t2.

4.7 Causal relation
The causal relation C is a transitive binary relation on nodes.
It is possible to interpret this relation as ≤ where the node
symbols are interpreted as timestamps. C arises from the
strands and goal binding as follows.

For a strand θ = (R, k, I), for each i ∈ {1, . . . , k−1} and for
each j = i+ 1 the nodes ti = (θ, i) and tj = (θ, j) satisfy

Ctitj ∧ ¬Ctjti.

Each node of a strand strictly precedes the higher numbered
nodes in the same strand.

Given nodes t1 and t2 where t1 → t2,

Ct1t2 ∧ Ct2t1.

The event associated with node t1 occurs concurrently with
the event associated with node t2.

A given set of strands and goal bindings between their nodes
describes a causal relation. If this causal relation is infeasible
by interpreting over ≤ and timestamps, then there is no
way that this describes an actual execution of the protocol.
For example, if the transitive closure of constraints given by
the binding relation and the ordering of nodes in a strand
includes both Ct1t2 and ¬Ct1t2 then no ordering of t1 and
t2 can satisfy both constraints.

4.8 Constraint Program
Given a set of strands Θ = {θ1, . . . , θn} and a goal binding
relation → on nodes occurring in Θ de�ne an equivalence
relation E on the instance symbols of each strand in Θ.

For each strand θi ∈ Θ, let

(Ri, ki, Ii) = θi,

16

Ri = (Xi
i , X

f
i ,Mi,Φi(Li)),

gi be the labeling function de�ned in Ri and hi be the in-
stantiation function de�ned in θi. By de�nition for each
i 6= j where 1 ≤ i ≤ n and 1 ≤ j ≤ n Ii ∩ Ij = φ. Let
U =

Sn
i=1 Ii. E is an equivalence relation on U satisfying

the following.

• For ti → tj the instance symbols associated with the
messages of the two nodes are equivalent under E. Let
(θi, ii) = ti and (θj , ij) = tj , where θi, θj ∈ Θ. Since
ti → tj , Ri[ii] = aV and Rj [ij] = bV for exactly the
same set of symbols V , though a and b will di�er. For
all v ∈ V

E(hi(gi(ii, v)), hj(gj(ij , v))).

• If ti ≺ tj , then the above constraints still apply, along
with some additional recursively de�ned constraints.

Let Xu
0 = Xi

j , θp0 = θi. The following hold for k = 0
and for all k > 0 where Xu

k 6= φ and θpk ≺ θp(k−1) for
some θpk ∈ Θ.

E(hpk(gpk(x)), hi(gi(x))) for all x ∈ Xu
k ∩Xf

pk

Xu
k+1 = Xu

k \Xf
pk

This recursion terminates for any �nite set of strands
and binding relation with a feasible causal relation.

The equivalence relation E de�nes a partition on U . For
each partition, choose a distinct unused symbol and let e
be a mapping from U onto this set of new symbols. g(x) =

g(y) i� E(x, y). Consider the set of constraints
S|Θ|

i=1 Φi(Ii).
Clearly, this is a set of constraints only on U . Apply to each
symbol from U occurring in this set of constraints the map-
ping e. The resulting set of constraints Γ must be feasible
in order for the set of strands and binding relation to be a
valid execution.

4.9 Semibundle
A semibundle is a tuple (Θ,→).

Θ set of strands.

→ goal binding relation on nodes occurring in Θ.

For all semibundles, the semibundle's causal relation (Sec-
tion 4.7) and constraint program (Section 4.8) must be fea-
sible.

A semibundle is a bundle if every goal is bound to a binder
and every binder requiring a goal to be bound to is bound.

4.10 Constraint program feasibility
In the case where the model for Φ, the transitions, is an inte-
ger program, it is possible to solve it as an integer program.
However, integer programs are di�cult to solve, and all algo-
rithms are in their worst case exponential in di�culty with
the number of variables. Fortunately, AODV and TORA
do not require the full expressiveness of integer prorgrams.
They can actually be described completely on the structure
NL.

The constraint program arising from NL is an integer pro-
gram and can be solved as such, there is a polynomial time
algorithm to determine whether or not a diagonal constraint
program is feasible.

Consider the atomic formulas of the �rst order language L1

having nonlogical symbols {s, 0}, where s is the unary suc-
cessor function and 0 is a constant symbol. All atomic for-
mulas of this language have one of the following forms

snv1 = smv2

snv1 = sm0

where n,m ≥ 0 and sn represents a string of n s symbols.
Any formula is equivalent to one of the following normal
forms

v1 = snv2

v1 = sn0

snv1 = 0

where n ≥ 0.

Let Γ ⊂ AtfmL1 be �nite and let each formula in Γ be
in normal form. Let φ be the formula formed by the con-
junction over Γ. Let ψ be φ existentially quanti�ed over all
variables in Fv(φ). The satis�ability of ψ on the structure
A = (Z, s) can be determined by a graphical method.

Let G = (V,E) be the directed graph described as follows.
V = Fv(φ) ∪ {0}. De�ne Γ ⊂ AtfmL1 where |Γ| < ω and
Fv(Γ) ⊆ {x1, . . . , xn} for some �xed, �nite n. De�ne the
directed graph G = (V,E) where V = {x1, . . . , xn}, and the
edges

E = {(x, y) ∈ V × V : +1 = xy ∈ Γ}.

Γ is realized in A = (Z,+1 =) i� every simple, undirected
loop in G contains an equal number of upstream and down-
stream edges.

Proof. The goal is to show that Γ is feasible implies that
every loop contains an equal number of upstream and down-
stream edges. It su�ces to show the contrapositive. If there
are an unequal number of +1 = and = 1+ edges in a par-
ticular loop, then that loop is infeasible, since for any node
x in the loop, it says x + k = x for some nonzero k, which
is impossible.

The proof of the converse proceeds by constructing a solu-
tion. Assume without loss of generality that the graph is
connected because disjoint partitions may be realized inde-
pendently. Arbitrarily choose some v ∈ V and some c ∈ Z.
Assign values to neighbors of v exactly as indicated by the
edges. Continue in this manner by either breadth �rst or
depth �rst search throughout the graph. The assignments
will all be consistent by hypothesis. a

This result generalizes to encompass terms +k = by intro-
ducing k− 1 arti�cial variables and applying +1 = k times.

Consider now the language L with nonlogical symbols
{≤,+1 =}, where both are binary relations. De�ne Γ as

17

before, but with L instead of L1. De�ne the graph G =
(V,E) with V = {x1, . . . , xn} as before, but the edges must
include labels {≤,+1 =} in order to distinguish between
+1 = edges and ≤.

E = {(x, y,R) ∈ V × V × {≤,+1 =} : Rxy ∈ Γ}

De�nition. A simple loop of a an edge labeled graph G =
(V,E) is a sequence of edges

< (x1, x2, λ1), (x2, x3, λ2), . . . , (xn−1, xn, λn−1) >

where

for all 1 ≤ i ≤ n− 1 (xi, xi + 1, λi) ∈ E,

for all 1 ≤ i ≤ n− 1, i < j ≤ n− 1 xi 6= xj .

x1 = xn

De�nition. De�ne the direction complemented graph G′ of
a graph G as G′ = (V,E′) where

E′ = E ∪ {(y, x,= 1+) : (x, y,+1 =) ∈ E}.

Γ is realized in A = (Z,≤,+1 =) i� every simple loop of the
direction complemented graph of G satis�es the following
criteria.

• If the loop excludes edges labeled ≤, then the number
of edges labeled +1 = must equal the number of edges
labeled = 1+.

• If the loop includes edges labeled ≤, then the number
of edges labeled = 1+ must be greater than or equal
to the number of edges labeled +1 =.

Proof. It is easy to show necessity by contraposition. To
show su�ciency, construct a feasible solution to the problem
incrementally, showing that each increment preserves both
criteria.

This problem is equivalent to the problem of assigning to
each ≤ a value s ≥ 0 such that the ≤ is interpreted as
+s =. Let e = (x, y,≤) ∈ E′. Formally, the graph after
such a substitution has the set of edges

(E′ \ {e}) ∪ {(x, y,+s =), (y, x,= s+)}.

In this case, the problem is feasible if after assigning values
to all of the ≤ edges, the �rst criterion still holds, as this is
equivalent to the feasibility of the program in L1.

It su�ces to show that given that the criteria hold, it is
possible to assign some s value to any ≤ edge in the graph
such that after making the assignment, the resulting graph
still satis�es the criteria. Then a solution can be constructed
by recursively assigning s values to the result of the previous
substitution.

Replacing a ≤ labeled edge e may a�ect the criteria as fol-
lows.

1. Loops having e as the only ≤ labeled edge become
loops containing only +1 = and = 1+ labeled edges.
These resulting loops must satisfy the �rst criterion.

2. Loops containing e along with other ≤ labeled edges
must still satisfy the second criterion after the substu-
tition occurs.

3. It is possible that the substitution creates loops that
did not previously exist because it adds the reverse
edge (y, x,= s+). The resulting loop must contain at
least one ≤ labeled edge where the direction di�ered
from the removed ≤ labeled edge so the second crite-
rion applies.

These e�ects constrain the value of s to be substituted. If
the criteria hold prior to the substitution, these constraints
are feasible.

Lemma. The set of edges in any �nite loop is the union of
the sets of edges of some number of simple loops.

Proof. Recursively decompose the arbitrary �nite loop into
smaller and smaller loops until they are simple. The only
di�erence between a simple loop and an arbitrary loop is
that simple loops contain only one repeated vertex, the be-
ginning and end. The arbitrary loop may revisit multiple
vertices.

If the loop is not simple, then there is some vertex, call it
v, that is not the beginning or end but is traversed twice.
The path between the two occurrences of the same vertex
is a loop. The path starting from the beginning and up to
the �rst instance v skipping the v- to-v loop then continu-
ing to the end is another loop. If either of these resulting
loops is not simple, then recursively reapply the process.
The recursion terminates because each stage of the recur-
sion monotonically decreases the size of the loops and the
initial loop is �nite. a

Corollary. If every simple loop of a graph satis�es the cri-
teria, then every arbitrary �nite loop satis�es the criteria.

Proof. Both criteria are closed under summation, and ev-
ery simple loop satis�es the criteria so every arbitrary loop
that can be decomposed into simple loops also satis�es the
criteria. a

If any loop l containing e has e�ect (1), then s will be equal
to the number of edges labeled = 1+ minus the number of
edges labeled +1 =. s ≥ 0 holds because of the second
criterion. It is easy to verify that this substitution does not
invalidate any of the criteria for other loops containing e
by considering the fact that for any loop containing e, the
same loop not including e but traversing the remainder of l
must still satisfy both criteria. It is necessary to apply the
corollary here in case the loop described here is not a simple
loop.

Otherwise, only e�ects (2) and (3) apply. E�ect (2) places
an upper bound on s, while (3) places a lower bound. For
every loop where e�ect (2) applies, the value s must be less
than or equal to the number of edges labeled = 1+ minus

18

the number of edges labeled +1 =. There is some loop for
which this di�erence is minimal, though always greater than
or equal to zero by the second criterion. This is the upper
bound on s.

Let (x, y,≤) = e. When e�ect (3) applies, there is a simple
path from x to y that contains at least one ≤ labeled edge. s
plus the number of = 1+ labeled edges minus the number of
+1 = labeled edges along this simple path must be greater
than or equal to zero. In other words s must be greater
than or equal to the number of +1 = labeled edges minus
the number of = 1+ labeled edges.

The simple path of e�ect (3) runs parallel to and in the
same orientation as e. Then there is a loop consisting of the
simple path and the loops having e�ect (2). These loops
must satisfy the criteria by the corollary, which guarantees
the lower bound is less than or equal to the upper bound. a

This result can be used to reason about < and = constraints.
For < constraints such as x < y, introduce an arti�cial vari-
able a0 and represent the constraint as the pair of constraints
a0 + 1 = y and x ≤ a0. For = constraints, such as x = y,
remove the constraint and substitute throughout the rest of
the constraints x every time y appears.

4.11 Algorithm for checking feasibility
An adaptation of the Floyd-Warshall all pairs shortest paths
algorithm [1] determines the feasibility of the constraint pro-
gram of Section 4.10 in polynomial time.

5. SEARCH PROCEDURE
The search procedure follows directly from the search pro-
cedure in Athena. For example, a disruption attack can
be modeled by instantiating a pair of participants with a
path between them. Then instantiate a node with the goal
term where one of the participants no longer has the other
one in its routing table. Additionally, instantiate a set of
nodes corresponding to the initial conditions of the system.
Continuously bind unbound goals in all possible ways by
instantiating roles and binding to existing nodes in the sys-
tem until all goals are bound. If a bundle is eventually
discovered, a corresponding execution exists and the prop-
erty has been disproved. On the other hand, verifying the
property requires that all branches of the backwards reach-
ability search converge. In Athena, this was claimed to be
undecidable in general because each instantiation of a role
potentially creates new unbound goals (though in Athena
the possible instantiations are in fact bounded making the
procedure decidable still, which is not the case here). It is
possible to force convergence by assuming a bound on the
length of executions.

5.1 Protocol specification language
The messages are speci�ed in a message �le with a very
simple syntax, the message name, followed by the names of
the message �elds where each message is separated by a new
line.

While roles are described as sequences of events and a set
of atomic formulas taken in conjunction to constraining the
values of state variables and event message �elds, the actual

speci�cation language allows for the description of roles in
terms of atomic formulas joined by the logical connectives
and some programmatic connectives. The logical connec-
tives supported are the usual Boolean operations ∧,∨,¬ de-
noting and, or and not respectively. For convenience, the
operator ⇒ represents the programmatic construct if-then-
else.

The interpretation of this programmatic connective ⇒ dif-
fers fundamentally from logical implication. It denotes that
if the �rst argument is true, then the latter argument must
also be true. However, when the �rst argument is false,
the second argument is not executed. In the case where ⇒
has three arguments, the third argument represents the else
clause and is invoked when the �rst condition evaluates to
false. In practice, the ⇒ separates into two separate roles,
one in the case where the condition evaluates true, and the
other when the condition evaluates false. This can lead to a
multiplication of roles because a formula may contain mul-
tiple instances of ⇒ terms where each possible combination
forms a distinct role.

After the⇒ construct is removed from the formulas by sep-
arating it into its components, the remaining formula con-
sists of atomic formulas joined by ∧,∨,¬. Converting this
to disjunctive normal form (DNF), then taking each indi-
vidual conjunct yields the roles. Negations appearing on
the atomic formulas can be incorporated into the formulas
themselves by reversing the inequality or equalities. If the
reversal is of an equality, the role splits into two, one where
the equality is substituted with > and one with <.

6. IMPLEMENTATION
The implementation is mixed Ruby (an object-oriented script-
ing language) and C. Ruby has many desirable features in a
language: iterators, blocks and closures, built-in regular ex-
pressions and garbage collection. It also has a clean interface
to native C. The core of the search engine is in native C for
performance and the rest of the implementation, of which a
large portion is a parser for the language, is in Ruby.

7. RESULTS
The test scenario comprises four participants, one of which
is an intruder. The scenario intializes the network to a state
where the hop counts to the destination are the actual dis-
tances and the route is valid. This state represents R in the
formalization given previously. A simple way to invalidate
this condition is by specifying that one of the hop counts is
less than its actual distance to the destination. This goal
state is an element of ¬R.

The goal binding search procedure examines possible exe-
cutions that can lead to the goal state being reached and
discovers that it is possible to reach such a state by a forged
RREP emitted by the intruder. While this might be ob-
vious to an analyst examining the protocol, this example
demonstrates that it is possible to automate such reasoning.

8. FUTURE WORK
There are two signi�cant problems that we intend to address
in the immediate future. The �rst is that while topology
changes in ad hoc networks may impact on security, the

19

src dest

intruder

Supplied Binders

hops = 2 hops = 1

src dest

intruder

Unbound Goal

hops < 2

?

src dest

intruder

RREP: hopCount <= 0

Figure 2: Example scenario.

analysis currently applies to only �xed networks. This might
not be a severe problem since most ad hoc routing protocols
assume stable topologies and cannot guarantee service in
changing topology. Therefore, if an ad hoc network does not
achieve routing under changing topologies in the presence of
intrusions, it is not possible to conclude that it is a security
violation of the behavior. This leads immediately to the
other signi�cant problem, which is to develop a speci�cation
of what security means in routing protocols. Clearly, the
su�cient conditions analyzed in this work are not necessary,
and in fact too strong for realistic routing protocols.

In addition to the speci�c questions above pertaining to ad
hoc networks, there are also limitations imposed by state
space explosion on the number of nodes that can be an-
alyzed tractably. Model checking, even using state space
reduction techniques such as symbolic representation and
partial order reduction seems better suited for analyzing lo-
cal properties of protocols. The success of previous routing
protocol veri�cation studies depends on theorem proving. It
might be necessary to resort to some theorem proving to an-
alyze the security of routing protocols, but the disadvantage
would be that it would be impossible to automate. Further
model checking techniques such as state abstraction might
also help to mitigate these problems.

These results so far only demonstrate a violation of the
safety property of SAODV in the presence of malicious in-
siders. The more di�cult question of liveness has not been
explored and neither has the question of how SAODV per-
forms in the absence of malicious insiders. The same ques-
tions can be asked of the other secure routing protocols.

9. ACKNOWLEDGEMENTS
Research partially supported by the U.S. Army Research
O�ce under Award No. DAAD19-01-1-0494.

10. REFERENCES
[1] Dimitri Bertsekas and Robert Gallager. Data

Networks. Prentice-Hall, Inc., 1992.

[2] Karthikeyan Bhargavan, Davor Obradovic, and
Carl A. Gunter. Formal veri�cation of standards for
distance vector routing protocols. Journal of the ACM
(JACM), 49(4):538�576, 2002.

[3] F. Javier Thayer Fábrega, Jonathan C. Herzog, and
Joshua D. Guttman. Strand spaces: Proving security

protocols correct. Journal of Computer Security,
7(2,3):191�230, 1999.

[4] Ahmed Helmy, Deborah Estrin, and Sandeep K. S.
Gupta. Fault-oriented test generation for multicast
routing protocol design. In FORTE, pages 93�109,
1998.

[5] Ahmed Helmy, Deborah Estrin, and Sandeep K. S.
Gupta. Systematic testing of multicast routing
protocols: Analysis of forward and backward search
techniques. In Proceedings of IEEE ICCCN, October
2000.

[6] Gerard J. Holzmann. The model checker spin. IEEE
Transactions on Software Engineering, 23(5):279�295,
1997.

[7] Zohar Manna and Amir Pnueli. Adequate proof
principles for invariance and liveness properties of
concurrent programs. Science of Computer
Programming, 4(3):257�290, December 1984.

[8] D. Obradovic. Formal Analysis of Routing Protocols.
PhD thesis, University of Pennsylvania, 2001.

[9] Adrian Perrig and Dawn Song. A �rst step towards
the automatic generation of security protocols. In
Proceedings of the Symposium on Network and
Distributed Systems Security (NDSS '00), pages 73�83,
San Diego, CA, February 2000. Internet Society.

[10] Dawn Xiaodong Song, Sergey Berezin, and Adrian
Perrig. Athena: A novel approach to e�cient
automatic security protocol analysis. Journal of
Computer Security, 9(1/2):47�74, 2001.

[11] Manel Guerrero Zapata and N. Asokan. Securing ad
hoc routing protocols. In Proceedings of the ACM
workshop on Wireless security, pages 1�10. ACM
Press, 2002.

20

