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Abstract: Simulation has indicated that distributed self-organization of au-
tonomous swarms might be achieved through Gibbs sampler-based simulated an-
nealing. However, the dynamic nature of the underlying graph presents significant
challenges in convergence analysis. As a first step toward such analysis, convergence
of the algorithm is established in this paper for two special cases: single vehicle
with limited sensing/moving range, and multiple vehicles with full sensing/moving
range. The impact of Gibbs potential functions on the convergence speed is also
investigated, which provides insight into the design of these functions.
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1. INTRODUCTION

With the rapid development of sensing, commu-
nication, computation, and actuation capabilities,
autonomous unmanned vehicles (AUVs) are ex-
pected to cooperatively perform dangerous or ex-
plorative tasks in various hazardous, unknown
or remote environments (Schoenwald, 2000). Dis-
tributed approaches to control of individual vehi-
cles and to coordination among vehicles are espe-
cially appealing considering the large scale of the
vehicle networks and the bandwidth constraint on
communication (Olfati-Saber and Murray, 2002;
Jadbabaie et al., 2003; Tanner et al., 2003; Baras
et al., 2003). Such approaches often involve arti-
ficial potentials (Shahidi et al., 1991; Rimon and
Kodistschek, 1992; Leonard and Fiorelli, 2001),
and vehicles follow the negative gradients of po-
tentials mimicking the emergent behaviors (e.g.

foraging) demonstrated by swarms of bacteria,
insects, and animals (Passino, 2002). In these
schemes, all interactions among vehicles, target
attraction, and collision avoidance are encoded
in potential functions. Despite the simple nature,
an essential problem in such approaches is that
the system dynamics may get trapped at local
minima of the potential functions (Koren and
Borenstein, 1991).

To deal with the local minimum trapping problem
associated with the deterministic potential func-
tion method, a stochastic approach was proposed
recently based on the theory of Markov Random
Fields (MRFs) (Baras and Tan, 2004). In this
approach a swarm of vehicles is treated as an
MRF on a graph where each vehicle is a node
and their communication/detection links consti-
tute the edges. Similar to the artificial potential



approach, global objectives (e.g., reaching the tar-
get or making formations) and constraints (e.g.,
obstacles or threats) are reflected through the
design of Gibbs potentials. The movement of each
vehicle is then decided through simulated anneal-
ing based on the Gibbs sampler. With this scheme,
successful self-organization and mission execution
with only local sensing and communication have
been observed (Baras and Tan, 2004).

It is of interest to analyze the convergence behav-
ior of the stochastic algorithm since this may not
only provide theoretical explanation to the simu-
lation results, but also offer insight into the proper
design of the Gibbs potentials. However, the dy-
namic nature of the underlying graph presents
significant challenges in analysis and classical re-
sults on MRF theory do not apply directly. As a
first step toward analytical understanding of the
algorithm behavior, two special cases are inves-
tigated in this paper: the case of single-vehicle
with limited sensing/moving range and the case
of multi-vehicle with full sensing/moving range.
For both cases it is established that the vehicle(s)
will achieve the global objective defined through
the Gibbs potential function. Furthermore, for
the single-vehicle case, the relationship between
the convergence speed and the potential function
is derived analytically and then verified through
simulation. This can have a direct impact on the
optimal design of potential functions in practice.

The remainder of the paper is organized as fol-
lows. The Gibbs sampler-based path planning al-
gorithm is first reviewed in Section 2. Convergence
analysis for two special cases is presented in Sec-
tion 3, followed by discussion on the convergence
speed in Section 4. Section 5 concludes the paper.

2. GIBBS SAMPLER-BASED PATH
PLANNING ALGORITHM

2.1 MRFs and Gibbs Sampler

Let S be a finite set of cardinality σ, with elements
indexed by s and called sites. For s ∈ S, let
Λs be a finite set called the phase space for site
s. A random field on S is a collection X =
{Xs}s∈S of random variables Xs taking values
in Λs. A configuration of the system is x =
{xs, s ∈ S} where xs ∈ Λs, ∀s. The product
space Λ1 × · · · × Λσ is called the configuration
space. A neighborhood system on S is a family
N = {Ns}s∈S, where ∀s, r ∈ S, Ns ⊂ S, s /∈ Ns,
and r ∈ Ns if and only if s ∈ Nr. Ns is called
the neighborhood of site s. The random field X is
called a Markov random field (MRF) with respect
to the neighborhood system N if, ∀s ∈ S, P (Xs =
xs|Xr = xr , r �= s) = P (Xs = xs|Xr = xr, r ∈
Ns).

A random field X is a Gibbs random field if and
only if it has the Gibbs distribution:

P (X = x) =
e−

U(x)
T

Z
, ∀x,

where T is the temperature variable (widely used
in simulated annealing algorithms), U(x) is the
potential (or energy) of the configuration x, and
Z is the normalizing constant, called the partition
function: Z =

∑
x e−

U(x)
T . One then considers

the following useful class of potential functions
U(x) =

∑
s∈Λ Φs(x), which is a sum of individ-

ual contributions Φs evaluated at each site. The
Hammersley-Clifford theorem (Bremaud, 1999)
establishes the equivalence of a Gibbs random
field and an MRF.

The Gibbs sampler belongs to the class of Markov
Chain Monte Carlo (MCMC) methods, which
sample Markov chains leading to stationary distri-
butions. The algorithm updates the configuration
by visiting each site sequentially (or randomly
visiting sites with certain proposal distribution
(Winkler, 1995)) and sampling from the local
specifications of a Gibbs field. One round of se-
quential visits to all sites is called a sweep. The
convergence of the Gibbs sampler was studied by
D. Geman and S. Geman in the context of image
processing (Geman and Geman, 1984). There it
was shown that as the number of sweeps goes
to infinity, the distribution of X(n) converges to
the Gibbs distribution Π. Furthermore, with an
appropriate cooling schedule, simulated annealing
using the Gibbs sampler yields a uniform distri-
bution on the set of minimizers of U(x). Thus the
global objectives could be achieved through ap-
propriate design of the Gibbs potential function.

2.2 Path Planning: Problem Setup

Consider a 2D mission space (the extension to 3D
space is straightforward), which is discretized into
a lattice of square cells. Without loss of generality,
each cell is assumed to have unit dimensions.
Label each cell with its coordinates (i, j), where
1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, for Nx, Ny > 0. There
is a set of vehicles (or mobile nodes) S indexed by
s = 1, · · · , σ on the mission space. To be precise,
each vehicle (node) s is assumed to be a point
mass located at the center of some cell (is, js), and
the position of vehicle s is taken to be ps = (is, js).
At most one vehicle is allowed to stay in each cell
at any time instant.

The distance between two cells, (ia, ja) and

(ib, jb), is defined to be R
�
=

√
(ia − ib)2 + (ja − jb)2.

Each node s can communicate with other nodes
that lie within a communication/sesing range Rs.
These nodes forms the set Ns of neighbors of node
s. A vehicle can go at most Rm (Rm ≤ Rs) within



one move. For ease of discussion, Rm = Rs is
assumed in this paper. There might be multiple
obstacles in the space, where an obstacle is defined
to be a set of adjacent cells that are inaccessible
to vehicles. For instance, a “circular” obstacle
centered at (io, jo) with radius Ro can be defined

as O
�
= {(i, j) :

√
(i − io)2 + (j − jo)2 ≤ Ro}. A

node can detect obstacle cells within Rs. There
can be at most one target area in the space. A
target area is a set of adjacent cells that represent
desirable destinations of mobile nodes. A “circu-
lar” target area can be defined similarly as a “cir-
cular” obstacle. Fig. 1 shows an example scenario,
containing an obstacle (formed by two overlapping
circular obstacles) and a circular target.
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Fig. 1. An example mission scenario.

The neighborhood system defined earlier natu-
rally leads to a dynamic graph where each vehicle
stands for a vertex of the graph and the neighbor-
hood relation prescribes the edges between vehi-
cles. An MRF can then be defined on the graph,
where each vehicle s is a site and the associated
phase space Λs is the set of all cells located within
the moving range Rm from location ps and not
occupied by obstacles or other vehicles. An admis-
sible configuration is a graph where vehicles stay
in different cells. The accessible area is the set of
cells in the mission space that are not occupied
by obstacles. An accessible-area graph can then
be induced by letting each cell in the accessible
area be a node and connecting neighboring cells
with edges. The accessible area is connected if the
associated accessible-area graph is connected.

The Gibbs potential U(x) =
∑

s Φs(x), where
Φs(x) consists of three terms with each reflecting
one goal or one constraint. To be specific,

Φs(x) = λgJ
g
s + λoJ

o
s + λnJn

s , (1)

where Jg
s ,Jo

s , and Jn
s account for the attraction

from the target area, the repelling from obstacles,
and the reaction force from neighbors (could be
attractive or repelling depending on the appli-
cation/distance), respectively, and they can be
designed so that Φs(x) depends only on xs and xr,
r ∈ Ns. λg, λo, λn are the weighting coefficients
for adjusting the potential surface. Note that the

design of these constants is also a challenging and
important issue as it may directly impact the
nodes behavior and the convergence rate of the
algorithm. The movement of each vehicle is then
determined by the Gibbs sampler-based simulated
annealing (Baras and Tan, 2004).

There are important differences between a clas-
sical MRF introduced in Subsection 2.1 and the
MRF defined for the vehicle networks. In a classi-
cal MRF, both the phase space Λs and the neigh-
borhood Ns are time-invariant; however, for a ve-
hicle network, both Λs and Ns depend on the dy-
namic graph and therefore vary with time. These
differences prevent the classical MRF theory from
being adopted directly to analyze the convergence
behavior of the path planning algorithm.

3. CONVERGENCE ANALYSIS

3.1 Single Vehicle with Limited Moving Range

For the single-vehicle case, the MRF has only
one site and the individual potential Φs consists
of only first two terms of (1), which makes the
analysis simpler. It can be shown that the Markov
chain of the MRF defined by the Gibbs sam-
pler converges to a stationary distribution ΠT

as time tends to infinity for a fixed temperature
T . By choosing an appropriate cooling sched-
ule, the vehicle approaches the configuration(s) of
minimum potential. This is made precise by the
following theorems. The proofs of the theorems
are adapted from some results on classical MRFs
(Winkler, 1995).

Theorem 3.1. Assume that the accessible area is
connected. For a fixed temperature T , let PT be
the kernel of the homogeneous Markov chain X(n)
defined by the Gibbs sampler. Then X(n) has a
unique stationary distribution ΠT :

πT (x) =

e−
U(x)

T

∑
‖pz−px‖≤Rm

e−
U(z)

T

ZT
, (2)

where ZT is the partition function, defined as:

ZT =
∑
x∈X

(e−
U(x)

T

∑
‖pz−px‖≤Rm

e−
U(z)

T )

Furthermore, starting from any distribution ν

lim
n→∞νPn = ΠT . (3)

Proof. Since the MRF has only one site, the
Markov kernel PT defined by Gibbs sampler is:

PT (x, y) =⎧⎪⎪⎨
⎪⎪⎩

e−
U(y)

T

∑
‖pz−px‖≤Rm

e−
U(z)

T

if‖py − px‖ ≤ Rm

0 if‖py − px‖ > Rm

. (4)



Due to the connectivity of the accessible area,
there exists at least one path between any two
configurations x and y (i.e., a sequence of moves
{x, x1, · · · , y}), and the shortest path is bounded
by τ moves for some finite τ . This implies that
PT has a strictly positive power P τ

T , i.e., the τ -
step Markov chain reaches each state with positive
probability from any state. Hence the Markov
chain is ergodic and it has a unique invariant
distribution ΠT , which implies (3). One can verify
that (2) is a stationary distribution for PT . �
Due to the limited moving range, τ sweeps will
be performed for each temperature T (n) in the
simulated annealing to guarantee the convergence.

For a Markov kernel P , define its contraction
coefficient c(P ) by

c(P ) = (1/2)max
x,y

‖P (x, ·) − P (y, ·)‖1,

where P (x, ·) denotes the vector of conditional dis-
tributions p(·|x). The following lemma (Winkler,
1995) will be useful in the proof of Theorem 3.2.

Lemma 3.1. Let μ and ν be probability distribu-
tions, and P and Q be Markov kernels. Then

‖μP − νP‖1 ≤ c(P )‖μ − ν‖1,

c(PQ) ≤ c(P )c(Q),

c(P ) ≤ 1 − |X |min{(P (x, y) : x, y ∈ X},
and for a primitive P ,

c(Pn) → 0 as n → ∞,

where X is the state space of the Markov chain
and |X | denotes its cardinality.

Theorem 3.2. Assume that the accessible area is
connected. Let {T (n)}n≥1 be a cooling schedule
decreasing to 0 such that eventually

T (n) ≥ τΔ
ln n

(5)

where Δ = max
x,y

{|U(x) − U(y)| : ‖px − py‖ ≤
Rm} 1 , and τ is as defined in the proof of The-
orem 3.1. Let Qn = P τ

T (n). Then from any initial
distribution ν,

lim
n→∞ νQ1 · · ·Qn = Π∞, (6)

where Π∞ is the distribution (2) evaluated at T =
0. Let M be the set of configurations achieving the
minimum of U(x). Assume that ‖px − py‖ > Rm,
∀x, y ∈ M, x �= y. Then

lim
n→∞νQ1...Qn =

⎧⎨
⎩

1
|M | if x ∈ M

0 otherwise
. (7)

1 In this paper, ‖·‖ denotes the Euclidean norm, and ‖·‖1

denotes the 1-norm.

Proof. Define mx = min{U(z) : ‖pz −px‖ ≤ Rm}.
Then, if ‖py − px‖ ≤ Rm,

PT (x, y) =
e−

U(y)−mx
T

∑
‖pz−px‖≤Rm

e−
U(z)−mx

T

≥ |Λ|−1e
−Δ
T

(8)
where |Λ| is the upper-bound on the cardinality
of the phase space. For Q = P τ

T , from Lemma 3.1,

c(Q)≤ 1 − |X |min
x,y

Q(x, y) ≤ 1 − |X |(min
x,y

PT (x, y))τ

≤ 1 − λe
−τΔ

T , (9)

where λ = |X | · |Λ|−τ ≤ 1. Then

n∏
k=i

c(Qk)≤
n∏

k=i

(1 − λe
−τΔ
T (k) ) ≤

n∏
k=i

(1 − λk−1)

≤ e
−

n∑
k=i

λk−1

≤ (
i

n
)λ (10)

where the third inequality holds because

(1 − z) ≤ e−z, ∀z ∈ (0, 1),

and the last one follows by

ln(ni−1) < ln(n + 1) − ln(i) =
n∑

k=i

(ln(1 + k) − ln k)

=
n∑

k=i

ln(1 + k−1) ≤
n∑

k=i

k−1.

With some abuse of notation, ΠT (n) will be writ-
ten as Πn to simplify the expressions. For 2 ≤
N ≤ i ≤ n, one has

‖νQ1...Qn − Π∞‖1

= ‖(νQ1...Qi−1 − Π∞)Qi...Qn + (11)

Π∞Qi...Qn − Π∞‖1

≤ ‖(νQ1...Qi−1 − Π∞)‖c(Qi...Qn) +

‖Π∞Qi...Qn − Π∞‖1

≤ 2c(Qi...Qn) + 2sup
k≥N

‖Π∞ − Πk‖1 +

∑
k≥N

‖Πk − Πk+1‖1, (12)

where the last inequality is established by Do-
brushin’s theorem (Winkler, 1995). From (10), the
first term of the last inequality approaches 0 as
n → ∞. By Theorem (3.1), the second term also
approaches 0. To show that the third term van-
ishes, it suffices to prove each component sequence
of (Πn(x))n ≥ 1 decreases or increases eventually.
By investigating the derivative of Πn(x) with re-
spect to the temperature T , the ultimate mono-
tonicity can be established (Winkler, 1995). This
completes the proof of (6).



Let m denote the (global) minimal value of Gibbs
potential U(x). Then

πT (x) =

e−
U(x)−m

T

∑
‖pz−px‖≤Rm

e−
U(z)−m

T

∑
y∈X

(e−
U(y)−m

T

∑
‖pz−py‖≤Rm

e−
U(z)−m

T )

If U(x) or U(y) is a minimum then the respective
exponential equals to 1 no matter what temper-
ature T may be. The other exponentials decrease
to 0 as T tends to 0. Eq. (7) then follows from (6)
and ‖px − py‖ > Rm, ∀x, y ∈ M . �
Note one can easily characterize Π∞ when more
than one minimizers of U(x) are located within
a distance of Rm. Theorem 3.2 establishes that
under the algorithm, a vehicle can reach the target
ultimately for arbitrarily shaped obstacles.

3.2 Multiple Vehicles with Full Moving Range

When each vehicle can sense over the whole mis-
sion space and can reach any cell within one move,
one can verify that the Gibbs distribution (for a
fixed temperature T ) and the Markov kernel sat-
isfy the detailed balance equation (Winkler, 1995).
As the Markov kernel (for a complete sweep) is
strictly positive, the Gibbs distribution is indeed
the unique stationary distribution. Furthermore,
the convergence of the simulated annealing algo-
rithm can be established. These are made precise
in the following propositions:

Proposition 3.1. Assume that the accessible area
is connected. For a fixed temperature T , the
corresponding Markov chain X(n) has a unique

stationary distribution ΠT = e− U(x)
T

Z . From any
initial distribution μ, lim

n→∞νPn
T = ΠT .

Proposition 3.2. Let (T (n))n ≥ 1 be a cooling
schedule satisfying T (n) ≥ σΔ

lnn , where σ is the
number of vehicles, and Δ is the maximum local
oscillation (Winkler, 1995) of U(·). Then from any
initial distribution μ,

lim
n→∞νP1...Pn =

⎧⎨
⎩

1
|M | if x ∈ M

0 otherwise
.

4. POTENTIAL FUNCTIONS AND
CONVERGENCE SPEED

In Theorem 3.2 a condition on the cooling sched-
ule T (n) is specified to guarantee convergence.
In the condition the maximal energy difference
Δ among neighboring configurations plays an im-
portant role. It is of interested to study how to
improve the convergence speed by appropriately

designing the potential functions. The study here
will be focused on the single-vehicle case.

Proposition 4.1. For the single-vehicle case, the
convergence speed is characterized by

‖νQ1...Qn − Π∞‖ = O(n− 2λm̃
2m̃+λΔτ ) (13)

where m̃ = min
y 
=xm

(U(y) − m), and m, λ, Δ, and τ

are defined as in Theorem 3.2.

Proof. From (12), ‖νQ1...Qn−Π∞‖ is bounded by
three terms. From (10), the first term is bounded
by ( i

n )λ. The second term and the third term
basically have same convergence speeds because
of the monotonicity of the stationary distribution
Πn(x). For large i, the third term is dominated by

‖Πn+1 − Πi‖1 ≤ ‖Πn+1 − Π∞‖1 + ‖Πi − Π∞‖1

≤ 2‖Πi − Π∞‖1.

If x is not a minimizer of U ,

‖Πk(x) − Π∞(x)‖1

=

e−
U(x)−m

T

∑
‖pz−px‖≤Rm

e−
U(z)−m

T

∑
y∈X

(e−
U(y)−m

T

∑
‖pz−py‖≤Rm

e−
U(z)−m

T )

≤ |Λ̄|i− 2m̃
Δτ

|M | = O(i−
2m̃
Δτ )

Similarly, it can be shown that for a minimizer
x, the distance converges at the order O(i−

2m̃
Δτ )

too. And so is ‖Πi − Π∞‖1. Then a bound for
‖νQ1...Qn − Π∞‖ is

(
i

n
)λ + const · i− 2m̃

Δτ (14)

This becomes optimal for

i∗ = n
λ

λ+2m̃
Δτ (const · 2m̃

Δτ )
1

λ+2m̃
Δτ ,

Eq. (13) then follows by plugging i∗ into (14). �
Proposition 4.1 shows that the potential surface
(in particular: g

�
= 2λm̃

2m̃+λΔτ ) determines the con-
vergence speed of the algorithm. It is thus natural
to use g as a design indicator. Simulation has
been conducted to verify the above analysis. In
the simulation a similar scenario as in Fig. 1 is
used but with a 10 by 10 grid. Two overlapping
circular obstacles are located in the middle of
the field, which forms a non-convex shape. A
single vehicle starts from one corner, and wants
to reach the target area at the other corner. The
potential functions used are: Jg

s = ‖ps − pg‖,
Jo

s =
K∑

k=1

1
‖ps−pok‖ , where pg and pok denote the

centers of the target area and of the obstacles. λg

is varied from 0.05 to 100 while λo is fixed to 1.
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Fig. 2. Convergence vs. design parameter - com-
parison of simulation results with analysis.

For each pair of coefficients, the algorithm is run
N = 10, 000 steps, and the number of times w that
the vehicle visited target during the last 100 steps
is counted. The empirical distance is then given by
‖ΠN−Π∞‖1 = 2(1−w/100). Comparison with the
numerically calculated design indicator g reveals
good agreement with the bound (13) (Fig. 2).

5. CONCLUSIONS

Gibbs sampler-based simulated annealing can
potentially achieve distributed control of au-
tonomous vehicles based on local information. The
analysis of this algorithm has been complicated by
the dynamic graph structure associated with such
vehicle networks. As a first step to understand its
convergence behavior analytically, this paper has
studied two special cases and concluded conver-
gence with specified conditions. Furthermore, the
implication of the results in the design of Gibbs
potentials has been explored.

Extension of the results to the most general case
(multiple-vehicle, limited sensing/moving range,
and general tasks) is difficult. However, it is pos-
sible that analytical results can be obtained for
some special geometries or special missions (i.e.,
potential functions of particular forms). This can
be an interesting direction for future work.
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