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Abstract— In earlier work of the authors simulation re-
sults indicated the possibility of achieving self-organization of
autonomous vehicles through Gibbs sampler-based simulated
annealing. However, the dynamic graph structure associated
with the network evolution presents challenges in convergence
analysis. In this paper a novel algorithm is presented and
shown to yield desired global configurations with primarily
local interactions. Its convergence speed is provided in terms of
the Gibbs potential function. The analytical results are further
verified through simulation.

I. INTRODUCTION

With the rapid advances in sensing, communication, com-
putation, and actuation capabilities, autonomous unmanned
vehicles (AUVs) are expected to cooperatively perform dan-
gerous or explorative tasks in various hazardous, unknown
or remote environments [1]. Distributed methods for control
and coordination of vehicles are especially appealing due to
large scales of vehicle networks and bandwidth constraints
on communication [2], [3], [4], [5]. A popular approach
is based on artificial potential functions, which encode
desired vehicle behaviors such as inter-vehicle interactions,
obstacle avoidance, and target approaching [6], [7], [8],
[9], [10]. Vehicles then follow the negative gradients of
potentials mimicking the emergent behaviors (e.g. foraging)
demonstrated by swarms of bacteria, insects, and animals
[11].

The potential function-based approach has been explored
for path planning and control of robotic manipulators and
mobile robots over the past two decades [12], [13], [14].
Despite its simple, local, and elegant nature, this approach
suffers from the problem that the system dynamics could
be trapped at the local minima of potential functions [15].
Researchers attempted to address this problem by designing
potential functions that have no other local minima [16],
[17], or escaping from local minima using ad hoc tech-
niques, e.g., random walk [18], virtual obstacles [19], and
virtual local targets [20].

An alternative approach to dealing with the local minima
problem was explored using the concept of Markov Ran-
dom Fields (MRFs) by Baras and Tan [21]. Traditionally
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used in statistical mechanics and in image processing [22],
MRFs were proposed to model swarms of vehicles. Similar
to the artificial potential approach, global objectives and
constraints (e.g., obstacles) are reflected through the design
of potential functions. The movement of vehicles is then
decided using simulated annealing based on the Gibbs
sampler. Simulations indicated that, with this approach, it
was possible to achieve global goals despite the presence
of local minima of potentials. However, the dynamic graph
structure underlying network evolution presents challenges
in convergence analysis. As a first step, two relatively sim-
ple cases were analyzed [23]: single-vehicle path planning
with limited (i.e., local) sensing and moving ranges, and
multi-vehicle path planning with full sensing and moving
ranges.

In this paper we present an MRF-based algorithm for self-
organization of multiple vehicles. The algorithm requires
only limited sensing, communication, and moving ranges
for vehicles, and a mechanism for minimal full-range infor-
mation transfer. Such a mechanism could be provided, e.g.,
by a dedicated base station, or by individual vehicles with
short-time, long-range communication capabilities. It is
shown that the algorithm, with primarily local interactions,
leads to globally optimal vehicle configurations represented
by the global minima of Gibbs potentials. Furthermore,
the convergence speed is characterized, providing insight
into the design of potential functions. Simulation results
are provided to illustrate and verify the analysis.

The remainder of the paper is organized as follows.
The concept of MRFs and the problem setup are reviewed
in Section II. The distributed algorithm is presented in
Section III, and is analyzed in Section IV. Simulation results
are presented in Section V. Section VI concludes the paper.

II. PROBLEM SETUP

A. MRFs and Gibbs Sampler

Let S be a finite set of cardinality σ, with elements
indexed by s and called sites. For s ∈ S, let Λs be a finite
set called the phase space for site s. A random field on S is
a collection X = {Xs}s∈S of random variables Xs taking
values in Λs. A configuration of the system is x = {xs, s ∈
S} where xs ∈ Λs, ∀s. The product space Λ1 × · · · × Λσ

is called the configuration space. A neighborhood system
on S is a family N = {Ns}s∈S , where ∀s, r ∈ S,
Ns ⊂ S, s /∈ Ns, and r ∈ Ns if and only if s ∈ Nr.
Ns is called the neighborhood of site s. The random field
X is called a Markov random field (MRF) with respect to
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the neighborhood system N if, ∀s ∈ S, P (Xs = xs|Xr =
xr, r �= s) = P (Xs = xs|Xr = xr, r ∈ Ns).

A random field X is a Gibbs random field if and only if
it has the Gibbs distribution:

P (X = x) =
e−

U(x)
T

Z
, ∀x,

where T is the temperature variable (widely used in sim-
ulated annealing algorithms), U(x) is the potential (or
energy) of the configuration x, and Z is the normalizing
constant, called the partition function: Z =

∑
x e−

U(x)
T .

One then considers the following useful class of poten-
tial functions U(x) =

∑
s∈Λ Φs(x), which is a sum of

individual contributions Φs evaluated at each site. The
Hammersley-Clifford theorem [24] establishes the equiva-
lence of a Gibbs random field and a MRF on a finite graph.

The Gibbs sampler belongs to the class of Markov Chain
Monte Carlo (MCMC) methods, which sample Markov
chains leading to stationary distributions. The algorithm
updates the configuration by visiting sites sequentially or
randomly with certain proposal distribution [22], and sam-
pling from the local specifications of a Gibbs field. A
sweep refers to one round of sequential visits to all sites,
or σ random visits under the proposal distribution. The
convergence of the Gibbs sampler was studied by D. Geman
and S. Geman in the context of image processing [25].
There it was shown that as the number of sweeps goes to
infinity, the distribution of X(n) converges to the Gibbs
distribution Π. Furthermore, with an appropriate cooling
schedule, simulated annealing using the Gibbs sampler
yields a uniform distribution on the set of minimizers of
U(x). Thus the global objectives could be achieved through
appropriate design of the Gibbs potential function.

B. Problem Setup for Self-Organization of Multiple Vehicles

Consider a 2D mission space (the extension to 3D space
is straightforward), which is discretized into a lattice of
cells. For ease of presentation, each cell is assumed to be
square with unit dimensions. One could of course define
cells of other geometries (e.g., hexagons) and of other
dimensions (related to the coarseness of the grid) depending
on the problems at hand. Label each cell with its coordinates
(i, j), where 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, for N1, N2 > 0.
There is a set of vehicles (or mobile nodes) S indexed by
s = 1, · · · , σ on the mission space. To be precise, each
vehicle (node) s is assumed to be a point mass located at
the center of some cell (is, js), and the position of vehicle s
is taken to be ps = (is, js). At most one vehicle is allowed
to stay in each cell at any time instant.

The distance between two cells, (ia, ja) and (ib, jb), is

defined to be R
�
=

√
(ia − ib)2 + (ja − jb)2. There might

be multiple obstacles in the space, where an obstacle is
defined to be a set of adjacent cells that are inaccessible
to vehicles. For instance, a “circular” obstacle centered at
(io, jo) with radius Ro can be defined as O

�
= {(i, j) :√

(i − io)2 + (j − jo)2 ≤ Ro}. The accessible area is the
set of cells in the mission space that are not occupied by

obstacles. An accessible-area graph can then be induced
by letting each cell in the accessible area be a vertex
and connecting neighboring cells with edges. The mission
space is connected if the associated accessible-area graph is
connected, which will be assumed in this paper. There can
be at most one target area in the space. A target area is a
set of adjacent cells that represent desirable destinations of
mobile nodes.

In this paper all nodes are assumed to be identical.
Each node has a sensing range Rs: it can sense whether
a cell within distance Rs is occupied by some node or
obstacle. Communication between two nodes that are within
a distance of Rs is regarded as local. The moving decision
of each node s depends on other nodes located within
distance Ri (Ri ≤ Rs), called the interaction range. These
nodes form the set Ns of neighbors of node s. A node can
travel at most Rm (Rm ≤ Rs), called moving range, within
one move.

R
s

R
i

R
m

Fig. 1. Illustration of the sensing range Rs, the interaction range Ri,
and the moving range Rm. Note since the mission space is a discretized
grid, a cell is taken to be within a disk if its center is.

The neighborhood system defined earlier naturally leads
to a dynamic graph, where each vehicle stands for a vertex
of the graph and the neighborhood relation prescribes the
edges between vehicles. An MRF can then be defined on
the graph, where each vehicle s is a site and the associated
phase space Λs is the set of all cells located within the
moving range Rm from location ps and not occupied by
obstacles or other vehicles. The configuration space of the
MRF is denoted as X .

The Gibbs potential U(x) =
∑

s Φs(x), where Φs(x) is
considered to be a summation of all clique potentials Ψc(x),
and depends only on xs and {xr, r ∈ Ns}. The clique
potentials Ψc(x) are used to describe local interactions
depending on applications. Specifically,

Φs(x) = Ψ{s}(xs) +
∑

r∈Ns

Ψ{s,r}(xs, xr). (1)

There are important differences between a classical MRF
introduced in Subsection II-A and the MRF defined for
the vehicle networks. In a classical MRF, both the phase
space Λs and the neighborhood Ns are time-invariant;

766



however, for a vehicle network, both Λs and Ns depend
on the dynamic graph and therefore vary with time. These
differences prevent the classical MRF theory from being
adopted directly to analyze the convergence behavior of the
path planning algorithm.

III. A DISTRIBUTED ALGORITHM

The algorithm to be presented next uses a randomized
sequence for updating the nodes, and a key idea involved is
the configuration-and-temperature-dependent proposal dis-
tribution Gx

T (s). In particular, given a configuration x and
a temperature T ,

Gx
T (s) =

∑
z∈Nx

m(s) e−
U(z)

T

∑
s′∈S

∑
z∈Nx

m(s′) e−
U(z)

T

. (2)

In (2) N x
m(s) denotes the set of s-neighbors of configuration

x within one move:

N x
m(s)

�
= {z : zS\s = xS\s, ‖zs − xs‖ ≤ Rm},

where S\s denotes the set of all nodes except s.
Since for z ∈ N x

m(s), U(z) − U(x) = Φs(z) − Φs(x),
(2) can be rewritten as

Gx
T (s) =

∑
z∈Nx

m(s) e−
U(z)−U(x)

T

∑
s′

∑
z∈Nx

m(s′) e−
U(z)−U(x)

T

=

∑
z∈Nx

m(s) e−
Φs(z)−Φs(x)

T

∑
s′

∑
z∈Nx

m(s′) e−
Φs(z)−Φs(x)

T

.

Note that, from (1), each node s would be able to evaluate
Dx

T (s) =
∑

z∈Nx
m(s) e−

Φs(z)−Φs(x)
T if Rs ≥ Ri + Rm.

In sampling, node s is first randomly selected with
probability Gx

T (s), and then xs is updated according to its
local characteristics while xS\s is kept fixed:

P (xs = l) =
e−

Φs(xs=l,xS\s)

T

∑
l′∈Cs

m
e−

Φs(xs=l′,xS\s)

T

, (3)

where Cs
m is the set of candidate locations node s can take,

i.e., l ∈ Cs
m is not occupied by any obstacle or other nodes,

and ‖xs − l‖ ≤ Rm. One can verify that there exists a
smallest integer τ , such that after τ steps of sampling, any
configuration x has a positive probability of becoming any
other configuration y.

The self-organization algorithm works as follows. Pick an
appropriate cooling schedule T (n) with T (n) → 0 as n →
∞. Pick a sufficiently large Nmax. For each temperature
T (n), run τ steps of sampling as described above (this will
be called one annealing step). To be specific:

• Step 1. Initialization. Start with an arbitrary configu-
ration x(0) and let n = 1, k = 1. Pick an arbitrary node
s(0). Have all nodes to evaluate and send D

x(0)
T (1)(s)

to s(0). Node s(0) calculates the proposal distribution
GT (1)x(0)(s) according to (2),namely,

G
x(0)
T (1)(s) =

D
x(0)
T (1)(s)∑

s′ D
x(0)
T (1)(s

′)
.

Node s(0) then selects a node s1(1) 1 for updating by
sampling the distribution G

x(0)
T (1)(s), and it sends the

vector {Dx(0)
T (1)(s), s ∈ S} to s1(1);

• Step 2. Updating the selected node. Node sk(n)
updates its location by sampling its local characteristics
(see (3)). Denote the new configuration as xk(n);

• Step 3. Selecting the next node. Note that the
neighborhood Ns of a node s changes only if node
sk(n) was in Ns before its updating or is currently
in Ns. For either case, the distance between such
s (denoting the set of such nodes as N̄ k(n)) and
sk(n) is now no greater than Ri + Rm ≤ Rs and
they can communicate locally. The node sk(n) thus

collects and updates D
xk(n)
T (n) (s) for nodes in N̄ k(n).

Let k = k +1. If k = τ , let k = 0 and n = n+1. The
current node evaluates and samples the new proposal
distribution, selects the next node to be updated, and
communicates the updated {DT (n)(s)} to the next node
(the superscript of D is omitted when it is clear from
the context);

• Step 4. If n < Nmax, go to Step 2; otherwise quit.
Remark 3.1: Long-range (over a distance greater than

Rs) communication is only required for initialization and
for transferring {Dx

T (s)} to the newly selected node at each
step. Since {Dx

T (s)} is just a σ-dimensional vector, infor-
mation exchange in the algorithm is primarily at the local
level. The (minimal) global communication can be achieved
through, e.g., fixed base stations, or individual vehicles with
short-time, long-range transmission capabilities.

IV. CONVERGENCE ANALYSIS

Let PT denote the Markov kernel defined by the random
update scheme (2) and (3), i.e.,

PT (x, y)
�
= Pr(X(n + 1) = y|X(n) = x)

=
∑
s∈S

Gx
T (s) · 1(y ∈ N x

m(s))
e−

U(y)
T∑

z∈Nx
m(s) e−

U(z)
T

=

∑
s∈S

∑
z∈Nx

m(s) e−
U(z)

T

∑
s′∈S

∑
z∈Nx

m(s′) e−
U(z)

T

· e−
U(y)

T · 1(y ∈ N x
m(s))∑

z∈Nx
m(s) e−

U(z)
T

=
∑
s∈S

e−
U(y)

T · 1(y ∈ N x
m(s))∑

s′∈S

∑
z∈Nx

m(s′) e−
U(z)

T

. (4)

Let τ be the integer as selected in Section III, and let QT =
P τ

T .
Theorem 4.1: The Markov kernel QT has a unique sta-

tionary distribution ΠT with

ΠT (x) =
e−

U(x)
T

∑
s∈S

∑
z∈Nx

m(s) e−
U(z)

T

ZT
, (5)

where ZT =
∑

y e−
U(y)

T

∑
s∈S

∑
z∈Ny

m(s) e−
U(z)

T is the
partition function.

1In the notation xk(n) or sk(n), n indexes the annealing temperature,
while k (from 1 to τ ) indexes the sampling step within a fixed temperature.
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Proof. First one can show that ΠT is a stationary distribution
of PT . From (4) and (5),∑

y

Π(y)PT (y, x)

=
∑

y

e−
U(y)

T

∑
s′′∈S

∑
z∈Ny

m(s′′ ) e−
U(z)

T

ZT
·

∑
s∈S

e−
U(x)

T · 1(x ∈ N y
m(s))∑

s′∈S

∑
z∈Ny

m(s′) e−
U(z)

T

=
e−

U(x)
T

∑
y e−

U(y)
T

∑
s∈S 1(x ∈ N y

m(s))
ZT

=
e−

U(x)
T

∑
s∈S

∑
z∈Nx

m(s) e−
U(z)

T

ZT
= ΠT (x).

Since QT = P τ
T , ΠT is also a stationary distribution for

QT . Due to the choice of τ , QT (x, y) > 0, ∀x, y. Thus from
the Perron-Frobenius theorem, QT has a unique stationary
distribution, which is ΠT . �

Let ∆ be the maximal local oscillation of the potential
U :

∆
�
= max

x
max
y∈Nx

m

|U(x) − U(y)|,

where N x
m = ∪s∈SN x

m(s).
Theorem 4.2: Let {T (n)} be a cooling schedule decreas-

ing to 0 such that eventually,

T (n) ≥ τ∆
lnn

.

Let Qn = P τ
T (n), and let M be the set of global minima

of U(·). Then for any initial distribution ν,

lim
n→∞ νQ1 · · ·Qn → ν∞, (6)

where ν∞ is the distribution (5) evaluated at T = 0. In
particular, ∑

x∈M
ν∞(x) = 1. (7)

Proof. Let αx = miny∈Nx
m

U(z). For y ∈ N x
m, from (4),

PT (x, y) =
e−

U(y)−αx
T∑

s′∈S

∑
z∈Nx

m(s′) e−
U(z)−αx

T

≥ e−
∆
T

σ|X | ,

where |X | denotes the cardinality of the configuration space
X . For QT = P τ

T > 0,

min
x,y

QT (x, y) ≥ ( min
x′,y′∈Nx′

m

PT (x′, y′))τ ≥ e−
τ∆
T

(σ|X |)τ
.

Let C(QT ) denote the contraction coefficient [22] of QT ,
i.e.,

C(QT )
�
=

1
2

max
x,y

‖QT (x, ·) − QT (y, ·)‖1.

Using Lemma 4.2.3 of [22], one has

C(QT ) ≤ 1 − |X |min
x,y

QT (x, y) ≤ 1 − λe−
τ∆
T ,

where λ = |X |
(σ|X |)τ < 1. This implies C(Qn) ≤ 1 −

λe−
−τ∆
T (n) . The claim (6 can then be proved following the

proof of Theorem 3.2 in [23]. As T (n) → 0, ΠT (n)(x) → 0,
for all x /∈ M, as one can verify from (5). Eq. (7) thus
follows. �

From Theorem 4.2, the distributed algorithm can achieve
global objectives provided that the global minimizers of
U(·) correspond to the desired configurations.

Let m̃ = minx/∈M U(x) − m, i.e., the minimal potential
difference between other configurations and the global min-
imizer. The following result characterizes the convergence
speed of the distributed algorithm:

Proposition 4.1: Consider the distributed self-
organization algorithm with a cooling schedule
T (n) = τ∆

ln n . Then the following estimate holds for
any initial distribution ν:

‖νQ1 · · ·Qn − Π∞‖ = O(n− 2λm̃
2m̃+λ∆τ ) = O(n−g), (8)

where λ, τ, and ∆ are as defined in Theorem 4.2, and g =
2λm̃

2m̃+λ∆τ is called the indicator of convergence speed in this
paper.

The proposition is very similar to the result for the single-
vehicle case [23], and its proof is omitted here in the interest
of space. The dependence of the indicator g on the potential
function U could be exploited to speed up the convergence.

V. SIMULATION RESULTS

Simulations were conducted to verify the analysis in the
previous section. The emphasis was on scenarios involving
inter-vehicle interactions (e.g., formation control). Two ex-
amples are presented, one on clustering and the other on
formation control. Other objectives or constraints, such as
target-approaching and obstacle avoidance, can be easily
incorporated, as was done in the single-vehicle case [23].

A. Clustering

The goal is to cluster all the nodes without specifying a
specific target area. This is more challenging than the case
of having an explicit target, as the latter provides persistent
attraction from a fixed location. The potential function used
was:

U(x) =
∑

r �=s, ‖xr−xs‖≤Ri

− c

‖xr − xs‖ ,

where c is some constant. Clearly, the more neighbors each
node has and the closer they are, the lower the potential U .
Simulation was performed for 50 nodes on a 30 by 30 grid,
and the following parameters were used: RI = 4

√
2 + ε

(ε > 0 and very small), Rm = 2
√

2 + ε, Rs = RI + Rm

(this was also the case for all other simulation runs), c = 2,
annealing schedule T (n) = 1

0.08 ln n , and τ = 50.
Fig. 2 shows the snapshots of the network evolution.

The algorithm’s ability to overcome local minima is evident
from the figure: the nodes initially evolved into two sepa-
rated (farther than Rs) sub-clusters, and yet they merged
into one cluster after 500 annealing steps.
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Fig. 2. Snapshots of clustering operation. (a) Initial configuration; (b) after
100 annealing steps; (c) after 400 annealing steps; (d) after 500 annealing
steps.

B. Formation

The goal is to have the nodes to form (square) lattice
structures with a desired inter-vehicle distance Rdes. The
potential function used was:

U(x) =
∑

r �=s, ‖xr−xs‖≤Ri

c1(|‖xr − xs‖ − Rdes|α − c2),

where c1 > 0, c2 > 0, and α > 0. A proper choice of
c2 encourages nodes to have more neighbors. The power α
shapes the potential function. In particular, for |‖xr−xs‖−
Rdes| < 1, smaller α leads to larger potential difference
from the global minimum.

First, simulations were conducted for 9 nodes on an 8 by
8 grid. Parameters used were: Ri = 4

√
2−ε, Rm = 2

√
2+ε,

Rdes = 2, c1 = 10, c2 = 1.05, α = 0.02, T (n) = 1
0.01 ln n ,

and τ = 20. The desired configuration (global minimizer
of U ) is shown in Fig. 3 (modulo vehicle permutation
and formation translation on the grid). Simulated annealing
was performed for 104 steps. Empirical distributions with
respect to configuration potentials were calculated based
on the average of every 2,500 steps (Fig. 4). The trend of
convergence to lowest potential is clear from Fig. 4. One
can further calculate the error ‖νn − Π∞‖1, where νn is
the empirical distribution of configurations (again modulo
vehicle permutation and network translation), and

Π∞(x) =
{

1 if x is desired
0 otherwise

.

Therefore,

‖νn−Π∞‖1 = 1−νn(x∗)+|0−(1−νn(x∗)| = 2(1−νn(x∗)),

where x∗ denotes the desired formation. The evolution of
‖νn−Π∞‖1 is shown in Fig. 5, where νn(x∗) is calculated
as the relative frequency of sampling x∗ in 1000 annealing
steps.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Fig. 3. The desired formation for 9 vehicles on an 8 by 8 grid.
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Fig. 4. Evolution of the empirical distribution of configuration potentials.

Simulation was also performed for a group of 20 vehicles
on a 15 by 15 grid, and Fig. 6 shows the snapshots
after different annealing steps. One can see that the group
achieves an almost optimal configuration after 2000 steps.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper a distributed stochastic algorithm was pre-
sented for self-organization of multiple vehicles. The algo-
rithm was based on Gibbs-sampler with a random visiting
scheme. The specific choice of the proposal distribution re-
sults in Gibbs-type distributions for vehicle configurations,
leading to the convergence of the algorithm. Simulation

0 2000 4000 6000 8000 10000
0.4

0.6

0.8

1

1.2

1.4

||ν
n −

 Π
∞

|| 1

Annealing steps 

Fig. 5. Evolution of ‖νn − Π∞‖1.
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Fig. 6. Snapshots of formation operation. (a) Initial configuration; (b)
after 1000 annealing steps; (c) after 2000 annealing steps; (d) after 3000
annealing steps.

results were shown to demonstrate the performance of the
algorithm and verify the analysis.

The random visiting scheme entails (possibly) long-
range communications for notifying newly selected nodes
although such information exchange is minimal. A deter-
ministic sequential visiting scheme would eliminate this
requirement, however, the convergence behavior would be
unclear since the stationary distribution for each T is no
longer of the Gibbs-type.

The self-organization scheme is meant to be a high-level
planning algorithm. It should be combined with low-level
planning and path tracking control modules in implemen-
tation. For example, the inter-vehicle collision could be
avoided by adding gyroscopic force in low-level control
modules. In this paper the mission space was discretized
into a lattice with square cells. One could use cells of other
geometries without changing the algorithm (except the num-
bering scheme for cells) to implement, e.g., triangular or
hexagonal formations. One could also increase the number
of cells to improve the resolution of local maps. For future
work, it would be interesting to investigate the robustness
of the algorithm when uncertainties in sensing exist.
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