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Abstract

Almost all prior work on modeling the dependence of
acoustic emissions on tool wear have concentrated on the
effect of wear-level on the sound. We give justification for
including the wear-rate information contained in the sound
to improve estimation of wear. A physically meaningful
model is proposed which results in a Hidden Markov Model
(HMM) whose states are a combination of the wear-level
and rate and observations are the feature vectors extracted
[from the sound. We also present an efficient method for pick-
ing feature vectors that are most useful for the classification
problem.

1. Introduction

Much work has been done in real-time monitoring of ma-
chinery to detect faults as and when they occur, rather than
wait until the next maintenance period. This way, unneces-
sary maintenance as well as long runs in a faulty condition
can be avoided. In the case of a cutting tool, trying to cut
with a bluni tool can lead to the breakage of the tool and
degradation of the job while pulling the tool off for frequent
assessments is expensive in terms of the machinist’s time, It
is of interest to develop a method that can give an estimate
of the wear from easily observable signals. The sound or
vibration from the tool-post is one of the simplest signals to
measure and it is rich in information relating to the current
state of the tool.

Most previous work on estimating tool wear or dam-
age from acoustic emissions has concentrated on using the
power spectral density in various ways; the simplest ap-
proach being just the average power of the sound signal [8],
{i1]. A more sophisticated way of using the power spec-
trum is to compare the total power in various sub-bands [3],
[6]. These simple approaches give surprisingly good results
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in many cases. One approach which uses a leamning expert
system with torque and thrust information, in addition to
vibration data is given in [5].

In [9] the authors try to isolate high-energy transients
from the sound signal; one of the assumptions being that
transients would be good indicators of chipping or frac-
ture. Another approach, influenced by speech processing,
has been to model the dependence of the sound on the wear-
level as a hierarchical HMM in multiple time-scales [1]. In
a previous article [12], we have explored the applicability
of biologically inspired filters to pick out appropriate fea-
ture vectors in multiple levels of detail which were then
classified according to the wear by a multi-resolution tree
structured classifier.

In all of the above work, it has been assumed that the
only useful information contained in the sound is that of the
wear-level. But it seems reasonable that the sound can also
give information about the wear-rate at any instant. In par-
ticular, chipping is often accompanied by short time-scale
transients [7] and chatter is characterized by chaotic vibra-
tions [2].

2. How does the wear influence the sound?

There are two ways in which the wear of the tool can
relate to the sound.

1. Different wear-levels result in different sounds.

2. Different sounds imply events that result in different
wear-rales

There is a fundamental difference between these two phe-
nomenoen. The way the wear-level affects the sound is inde-
pendent of the history of the tool. Whichever path the ool
took to reach a particular wear-level, the effect on the sound
is the same. Thus, if this was the only relationship between
the sound and the wear, it would be possible (o estimate the



wear of the tool at any time by a short sample of the sound at
that time. Classifiers without memory would be adequate.

The second relation is more subtle. Events such as chat-
ter affect both the instantaneous wear-rate on the tool as
well as the sound produced by the tool. It seems reasonable
that large variations in the sound produced by the tool at a
constant wear-level could be indicative of vanations in the
instantaneous wear-rate.

3. A mathematical formulation

From what was discussed in the previous section, it
seems reasonable to propose that the sound at any time is
a stochastic function of both the wear-level and the wear-
rate at that time. Thus if we divide time into equal intervals
and denote by ry the wear-rate diring time interval £ and w,
the wear-level at the end of time interval #, then the sound
produced during time ¢ has a probability distribution that
depends on (7, w, }. Furthermore, we have

t
wy =y + 2 i (n
f=1

In this model we have three elements

1. r¢. the sequence of wear-rates for time £, For simplic-
ity we assume that vy can belong to one of R discrete
values and is Markov.

[Se]

wy, the sequence of wear-levels for time £, Note
that specification of the initial wear-level wy and a
sequence of wear-rates r; completely specifies w;
through Eq.1.

3 a € RY the sequence of observed feature vectors.
@y 18 distributed according to a probability distribution
P, e, (e ) that depends on ry and wy.

This results in a Hidden Markov Model where the hidden
state is the couple (w7} and the observation &, has a dis-
tribution that depends on the current state. We will have
more to say fater about training and testing such a model
given observed data.

4. Choosing feature vectors

One problem in building classifiers is choosing feature
vectors that adequately compress the information necessary
for good classification. We want to pick out components
that are most useful for the classification from a set of ob-
scrvations while rejecting components that do not provide
any useful intormation. The Fischer discriminant [4] is one
way of doing this without actually building classifiers for
all possible combinations of feature vectors.
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Intuitively speaking, we should pick features such that
vectors belonging to one class are separated as much as pos-
sible from those from another class. For scalar observations
z, Fischer proposed the following measure of separation be-
tween observations for class 1 from class 2

— 2
F = ('ulg #22)
oy + o3

where y1, o are the means of the observations belonging
to class 1 and class 2 respectively and o, o3 the variances.
In the case of K classes, the above can be generalized to
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Now consider an observation vector x = [21, %2, ..., z4]” .
Let ¢ = [u1,az,.-.,a4]7 be a weight vector and let y =
27 u be a scalar feature derived from z by a weighted com-
bination of the components of .. We can ask what value ot u
will give a maximum value for the Fischer discriminant (2)
for the feature y. Since gy = E{z7u} = E{aT}u = tTu
and E{(aTa — 1)} = «TE{(z — p)(z — 11)T }e, we can
write (2) as

F=

@
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=1 2o (i =) - )T, B =

$K o2 and Ca = b where (7 is the invertible matrix
such that CTC = B, we get

Fla) =

Denoting A =

bTe-1T A 1p

F(b) = BTD

which attains its maximum value tor b equal to the eigenvec-
tor corresponding to the largest eigenvatue of C—17 AC—1,
Weight vector ¢ can be obtained as « = C'~'h. Eigenvec-
tors corresponding to a decreasing sequence of eigenvalues
will give orthogonal weight vectors with successively de-
creasing value of the Fischer discriminant.

5. Initial classifier for wear

An initial classifier was built incorporating only wear-
level information. The classification performance of this
model is used as a base against which to measure the im-
provement in performance when we also include wear-rate
information. This model also helps us to pick out features
that correspond closely to wear-rate.

Acoustic emissions were measured from an accelerom-
cter mounted on the tool spindle of a milling machine cut-
ting titanium with a 0.5” tool. Data from 5 tools with a to-
tal of 12 wear measurements were used for the training set



while data from a different group of 8 tools with 13 wear
measurements were used for the testing set. Wear measure-
ments vary from 0 thousandths of an inch (zhou.) to 5 thou.
The raw data was divided into frames, each corresponding
to one revolution of the tool. The mean squared power in
the frequencies from 0-24kHz was divided into 100 bins.
The logarithm of the power in each frequency bin was very
well fitted with 2 Normal distribution; i.e., the power is log-
normal. The log of the power in the 100 frequency bins was
used as observation vectors for each frame. We assumed a
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Figure 1. Wear prediction using only wear-
level information for tool Ti1

linear increase in wear between successive wear measure-
ments to initially separate the training vectors into 6 wear-
level classes from 0-5 thousandths of an inch. Using these
wear classes we computed the feature vector with the max-
imum Fischer discriminant as detailed above. Since wear
increases monotonically, a left-to-right HMM was trained
on the data to refine our model. The performance of this
classifier is presented in Fig.1 and the first row of Table 1.

Table 1. Average absolute wear error
Type of classifier | Avg. erroron | Avg. error on
training set testing sel

Using wear-level | 0.46 thou. 0.42 thou.
information only
Using wear-level | 0.33 thou. 0.37 thou.

and wear-rate
information
Note: thou=thousandths of an inch
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5.1. Wear-rate features

The number of time steps it takes to increase wear by
0.001 inch is a measure of the average wear-rate. We use
the wear-level model to classify the training sequence and
obtain segments as shown in Fig.1. The segments are di-
vided into two sets; one with ail the high wear segments
and the other with all the low wear ones. The mean and vari-
ance of these two sets are used to find a feature that sepa-
rates them maximally according to the Fischer discriminant.
This feature was used as the wear-rate feature. Thus our
feature vector is 4-dimensional with the first three compo-
nents indicative of wear-level and a fourth component that
corresponds to wear-rate. Fig.2 shows the weight vectors
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Figure 2. Weights in different frequency
bands for best wear-level and wear-rate fea-
tures

that correspond to maximum Fischer discriminant for wear-
level and wear-rate. It is interesting to note that a few of the
low frequency bands are the most indicative of wear-level
while features that correspond to wear-rate are of consid-
erably breader bandwidth. This confirms our intuition that
short time-scale, broadband transients are the primary indi-
cators of wear-rate.

6. Training and testing of combined model

Training uses the Baum-Welch algorithm [10] where,
starting from an initial model, we calculate the expected
values of the parameters given the observations. This gives
an estimate for the parameters with a higher likelihood and
iteratively repeating this step gives a sequence of mod-
els with monotonically increasing likelihood. This process



converges to a model (set of pararmneters) that locally maxi-
mizes the likelihood.

To apply the Baum-Welch algorithm, we consider the set
of all wear-rate sequences that would take us from wyg to
wr in time ( to 7. Bach sequence of wear-rates specify
one unique sequence of wear-levels. Thus taking the set of
all sequences of wear-rates and levels we can compute the
a-posteriori probability of observing each of the states as
well as the transition probabilities between any two states.
We also obtain the conditional probabilities of obtaining the
given observation sequence. The observation probabilities
are assumed to be independent between the wear-rate and
wear-level features. What this means is that the probability
of observing a given wear-rate feature is independent of the
wear-level feature that was observed.

Once the model is trained, we can compute the wear-raie
sequence {r } with the maximum likelihood for a given ob-
servation sequence. This is done through the Viterbi algo-
rithm where we find the best (in terms of highest likelihood)
sequence that ends in a particular state i at time ¢ in a recur-
sive manner for all . A maximum likelihocod estimate for
the wear w, at any time is thus possible through Eq. 1.

7. Results and conclusions

Fig.3 shows the maximum likelihood sequence of wear-
levels for one particular tool along with wear measure-
ments. The second row of Table 1 shows the performance of
the classifier incorporating wear-rate and wear-leve! where
it can be compared with the classification error using just
the wear-level information. A significant improvement is
obtained when the wear-rate is incorporated into the model.
Current work concentrates on applying this methodology to
different teol geometries (1 inch tool vs. 0.5 inch tool) and
job materials (steel vs. titanium). Our goal is to develop
classifiers that generalize to different tool and job configu-
rations.
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