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Recursive Identification of Hysteresis in Smart Materials 

Xiaobo Tan" and John S .  Baras 

Abstract-This paper studies recursive identification of 
hysteresis in smart materials. A Preisach operator with a piece 
wise uniform density function is used to model the hysteresis. 
Persistent excitation conditions for parameter convergence are 
discussed in terms of the input to the Preisach operator. Two 
classes of recursive ideutificatiou schemes are explored, one 
based on the hysteresis output, the other based on the time 
daerence of the output. Experimental results based on a 
magnetostrictive actuator are presented. 

I. INTRODUCTION 

Smart materials, e.g., magnetostrictives, piezoelectrics, 
and shape memory alloys (SMA), exploit strong coupling 
between applied electromagnetic/thennal fields and strains 
for actuation and sensing. The ubiquitous presence of hys- 
teresis in smart materials, however, poses a significant chal- 
lenge for the effective use of these materials in sensors and 
actuators. To address this problem, a proper mathematical 
model for the hysteresis is necessary. 

Hysteresis models can be roughly classified into physics- 
based models and phenomenological models. Physics-based 
models are built based on first principles of physics, an ex- 
ample of which is the Jiles-Atherton model of ferromagnetic 
hysteresis [l]. Phenomenological models, on the other hand, 
are used to produce behaviors similar to those of physical 
systems without necessarily providing physical insight into 
the problems. The most popular hysteresis model used for 
smart materials has been the Preisach.operator [2], [3], [4], 
[5] ,  [6], [7], [8], which is of the phenomenological type. 
A similar type of operator called Krasnosel'skii-Pokrovskii 
(KP) operator has also been used [9], [lo]. 

Hysteretic behaviors of smart materials often vary with 
time, temperature and some other ambient conditions. 
Therefore, online identification of the hysteresis model is 
of practical interest. The idea of adaptive inverse control 
was studied for a class of hysteresis models with piece- 
wise linear characteristics in [I l l ,  where the hysteresis 
parameters (and the inverse hysteresis model) are updated 
recursively. More recently, similar ideas were applied to 
control of hysteresis in smart materials [12], [13], where 
the KP operator and the Prandtl-Ishlinskii operator were 
used as the hysteresis model, respectively. 

This research WBS supported by the Army Research Office under 
the ODDR&E MUR197 Program Grant No. DAAG55-97-1-0114 to the 
Center for Dynamics and Control of Smart Struchlres (through Harvard 
Universily) and by the L d h e e d  Martin Chair Endowment Funds. 

* Corresponding author. X. Tan is with the Institute far Systems 
Research, University of Maryland, College Park, MD 20742, USA xb- 
tan9umd.edu 

1. S. Baras is with the Institute for Systems Research and the Department 
of Electrical & Computer Engineering, University of Maryland, College 
Park, MD 20742, USA barascisr.umd. edu 

0-7803-8335-4lO4l517.00 02004 AACC 

This paper deals with recursive identification of the 
Preisach operator. Two classes of identification schemes are 
explored, one based on the hysteresis output, the other based 
on the time difference of the output. Persistent excitation 
(P.E.) conditions for parameter convergence are studied 
in terms of the input to the hysteresis operator. Practical 
issues in implementation are also discussed. Experimental 
results based on a magnetostrictive actuator, together with 
simulation results, are presented. 

The remainder of the paper is organized as follows. The 
Preisach operator is briefly reviewed in Section 11, where 
a discretization scheme is also included. Recursive identi- 
fication algorithms are presented in Section 111. Persistent 
excitation conditions are discussed in Section N. Simu- 
lation and experimental results are reported in Section V. 
Finally some conclusions are provided in Section VI. 

11. THE PREISACH OPERATOR 
The Preisach operator is briefly reviewed in this section. 

A more detailed treatment can be found in [14], [15]. A 
basic element of the Preisach operator is a delayed relay 
with a pair of switching thresholds (p,a), as illustrated 
in Fig. 1. Such an element is called a hysfemn, and is 
denoted here by Tp,,. Let C([O,T]) denote the space of 
continuous functions on lO,T]. For U t C(l0, TI) and an 
initial configuration 6 E {-1, l}, the output of the hysteron 
is denoted as w ( t )  = +p,,[u, C](t ) ,  Vt E [O,T]. 

Fig. 1. An elemenlary hysteron +o,*[,, .] 

The Preisach operator is a weighted superposition of all 
possible hysterons. Define PO = { (&a)  E Wz : 5 a}.  
PO is called the Preisach plane, and each (0, a) E PO is 
identified with the hysteron Tp, , .  For U E C([O, TI) and an 
initial configuration CO of all hysterons, (0 : Po + { -1,l}, 
the output of the Preisach operator r is defined as: 

A 

~ ( t )  = riu,c0i(t) = 1 PW a D i n i u ,  cO(~,a)i(t)wa, 

(1) 
% 

where the weighting function p(., .) is called the Preisach 
density function. It is assumed that p >_ 0. Furthermore, 
to simplify the discussion, assume that fi has a compact 
support, i.e., /@,a) = 0 if 0 < 00 or a > a0 for some 
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o0, ao. In this case it suffices to consider a finite triangular 
area P = { (,5, a)  E PoJP 2 PO, a 5 ao}, and P will also 
be called the Preisach plane when no confusion arises. 

At any time t ,  P can be divided into two regions: 

P+(t) = 

P-(t)  = 

A 

a 
a 

{ (&a)  E PI output of T B , ~  at t is +I}, 

{@,a) E PI output ofi.o,, at t is - 1) 

Under mild conditions, each of P+(t) and P-( t )  is a 
connected set, and the boundary between them, called the 
memory curve, characterizes the memory of the Preisach 
operator. 

In identification of the Preisach density a discretization 
step is involved in one way or another (see [I61 for a review 
of identification methods). One discretization scheme is to 
divide the input range into L intervals uniformly (called 
discretization of level L) ,  which results in a discretization 
grid on the Preisach plane. Denote the discrete input levels 
by U , ,  1 5 i 5 L + 1, i.e., 

U %  = U,,,, + (i - I)&, 

where A, = y. The cells in the discretization grid 
are labeled, as illustrated in Fig 2(a) for the case of L = 4. 

U U 
h 

(a) (b) 

Fig. 2. Illustration ofthe discretization scheme (L = 4): (a) Labeling of 
the disretization cells; (b) Weighting masses sitting at the centers of cells. 

A natural way to approximate a Preisach operator is to 
assume that inside each cell of the discretized Preisach 
plane, the Preisach density function is constant. Note that 
such an operator is still an infinite-dimensional operator. 
If one assumes that the Preisach weighting function inside 
each cell is concentrated at the center as a weighting mass 
(Fig. 2(b)), the corresponding Preisach operator becomes 
a weighted combination of a finite number of hysterons. 
Equivalently the input takes values in the finite set {q},"=:'. 

111. RECURSIVE IDENTIFICATION SCHEMES 
The discrete-time setting is considered in this paper. A 

Preisach operator with discrete weighting masses is easier to 
analyze than a Preisach operator with a piecewise uniform 
weighting density; however, these two types of operators 
bear much similarity and essential results for one can be 
easily translated into those for the other. Hence recursive 
identification of Preisach weighting masses is first studied, 
and then the extension needed for identifying the density 
directly is briefly discussed. 

.In this paper two classes of identification algorithms are 
examined, one based on the hysteresis output, and the other 
based on the time difference of the output (called difference- 
based hereafter). 

Output-bared identification: The output y[n] of the dis- 
cretized Preisach operator (corresponding to the case illus- 
trated in Fig. 2(b)) at time instant n can be expressed as 

L i  

$4.1 = x x w i j [ n I C : j ,  (2) 
;=I 3-1 

where @;j[n] denotes the state (1 or -1) of the hysteron in 
cell (i, j) at time n, and D& denotes the hysteron's Preisach 
weighting mass. Stacking W;J [n] and C;,j into two vectors, 
w[n]  = [ w ~ [ n ]  ' .  . WK[n]lT and U* = [U;. ' '  u&lT, where 
K = is the number of cells, one rewrites (2) as 

Let t[n] = [i.,[n] ' .  DK[n]lT be the estimate of U* at 
time n, and let 

K 

&[n] = x w k [ n ] f i k [ n ]  = w[nlTD[n] (4) 
k=l 

be the predicted output based on the parameter estimate at 
time n. The gradient algorithm [17] to update the estimate ' 

is (!An1 - ybl)Wlnl ,  ( 5 )  

W[n]TW[n] 
D[n + 11 = t in]  - y 

where 0 < y < 2 is the adaptation constant. To ensure that 
the weighting masses are nonnegative, let &[n + 11 = 0 if 
the k-th component of the right hand side of ( 5 )  is negative. 

Drfference-baed ideniijcation: An altemate way to 
identify U* is using the time difference ~ [ n ]  of the output 
y[n], where 

a ~ [ n ]  = ~ [ n ]  - y[n - l] = (W[n] - W[n - l])T~*. (6)  

Let $[n-] and &[n - 11 be the output predictions at time n 
and n - 1 based on D[n - 11, respectively, i.e., 

A A gin-] = W[n]TP[n - 11, &[n - 11 = W[n - l]TD[n - 11. 

q.1 = &[n-]-&[n-l] = (W[n]-W[n-l])TD[n-l]. (7) 

Define 
a 

A Let V[n] be the time difference of hysteron states, V[n] = 
W[n] - W [ n  - 11. Then one can obtain the following 
identification scheme based on z[n]: 

As in the output-based scheme, an parameter projection 
step will be applied if any component of f[n+l] is negative. 

Having discussed the methods for recursive identification 
of weighting masses for a Preisach operator, we now point 
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out how to change the previous algorithms for identification 
of the (piecewise uniform) Preisach density. In this case, 
the output y[n] can still be expressed as (2) or (3), but 
with different interpretations for W;,i [n] and Each 
component Wi,j[n] of W[n.] no longer represents the state 
(1 or -1) of the hysteron at the center of the cell ( i , j ) ;  
instead it represents the signed area of the cell: 

W,,j[n] =area ofC;t,[n] -area of C,yj[n], 

where Ccj (C;,j-, resp.) denotes the portion of cell ( i , j )  
occupied by positive (negative, resp.) hysterons. Each com- 
ponent .+:,j of U* now represents the true density value on 
the cell ( z , j ) .  Similarly, P [ n ]  is now the vector of density 
values estimated at time n. Define V[n] = W[n]- W[n-l]. 
Define $[.I, 4.1, and i[n]  as in (4), (6), (7), respectively. 
Based on these definitions, the output-based algorithm (5) 
and the difference-based algorithm (8) can be applied with- 
out modification to identify U*. 

A 

IV. PERSISTENT EXCITATION CONDITIONS 
a. Define the parameter error i.[n,] = ~ [ n ]  - U*. Then for 

the output-based algorithm ( 5 )  (letting y = 1 without loss 
of generality), 

V ( n  + 11 = F[T%]O[?l], (9) 

where F[n]  = I K  - , and I K  represents the 
identity matrix of . It is well-known [17] 
that the convergence of the algorithm (5) depends on the 
persistent excitation (P.E.) condition of the sequence W [ ~ L ] .  
The sequence W[n] is persistently exciting if, there exist 
an integer N > 0 and c; > 0, c; > 0, such that for any no, 

Due to the equivalence of uniform complete observability 
under feedback [17], [18], from (lo), there exist c 1  > 
0,cz > 0 such that for any no, 

(11) 

where G ~ ( n o )  is the observability grammian of the system 
(9) defined as 

C l n K  5 CN(nU) 5 CZIK, 

and @In, no] is the state transition matrix, @[n,n.o] = 
f lL iAa  Flk] .  It can be shown [I71 that when (11) is 
satisfied, 

(12) 

from which exponential convergence to V *  can be con- 
cluded. Similarly one can write down the error dynamics 
equation, the P.E. condition on V[n], and the convergence 
rate estimate for the difference-based scheme (8). 

ili.[7~ + NIII 5 diZi1fi1~111~ 

The sequences V[n] and W[n] are almost equivalent in 
the sense that, for any N > 0, {V[TL]}:'~ can he con- 
structed from {W[n]}&u, and conversely, {W[~L]}:=~ can 
be constructed from W[O] and {V[n]}r=l. However, there 
are motivations to introduce the difference-based scheme 
(8). For ease of discussion, consider the case of identifying 
Preisach weighting masses (corresponding to Fig. 2(b)). In 
this case while w [ n ]  has components fl, the components 
of V[n] are +2 or 0. Often times most components of V[n] 
are 0 since Vk[n] # 0 only if the k-th hysteron changed 
its state at time n. This has two consequences: ( I )  The P.E. 
condition of V[n] is easier to analyze than that of W[n];  (2) 
The convergence of the difference-based scheme (assuming 
that P.E. is satisfied) is expected to be faster than that of 
the output-based scheme since r[n]  carries more specific 
information about v'.  

It is of practical interest to express the P.E. conditions in 
terms of the input U[.] to the hysteresis operator. The P.E. 
condition for the difference-based algorithm is equivalent 
to that {V[n]}","2nt-1 spans RK since V[n] can take only 
a finite number of possible values. Recall that u[n] takes 
values in a finite set {ui, 1 5 i 5 L + 1). In the analysis 
helow it is assumed that the input does not change more 
than one level during one sampling time. The assumption 
is not restrictive considering the rate-independence [15] of 
the Preisach operator, but it helps to ease the presentation. 

Theorem 4.1 (Necessary condition for  PE.): If {V[n]} 
is P.E., then there exists N > 0, such that for any no, 
for any i E {1 ,2 , .  . . , L} ,  I+] achieves a local maximum 
at u;+l or a local minimum at U; during the time period 

Pmof: Let us call a hysteron active at time n if it changes 
state at time n. Since the input changes at most one level 
each time, if U[.] > u[n - 11, the set of active hysterons 
musthavetheformSzj f i { ( i , j ) , ( i , j + l ) , .  .. , ( i , i ) }  for 
some i , j  with 1 5 i 5 L and 1 5 j 5 i (refer to the 
labeling scheme in Fig. 2(a)), and the components of V[n] 
corresponding to elements of S: are 2 and other compo- 
nents equal 0. Similarly, if u[n] < u[n- 11, the set of active 
hysteronshastheformSxTj = { ( j , j ) , ( j + l , j ) ,  ... , ( i , j ) }  
for some i,j, and the components of V[n] corresponding 
to elements of S,yj are -2 and other components equal 0. 

If, for some a', uir+l is not a local maximum and IL:  is not 
a local minimum, S$,i, or St7,i, will not become the set of 
active hysterons during [no, no + N - 11. In particular, when 
the hysteron (i',z') changes state from -1 to 1, so does the 
hysteron (i' - 1, i ' ) ;  and when the hysteron ( a ' ,  a ' )  changes 
state from 1 to -1, so does the hysteron ( i f ,  i' + 1). This 
implies that the contribution to the output from the hysteron 
(if, a ' )  cannot be isolated, and hence {V*}F&f;l does not 
span RK. 0 

Remark 4.1: From Theorem 4.1, for a Preisach operator 
with discretization level L, it is necessary that the input 
u[n] has L reversals at different input levels for parameter 
convergence. This is in analogy to (hut remarkably different 

Inu,no + N - 11. 

a 
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from) the result for linear systems, where the input is 
required to have at least T L  frequency components for 
identification of n parameters [17], [ I Q  

Theorem 4.1 implies that the input levels 111 and UL+I 

must be visited for P.E. to hold. When the input hits V I ,  
all hysterons have output -1 and the Preisach operator is 
in negative saturation; similarly, when the input hits U L + I ,  
the Preisach operator is in positive saturation. For either 
case all the previous memory is “erased” and the operator 
is “reset”. Starting from these reset points, one can keep 
track of the memory curve $[n] (the state of the Preisach 
operator) according to the input U [ . ] .  

Consider an input sequence {u[n]}Z,., n, < nb. If 
there exist n1,n2,n3 and 114 with n, 5 nl < n2 5 
n3 < n4 5 n b  such that the memory curve $[.‘I = 
$[ng] and $ [ n 2 ]  = $[nq], one can obtain another input 
sequence {u’[n]};& by swapping the section {u[n]}& 
with the section {u[n]}2=,,. We write {~[n]}”,”,, 
{u’[n]}Zna (called equivalent in terms of PE.) since 
the two sequences cany same excitation information for 
the purpose of parameter identification. The set of all 
input sequences obtained from {u[n]};& as explained 
above (with possibly zero or more than one swappings) 
form the PE. equivalence class of {u[n]}?=,,, denoted 
as {u[n]}2=,.. Note that in particular, {u[n]};L,,, E 
{u[nE=,,. We are now ready to present a sufficient 
c a t i o n  for P.E. in terms of the input U[.]. 

Theorem 4.2 (Sufcient condition for PE.): If there ex- 
ists N > 0, such that for any no, one can find 
{u ’ [n]}E~ty -~  E {a}?&:-’ satisfying the following: 
there exist time indices no 5 n, 5 n; < n: < n; < 
n : < . . . < n ;  < n : < . . . s n b < n o + N - l o r  
no 5 n, 5 n: < n; < n$ < n; < ... < n+ < n; < 
... 5 n b  5 no+N-1, such that u’[nr] isalocalmaximum 
and u’[n;] is a local minimum of {u’[n]}Z,. for each i, 
these local maxima and minima include all input levels U;, 
1 i i 5 L + 1, and either 
(a) {u’[n+]} is non-increasing, u’[n+] 2 U’[.] for n+ < 
n 5 lib, u‘[n:] differs from ~ ’ [ n : ~ ]  by no more than A,,, 
and {u‘[nt:]} is non-decreasing, u’[n;] 5 U’[.] for n; < 
n 5 lib, u’[n;] differs from ~ ‘ [ n i + ~ ]  by no more than A,; 

(b) {.’[TI:]} is non-decreasing, u’[n?] 5 U‘[.] for n+ < 
n 5 nb, u’[n;] differs from u’[nLI] by no more than A,, 
and {U+;]} is non-increasing, u‘[n;] 2 u’[n] for n; < 
n 5 n b ,  u‘[n;] differs from ~ ’ [ n ; + ~ ]  by no more than A,,, 
then V[n]  corresponding to U[.] is PE..  
Proof: Construct a new input sequence { ~ [ n ] } : = ~  (for some 
R > 1) which achieves the local maxima {~’ [n : ] }  and the 
local minima {U’[.;]} with the same order as in u’[n], 
but ”[n] varies monotonically from a maximum to the next 
minimum or from a minimum to the next maximum. For 
such an input, it can be seen through memory curve analysis 
on the Preisach plane that the corresponding { P[n]}E=l 
spans WK. From the way C [ n ]  is constructed and the 

P . E .  

or 

conditions given in the theorem, any vector in { P[n]}E=l 
must also be present in {V’[n]}ZL$f-‘ corresponding to 
u’[n], Hence {V’[n]} is P.E.. Finally P.E. of {V[n]}  follows 
since {u’[n]}z$f-’ belongs to the P.E. equivalence class 

Theorem 4.2 is not conservative, and it covers a wide 
class of P.E. inputs. For example, it can be easily ver- 
ified that a (periodic) first order reversal input [14](see 
Fig. 3(a) for case L = 4), which has been widely used for 
identification of Preisach density function, and a (periodic) 
oscillating input with decreasing amplitude (Fig. 3(b) for 
case L = 4) both satisfy the conditions in Theorem 4.2, 
and are thus P.E.. In these two cases, u[n] itself satisfies the 
conditions imposed for u’[n] in the theorem. Fig. 4 shows 
an example where one can conclude the P.E. of a periodic 
u[n] by inspecting a P.E. equivalent input u‘[n]. Note that 
Theorem 4.2 does not require u[n] to be periodic, although 
periodic examples are chosen here for easy illustration. 

The P.E. conditions (Theorems 4.1 and 4.2) can be 
extended in a straightforward manner (with minor modi- 
fications) to the case where a piecewise uniform density 
function is to be identified. 

of {u[n]}z$f-’. 0 

g ..... ~ ......... 

Y 
U, 

q&J\*”  it/p 
(8) @) 

Fig. 3. Examples 0fP.E. inputs ( L  = 4, showing one period): (a) The 
first order reversal input; (b) An oscillating input with decaying amplihrde. 

Y 
,4 B(A)  B 

Fig. 4. An example of P.E. input ( L  = 4, showing one period). The 
input u’[n]. P.E. equivalent 10 u[n]. is obtained by swapping hvo sections 
A - B and A’ - E ‘  of U[.]. 

v. SIMULATION AND EXPERIMENTAL RESULTS 

A .  Comparison of the output-based scheme with the 
difference-based scheme 

In this subsection the output-based scheme is compared 
with the difference-based one through simulation. As shown 
in (12), the minimum eigenvalue of the observability gram- 
mian (i.e., c1 in (1 I)) is directly related to the convergence 
rate of the output-based scheme. The same statement holds 
for the difference-based scheme provided that W[n]  is 
replaced with V[n]  in the related equations. In Table I we 
list the corresponding J1‘-.l (the bound on the norm 
of parameter error drop over one period) under the two 
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gradient schemes (with y = 1) for different discretization 
levels L with the (periodic) first order reversal input. 
From Table I, the difference-based scheme converges faster 
as expected. Simulation has been conducted for the case 
L = 10. Fig. 5(a) compares the decrease of the norm of 
parameter error over periods when there is no measurement 
noise, and the conclusion is consistent with Table I. 

TABLE I 
COMPARISONOF CONVERGENCE RATES FOR THE OUTPUT-BASED 

ALGORITHM AND THE DIFFERENCE-BASED ALGORITHM. 

0.9631 0.9399 
0.9784 

0.9958 0.9874 
0.9912 
0.9933 

w- 
(* I.. . .  ....... : . . . .  i Ic..P-+ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ..;. ....... 

B ,  . . .  . . . . . . .  . . I  ... ..... .... ; . . .  

{ e  . , . . . . .  :... . . . . . . . . . . . .  :. . . .  . . . . .  : . . .  
E 

I . . .  P . . . . . . . . . . . . . . .  . . . . . . . .  . . . . .  

...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - - -__. ' 

0 

J 
o n m m a n m  

Quid n u m k  

04 

Fig. 5. Comparison of parsmeter convergence for the output based 
algorithm and the difference-based algorithm. (a) Case I: noise less  mea- 
surement; (b) Case I 1  noisy measurement.  

Despite the apparent advantage of faster convergence, the 
difference-based scheme is more sensitive to the measure- 
ment noise: the noise gets magnified when one takes the 
output difference (analogous to taking the derivative of a 
noisy continuous-time signal), and the disturbance is shared 

only among the active hysterons. Simulation in Fig. 5(a) is 
re-conducted where a noise is added to the output, the noise 
magnitude being 4% of the saturation output of the Preisach 
operator. From Fig. 5(b), in this case, the parameter error 
will not converge to zero under either algorithm. However, 
the ultimate error of the output-based algorithm is much 
lower than that of the difference-based scheme. 

B. Experimenial results 
Experiments have been conducted on a magnetostrictive 

actuator to examine the identification schemes. The hys- 
teretic relationship between the displacement output of the 
actuator and its current input can be modeled by a Preisach 
operator when the current input is quasi-static [7]. 

A periodic first order reversal current input is used for 
recursive identification of the Preisach density function. A 
practically important issue is the choice of the discretization 
level L. Although it is expected that the higher discretiza- 
tion level L, the higher model accuracy, there are two 
factors supporting a moderate value of L in practice: the 
computational complexity and the sensor accuracy level. 
Since the number of cells on a discretization grid scales 
as L2, so is the computational complexity of the recursive 
identification algorithm. It should also be noted that, from 
Table I, the convergence rate fi decreases as L in- 
creases. Furthermore, in the presence of the sensor noise and 
unmodeled dynamics, higher discretization level may not 
necessarily lead to improved performance. Fig. 6 compares 
the measured hysteresis loops against the predicted loops 
based on the identified parameters for different L. Although 
the scheme with L = 10 achieves much better match than 
the scheme with L = 5, there is little improvement when 
L is increased to 15. Hence for the particular actuator 
(and the sensor used), it is determined that L = 10 is an 
appropriate discretization level. Fig. 7 shows the identified 
density distribution for L = 10 after eight periods. The 
output-based gradient algorithm is used with y = 1. 

VI. CONCLUSIONS 
This paper has been focused on recursive identification 

of hysteresis in smart materials. A Preisach operator with 
piecewise uniform density function was used to approx- 
imate smart material hysteresis. On the theoretical side, 
a necessary condition and a sufficient condition for the 
parameter convergence were presented in terms of the input 
to the Preisach operator. In contrast to the results for 
linea systems, the conditions here center around the local 
maximdminima of the input. 

Practical implementation issues were studied through 
both simulation and experiments. Two types of adaptive gra- 
dient identification algorithms were compared. It was found 
that the difference-based method has a higher convergence 
rate, but it is more sensitive to the measurement noise. The 
choice of the level of discretization was also discussed. 

Recently an adaptive inverse control algorithm has been 
developed using the output-based recursive identification, 
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(C) 

Fig. 6. 
based an the identified density. (a) L = 5; (b) L = 10; (c) L = 15. 

Comparison of measured hysteresis loops with predicted loops 

: 3 1 .  ...a ."" : I. ... j . : :  
. .  ... . .  

..... . .  . .  
. . .  , 

al"1 

Fig. 7. Identified Preisach density function (L = 10). 

which will be reported in another paper. For future work, 
it will be of interest to extend the results here to the cases 
where the hysteresis output is not directly measurable. Such 
cases happen if, e.g., the high-frequency dynamics of the 
smart material actuator is not negligible, or the actuator is 
used to control some other plant. 
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