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Recursive Identification of Hysteresis in Smart Materials

Xiaobo Tan" and John S. Baras

Abstract—This paper studies recursive identification of
hysteresis in smart materials. A Preisach operator with a piece-
wise uniform density function is used to model the hysteresis.
Persistent excitation conditions for parameter convergence are
discussed in terms of the input to the Preisach operator. Two
classes of recursive identification schemes are explored, one
based on the hysteresis output, the other based on the time
difference of the output. Experimental results based on a
magnetostrictive actuator are presented.

I. INTRODUCTION

Smart materials, e.g., magnetostrictives, piezoelectrics,
and shape memory alloys (SMA), exploit strong coupling
between applied electromagnetic/thermal fields and strains
for actuation and sensing. The ubiquitous presence of hys-
teresis in smart materials, however, poses a significant chai-
lenge for the effective use of these materials in sensors and
actuators. To address this problem, a proper mathematical
mode] for the hysteresis is necessary.

Hysteresis models can be roughly classified into physics-
based models and phenomenological models. Physics-based
models are built based on first principles of physics, an ex-
ample of which is the Jiles-Atherton mode! of ferromagnetic
hysteresis [1]. Phenomenological models, on the other hand,
are used to produce behaviors similar to those of physical
systems without necessarily providing physical insight into
the problems. The most popular hysteresis model used for
smart materials has been the Preisach operator (2], [3], [4],
[5], [61, [7]. [8], which is of the phenomenological type.
A similar type of operator called Krasnosel’skii-Pokrovskii
(KP) operator has also been used [9], [10].

Hysteretic behaviors of smart materials often vary with
time, temperature and some other ambient conditions.
Therefore, online identification of the hysteresis model is
of practical interest. The idea of adaptive inverse control
was studied for a class of hysteresis models with piece-
wise linear characteristics in [11], where the hysteresis
parameters {and the inverse hysteresis model) are updated
recursively. More recently, similar ideas were applied to
control of hysteresis in smart materials [12], [13], where
the KP operator and the Prandtl-Ishlinskii operator were
used as the hysteresis model, respectively.
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This paper deals with recursive identification of the
Preisach operator. Two classes of identification schemes are
explored, one based on the hysteresis output, the other based
on the time difference of the output. Persistent excitation
(P.E.)) conditions for parameter convergence are studied
in terms of the input to the hysteresis operator. Practical
issues in implementation are also discussed. Experimental
results based on a magnetostrictive actuator, together with
simulation results, are presented.

The remainder of the paper is organized as follows. The
Preisach operator is briefly reviewed in Section II, where
a discretization scheme is also included. Recursive identi-
fication algorithms are presented in Section III. Persistent
excitation conditions are discussed in Section TV. Simu-
lation and experimental results are reported in Section V,
Finally some conclusions are provided in Section VI

II. THE PREISACH OPERATOR

The Preisach operator is briefly reviewed in this section.
A more detailed treatment can be found in [14), [15]. A
basic element of the Preisach operator is a delayed relay
with a pair of switching thresholds (3, «), as illustrated
in Fig. 1. Such an element is called a hysteron, and is
denoted here by 94,4. Let C{[0,T]} denote the space of
continuous functions on [0, 7], For u € C([0,T]) and an
initial configuration { € {1, 1}, the output of the hysteron
is denoted as w{t) = 94 q[u, (J(t), ¥t € [0,T].

]
+1 ~—r

Fig. 1. An elementary hysteron 43 o[, ]

The Preisach operator is a weighted superposition of all
possible hysterons. Define P 2 {(B,0) € R?: 8 < o}
Po is called the Preisach plane, and each (4,a) € Py is
identified with the hysteron 45, For u € C([0, T]) and an

initial configuration (g of all hysterons, (¢ : Py — {-1, 1},
the output of the Preisach operator [ is defined as:

1E) = Tl Gltt) = [ (B, @Yol o(6, (008,

’ 0]
where the weighting function u(-,-) is called the Preisach
density function. It is assumed that ¢ > 0. Furthermore,
to simplify the discussion, assume that x has a compact
sapport, e, p(B,a) = 0if § < By or a > ag for some

3857


http://tan9umd.edu

Bo, co. In this case it suffices to consider a finite triangular
arca P 2 {(B,0) € PoJB = fio, & < oo}, and P will also
be called the Preisach plane when no confusion arises.

At any time ¢, P can be divided into two regions:

Pi(t)
P_(t)

Under mild conditions, each of P4(t) and P_(t) is a
connected set, and the boundary between them, called the
memory curve, characterizes the memory of the Preisach
aperator.

In identification of the Preisach density a discretization
step is involved in one way or another (see [16] for a review
of identification methods). One discretization scheme is to
divide the input range into L intervals uniformly {(called
discretization of level L), which results in a discretization
grid on the Preisach plane. Denote the discrete input levels
byu,1<i<L+1,ie,

{{B8, @) € P| output of 45, at t is + 1},
{(8,@) € P| output of 5, at t is —1}.

e e

Ui = Umin + (£ = 1}Ay,

where Ay, = -‘imsmz—“'mﬂ The cells in the discretization grid
are labeled, as illustrated in Fig 2(a) for the case of L = 4.

o o
A A
e e
(1) [(4,2) 1(4,3) [(4,4; i . . . i
1y ) i
(3.1} [(3,2) (3, i e | .o i
Y 0 C R A R N T
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.1 -t -
; ‘
JE—— ANR— )
(a) (b)

Fig. 2. Mlustration of the discretization scheme (L = 4): (a) Labeling of
the disretization cells; (b) Weighting masses sitting at the centers of cells.

A natural way to approximate a Preisach operator is to
assume that inside each cell of the discretized Preisach
plane, the Preisach density function is constant. Note that
such an operator is still an infinite-dimensional operator.
If one assumes that the Preisach weighting function inside
each cell is concentrated at the center as a weighting mass
{Fig. 2(b}), the corresponding Preisach operator becomes
a weighted combination of a finite number of hysterons.
Equivalently the input takes values in the finite set {u;} 25!

III. RECURSIVE IDENTIFICATION SCHEMES

The discrete-time setting is considered in this paper. A
Preisach operator with discrete weighting masses is easier to
analyze than a Preisach operator with a piecewise uniform
weighting density; however, these two types of operators
bear much similarity and essential results for one can be
easily translated into those for the other. Hence recursive
identification of Preisach weighting masses is first studied,
and then the extension needed for identifying the density
directly is briefly discussed.

In this paper two classes of identification algorithms are
examined, one based on the hysteresis output, and the other
based on the time difference of the output (called difference-
based hereafter).

Output-based identification: The output y[n] of the dis-
cretized Preisach operator (corresponding to the case illus-
trated in Fig. 2(b)) at time instant n can be expressed as

L 4
yln) =Y > Wisnlag, )

i=1 j=1

where W;;[n] denotes the state (1 or —1) of the hysteron in
cell (i, j) at time n, and 7}; denotes the hysteron’s Preisach
weighting mass. Stacking W ;[n] and 7} ; into two vectors, -
Win} = Wiln]--- Wg(n]]” and v* = [v] - - - v},]T, where
K= ﬂ—L-;'—ll is the number of cells, one rewrites (2) as

K
yin] =Y Wilnlyj = Wn]"v". (3)
k=1
Let #[n] = [61[n]--- Dk [n]]T be the estimate of v* at
time n, and let : .

il = S Walnlonln) = WiniToln] (@)

be the predicted output based on the parameter estimate at
time n. The gradient algorithm [17] to update the estimate

15
Lt = yn)Win| )
- Whn)TWin]
where 0 < <y < 2 is the adaptation constant. To ensure that
the weighting masses are nonnegative, let &x[n 4- 1] = 0 if
the k-th component of the right hand side of (5) is negative.
Difference-based identification: An alternate way to
identify v* is using the time difference z[n} of the output
y(n], where

pn+ 1] = o] -

2ln] 2 yln) — yln — 1] = Win] - Win - 170", (6)
Let §[n~] and §[n — 1] be the output predictions at time n
and n — 1 based on £[n — 1), respectively, ie.,
g1 EWinTofn - 1], 9ln - 1) 2 Win— 15[ — 1.
Define

£n] = §ln~]—gln—1] = Wn]-Wn-1))Ts[n—1]. (7)
Let V[n] be the time difference of hysteron states, V{n] 2

W(n] — W[n — 1]. Then cne can obtain the following
identification scheme based on z[n]:

Pln+1) = { pln) — yEREAREL, it Vinl £0 ®

pln] if Vin] =0

As in the output-based scheme, an parameter projection
step will be applied if any component of #[n+1) is negative.
Having discussed the methods for recursive identification
of weighting masses for a Preisach operator, we now point
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out how to change the previous algorithms for identification
of the (piecewise uniform) Preisach density. In this case,
the output y[n] can still be expressed as (2) or (3) but
with different interpretations for W ;[n] and &} ,. Each
component W; ;[n] of W(n] no longer represents the state
(1 or —1) of the hysteron at the center of the cell (i, );
instead it represents the signed area of the cell:

W,,;[n] = area of C}f;[n] — area of C; [,

where (J'Jr (Ci, 7, resp.) denotes the portion of cell (i, §}
occupled by positive (negative, resp.) hysterons. Each com-
ponent »; ; of &* now represents the true density value on
the cell (¢, 7). Similarly, #[n] is now the vector of density
values estimated at time n. Define V[n] 2 Win]-Win-1].
Define ji[n}, z[n], and Z[n] as in (4), (6), (7), respectively.
Based on these definitions, the output-based algorithm (5)
and the difference-based algorithm (8) can be applied with-
out modification to identify »*.

IV. PERSISTENT EXCITATION CONDITIONS

Define the parameter error &[n| 2 #[n] — v*. Then for
the output-based algorithm (5) (letting v+ = 1 without loss
of generality),

ln+1]=

where Fln] = [x — %, and [x represents the
identity matrix of dimension It is well-known [17]
that the convergence of the algorithm (5) depends on the
persistent excitation (PE.) condition of the sequence Win).

The sequence Win] is persistently exciting if, there exist
an integer N > 0 and ¢} > 0, ¢} > 0, such that for any ny,

Flnlom], &3]

np+N -1

el < Z

n=ngo

W[ W )T

W OTTW T ] <dhlg. (10

Due to the equivalence of uniform complete observability
under feedback [17], [18], from {10}, there exist ¢; >
0,cz > 0 such that for any ny,

calk < Gning) € eolg,

(1n

where Gy (ng) is the observability grammian of the system
(9) defined as

ng4+N-1

Gning) = Z

n=np

O[n, ng]TWn]Wn)? ®[n, ng)
W(n|TW(n] ’

and III)[n ng] is the state transition matrix, ®[n,ng] =
n—

in. FIK). Tt can be shown [17] that when (11) is
satisﬁed,

12[n + Nl £ V1 = ed|Zfn]l], (12)
from which exponential convergence to v* can be con-

cluded. Similarly one can write down the error dynamics
equation, the P.E, condition on V'[r], and the canvergence
rate estimate for the difference-based scheme (8).

The sequences ¥{n] and W(n] are almost equivalent in
the sense that, for any N > 0, {V[n|}}L; can be con-
structed from {W[n]}&_,, and conversely, {Wnj}2, can
be constructed from WD) and {V[n}} . However, there
are motivations to introduce the difference-based scheme
(8). For case of discussion, consider the case of identifying
Preisach weighting masses (corresponding to Fig. 2(b)). In
this case while Win] has components £1, the components
of V[n] are 2 or 0. Often tites most components of Vin|
are 0 since Vi[n] # O only if the k-th hysteron changed
its state at time n. This has two consequences: {1) The P.E.
condition of V{n| is easier to analyze than that of Win]; (2}
The convergence of the difference-based scheme (assuming
that PE. is satisfied) is expected to be faster than that of
the output-based scheme since z[n| carries more specific
information about #*.

It is of practical interest to express the P.E. conditions in
terms of the input u[n] to the hysteresis operator. The P.E.
condition for the difference-based algorithm is equivalent
1o that {V{n]}2efM=1 spans R¥ since V{n] can take only
a finite number of possible values. Recall that u[n] takes
values in a finite set {u;,1 < i < L+ 1}. In the analysis
below it is assumed that the input does not change more
than one level during one sampling time. The assumption
is not restrictive considering the rate-independence [15] of
the Preisach operator, but it helps to case the presentation.

Theorem 4.1 (Necessary condition for PE): 1f {V[n]}
is P.E., then there exists N > 0, such that for any np,
for any 1 € {1,2,..-, L}, u[n] achieves a local maximum
at ¢4, or a local minimum at u; during the time period
{no,’no 4 N — 1].

Proof. Let us call a hysteron active at time n if it changes
state at time n. Since the input changes at most one level
each time, if u[n] > u[n — 1), the set of active hysterons

must have the form Sj!'j = {(&,3), (4,7 +1),---,(i,0)} for
some 4,7 with 1 < i < Land 1 < j < { (refer to the
labeling scheme in Fig. 2(a)), and the components of V[n]
corresponding to elements of S +J are 2 and other compo-
nents equal 0. Similarly, if u[n] < u[n— 1], the set of active

hysterons has the form S;; & {G. ), G+1,7),---, D}
for some 4, j, and the components of V[n] corresponding
to elements of .S"J are —2 and other components equal 0.

If, for some ¢’ u,r_,,l is not a local maximum and = is not
a local minimum, S. o ot 85 ., will not become the set of
active hysterons dunng [ng, 7o+ N - 1]. In particular, when
the hysteron (1,7} changes state from —1 to 1, so does the
hysteron (i’ — 1, ¢); and when the hysteron {i’,#') changes
state from 1 to —1, so does the hysteron (i',¢’ + 1). This
implies that the contribution to the output from the hysteron
(i',4') cannot be isolated, and hence {V,}72 V=1 does not
span R, [

Remark 4.1: From Theorem 4.1, for a Preisach operator
with discretization level L, it is necessary that the input
uln] has L reversals at different input levels for parameter
convergence. This is in analogy to (but remarkably different
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from) the result for linear systems, where the input is
required to have at least n frequency components for
identification of n parameters [17], [18].

Theorem 4.1 implies that the input levels #; and wuz4
must be visited for P.E. to hold. When the input hits %,
all hysterons have output —1 and the Preisach operator is
in negative saturation; similarly, when the input hits w1,
the Preisach operator is in positive saturation. For either
case all the previous memory is “erased” and the operator
is “reset”. Starting from these reset points, one can keep
track of the memory curve ¢[n] (the state of the Preisach
operator) according to the input u[].

Consider an input sequence {u[n|}7  , n, < np If
there exist ny,n9,n3 and ny with ng < ny < ny <
nz < ng < np such that the memory cutve Y[n,] =
[ns] and Y¥{na] = 1[ny), one can obtain another input

sequence {u'[n|}7%,, by swapping the section {u[n]}}2 .

with the section {u[nr]}7s . We write {ufn]}nt, P
{u'[n]}2e,, (called equivalent in terms of PE.) since
the two sequences carry same excitation information for
the purpose of parameter identification. The set of all
input sequences obtained from {u[n]}7e . as explained
above (with possibly zero or more than one swappings)
form the PE. equivalence class of {u[n]}7e, ., denoted
as {u[n]}n—n Note that in particular, {u[n]}Rr, €
{u[n]}ne,,. We are now ready to present a sufficient
condition for PE. in terms of the input u[n].

Theorem 4.2 (Sufficient condition for PE.): If there ex-
ists N > 0, such that for any np, one can find
{w/[n]}net V=1 € {u[n]}ret V=1 satisfying the following:
there exist time indices ng < nq < 7] < nf < ny <
n'{ < o<y <n;" < - <np<ng+N-—-1or
nognagn'f<nl_<n'{<n{< -<n‘7"<n,-_ <

- < np < np+N—1, such that w'[n}] is a local maximum
and u'[n; ] is a local minimum of {u'[n]}7e, for each 4,
these local maxima and minima include all input levels 1,
1<i< L+1, and either
(2) {«/[n}]} is non-increasing, u'{n}] > w'[n] for n} <
n < ny, w'[n}] differs from »/[nf, ] by no more than A,
and {u'[n; ]} is non-decreasing, w'[n; ] < v/[n] for n; <
n < ny, u'[n;| differs from u'{n;] ;] by no more than A,;
or
(&) {«'[nf]} is non-decreasing, u'[n}] < v/[n] for n} <
n < ng, @' [n]] differs from u’[n}, ] by no more than A,
and {u'[n;]} is non-increasing, u'[n;} > v'[n] for n; <
n < ng, v'[n]] differs from u'[n;},] by no more than A,
then V[n| corresponding to u[n] is P.E..

Proof. Construct a new input sequence {Z[n]}7_, (for some
i > 1) which achieves the local maxima {u’[nf]} and the
local minima {u/[n;]} with the same order as in u'[n],
but i[n] varies monotonically from a maximum to the next
minimum or from a minimum to the next maximum, For
such an input, it can be seen through memory curve analysis
on the Preisach plane that the corresponding {V[n]}2_,
spans R¥. From the way i{n] is constructed and the

conditions given in the theorem, any vector in { V[n]}5_,
must also be present in {V'[n]}?e+N=1 corresponding to
u'[n]. Hence {V’[n]} is P.E.. Finally P.E. of {V[n]} follows
since {u'[n]}go_tg =1 belongs to the P.E. equivalence class
of {u[n]}aet V=1

Theorem 4.2 is not conservative, and it covers a wide
class of PE. inputs. For example, it can be easily ver-
ified that a (periodic) first order reversal input {14](sce
Fig. 3(a) for case L = 4), which has been widely used for
identification of Preisach density function, and a (perjodic)
oscillating input with decreasing amplitude (Fig. 3(b) for
case L = 4) both satisfy the conditions in Theorem 4.2,
and are thus P.E.. In these two cases, u[n] itself satisfies the
conditions imposed for u’[n] in the theorem. Fig. 4 shows
an example where one can conclude the P.E. of a periodic
u[n] by inspecting a P.E. equivalent input »'{n]. Note that
Theorem 4.2 does not require u[n| to be periodic, although
periodic examples are chosen here for easy illustration.

The P.E. conditions (Theorems 4.1 and 4.2) can be
extended in a straightforward manner (with minor modi-
fications) to the case where a piecewise uniform density
function is to be identified.

4l

®)

Fig. 3. Examples of PE. inputs (L = 4, showing one period): (a) The
first order reversal input; (b) An oscillating input with decaying amplitude.
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Fig. 4. An example of PE. input (I = 4, showing one period). The
input ¥'[r), PE. equivalent to u[n], is obtained by swapping two scctions
A—Band A’ — B’ of ujn].

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Comparison of the output-based scheme with the
difference-based scheme

In this subsection the output-based scheme is compared
with the difference-based one through simulation. As shown
in (12), the minimum eigenvalue of the observability gram-
mian (i.e., ¢y in (11)) is directly related to the convergence
rate of the output-based scheme. The same statement holds
for the difference-based scheme provided that Win] is
replaced with V[n] in the related equations. In Table T we
list the corresponding /1 — ¢ (the bound on the norm
of parameter error drop over one period) under the two
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gradient schemes (with v = 1) for different discretization
levels L with the (periodic) first order reversal input.
From Table I, the difference-based scheme converges faster
as expected. Simulation has been conducted for the case
L = 10. Fig. 5(a) compares the decrease of the norm of
parameter error over periods when there is no measurement
noise, and the conclusion is consistent with Table 1.

TABLE 1
COMPARISON OF CONVERGENCE RATES FOR THE OUTPUT-BASED
ALGORITHM AND THE DIFFERENCE-BASED ALGORITHM.

L V1i—¢y Vv1—¢;3
(Output-based) | (Difference-based)

5 0.9631 0.9399

10 0.9908 0.9784

15 0.9958 0.9874

20 0.9976 0.9912

25 0.9985 0.9933

Parameter emmor

(a)

Period number
®

Fig. 5. Comparison of parameter convergence for the output based
algorithm and the difference-based algorithm. (a) Case I: noiseless mea-
surement; (b) Case II: noisy measurement.

Despite the apparent advantage of faster convergence, the
difference-based scheme is more sensitive to the measure-
ment noise: the noise gets magnified when one takes the
output difference (analogous to taking the derivative of a
noisy continuous-time signal), and the disturbance is shared

only among the active hysterons. Simulation in Fig. 5(a) is
re-conducted where a noise is added to the output, the noise
magnitude being 4% of the saturation output of the Preisach
operator. From Fig. 5(b), in this case, the parameter error
will not converge to zero under either algorithm. However,
the ultimate error of the output-based algorithm is much
lower than that of the difference-based scheme.

B. Experimental results

Experiments have been conducted on a magnetostrictive
actuator to examine the identification schemes. The hys-
teretic relationship between the displacement output of the
actuator and its current input can be modeled by a Preisach
operator when the current input is quasi-static [7].

A periodic first order reversal current input is used for
recursive identification of the Preisach density function. A
practically important issue is the choice of the discretization
level L. Although it is expected that the higher discretiza-
tion level L, the higher model accuracy, there are two
factors supporting a moderate value of L in practice: the
computational complexity and the sensor accuracy level.
Since the number of cells on a discretization grid scales
as L2, so is the computational complexity of the recursive
identification algorithm. It should also be noted that, from
Table I, the convergence rate /1 — ¢; decreases as L in-
creases. Furthermore, in the presence of the sensor noise and
unmodeled dynamics, higher discretization level may not
necessarily lead to improved performance. Fig. 6 compares
the measured hysteresis loops against the predicted loops
based on the identified parameters for different L. Although
the scheme with L = 10 achieves much better match than
the scheme with L = 5, there is little improvement when
L is increased to 15. Hence for the particular actuator
(and the sensor used), it is determined that L = 10 is an
appropriate discretization level. Fig. 7 shows the identified
density distribution for L = 10 after eight periods. The
output-based gradient algorithm is used with -y = 1.

VI. CONCLUSIONS

This paper has been focused on recursive identification
of hysteresis in smart materials. A Preisach operator with
piecewise uniform density function was used to approx-
imate smart material hysteresis, On the theoretical side,
a necessary condition and a sufficient condition for the
parameter convergence were presented in terms of the input
to the Preisach operator. In contrast to the results for
linear systems, the conditions here center around the local
maxima/minima of the input.

Practical implementation issues were studied through
both simulation and experiments. Two types of adaptive gra-
dient identification algorithms were compared. It was found
that the difference-based method has a higher convergence
rate, but it is more sensitive to the measurement noise. The
choice of the level of discretization was also discussed.

Recently an adaptive inverse control algorithm has been
developed using the output-based recursive identification,
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which will be reported in another paper. For future work,
it will be of interest to extend the results here to the cases
where the hysteresis output is not directly measurable. Such
cases happen if, e.g., the high-frequency dynamics of the
smart material actuator is not negligible, or the actuator is
used to control some other plant.

~+ - MwkwUred hysterdnia
—— Predictad hystarasis

Displacement (i m}
8
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