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Xiaobo Tana ;∗, John S. Barasa;b

aInstitute for Systems Research, University of Maryland, College Park, MD 20742, USA
bDepartment of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA

Received 17 December 2002; received in revised form 20 January 2004; accepted 5 April 2004

Abstract

A novel dynamic model is proposed for the hysteresis in magnetostrictive actuators by coupling a Preisach operator to an ordinary
di0erential equation, and a parameter identi2cation method is described. An e3cient inversion algorithm for a class of Preisach operators
with piecewise uniform density functions is then introduced, based upon which an inverse control scheme for the dynamic hysteresis model
is presented. Finally the inversion error is quanti2ed and l1 control theory is applied to improve the robustness of inverse compensation.
Simulation and experimental results based on a Terfenol-D actuator are provided.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Magnetostriction is the phenomenon of strong coupling
between magnetic properties and mechanical properties
of some ferromagnetic materials: strains are generated in
response to an applied magnetic 2eld, while conversely,
mechanical stresses in the materials produce measurable
changes in magnetization. This phenomenon can be used
for actuation and sensing. Fig. 1 shows a schematic of
a Terfenol-D actuator manufactured by Etrema Products
Inc. The magnetic 2eld generated by the coil current con-
trols the strain in the Terfenol-D rod, which translates into
displacement or force (if blocked) output of the actuator.
Like other smart materials (e.g., piezoelectrics and shape

memory alloys), magnetostrictives display strong hysteresis,
which makes their e0ective use quite challenging. Modeling
and control of hysteresis in smart materials have attracted in-
creasing attention in recent years (Moheimani & Goodwin,
2001). Hysteresis models can be roughly classi2ed into
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physics-based models and phenomenological models.
Physics-based models are built on 2rst principles of physics,
an example of which is the Jiles–Atherton model of ferro-
magnetic hysteresis (Jiles & Atherton, 1986). Phenomeno-
logical models, on the other hand, are used to produce behav-
iors similar to those of physical systems without necessarily
providing physical insight into the problems. A popular phe-
nomenological hysteresis model adopted for smart materials
is the Preisach model (Adly, Mayergoyz & Bergqvis, 1991;
Hughes & Wen, 1994; Ge & Jouaneh, 1996; Gorbet, Wang,
& Morris, 1998; Cruz-Hernandez & Hayward, 2001; Tan,
Venkataraman, & Krishnaprasad, 2001; Natale, Velardi, &
Visone, 2001; Croft, Shed, & Devasia, 2001), where the
hysteresis is modeled as a (weighted) aggregate e0ect of
all possible delayed relay elements. A similar operator us-
ing delayed relays of 2nite slopes, called Krasnosel’skii
–Pokrovskii (KP) operator, has also been used ( Banks,
Kurdila, & Webb, 1997; Galinaitis & Rogers, 1998).
The hysteretic behavior between the current input and

the displacement output of a magnetostrictive actuator is
rate-dependent, i.e., it depends on how fast the current is
varied (see the solid-line curves in Fig. 7). However, the
classical Preisach operator is rate-independent. “Dynamic”
generalizations of the Preisach operator were proposed by
assuming output-rate-dependent Preisach density functions
(Mayergoyz, 1991), or input-rate-dependent behavior of de-
layed relays (Bertotti, 1992). Mrad and Hu (2002) proposed
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Fig. 1. Sectional view of a Terfenol-D actuator manufactured by Etrema.

a dynamic hysteresis model for piezoceramic actuators by
assuming an average-input-rate-dependent Preisach density
function.
Eddy current losses and magnetoelastic dynamics of the

magnetostrictive rod were considered to be the origin of the
rate-dependent hysteresis in Venkataraman (1999), where
the eddy current losses were modeled by placing a resistor in
parallel with a hysteretic inductor and the magnetoelastic dy-
namics was modeled by a second-order linear system. Con-
sidering a low-dimensional ferromagnetic hysteresis model
led to an overall model for magnetostrictive actuators de-
scribed by a set of switching ordinary di0erential equa-
tions (ODEs) (Venkataraman, 1999). In Venkataraman and
Krishnaprasad (2000) the authors suggested using a cascade
of a Preisach operator with a linear system to model mag-
netostrictive actuators. In this paper, based upon the model
structure in Venkataraman (1999) but with a Preisach oper-
ator representing the ferromagnetic hysteresis, a novel dy-
namic model is proposed. This model features an unusual
coupling of a Preisach operator to an ODE, which cannot
be simply decomposed as a cascade of the Preisach oper-
ator with a linear system. Parameter identi2cation methods
for this model are discussed. Comparison with experimental
measurements shows that the model captures the dynamic
and hysteretic behavior of magnetostrictive actuators.
Inverse compensation is a fundamental approach to

coping with hysteresis, where one aims to cancel out the
hysteresis e0ect by constructing a right inverse of the hys-
teresis operator, see, e.g., Hughes and Wen (1994); Tao
and Kokotovic (1995); Smith (1998). Inversion of the
Preisach operator has been extensively studied, and gen-
eral inversion algorithms are computation-intensive and/or
storage-intensive (Hughes & Wen, 1994; Reimers & Torre,
1998; Venkataraman & Krishnaprasad, 2000; Natale et al.,
2001). The second contribution of this paper is the devel-
opment of an e3cient inversion algorithm for a class of
Preisach operators with piecewise constant Preisach densi-
ties, and its application to inversion of the dynamic hystere-
sis model. Such operators arise naturally as approximations
to Preisach operators with arbitrary Preisach densities.

The performance of open-loop inverse compensation is
susceptible to model uncertainties and to errors introduced
by (inexact) inverse algorithms. To combat this problem,
one approach is adaptive inverse control (Tao & Kokotovic,
1995; Webb et al., 1998; Kuhnen & Janocha, 1999). In
this paper we explore an alternative approach and develop
a robust control framework for magnetostrictive actuators.
It is shown that, for both the Preisach operator and the dy-
namic hysteresis model, the inversion error can be bounded
in magnitude and the bound is quanti2able in terms of pa-
rameter uncertainties and the inversion scheme. Hence one
can model the inversion error as an exogenous disturbance
and attenuate its impact by l1 control techniques. A system-
atic controller design method is presented which provides
robust stability and robust trajectory tracking while taking
the actuator saturation into account.
The remainder of the paper is organized as follows. The

dynamic hysteresis model together with its identi2cation
method is presented in Section 2. Inversion algorithms for
the Preisach operator and the dynamic hysteresis model are
discussed in Section 3. The robust control framework is de-
veloped in Section 4. Finally, conclusions and discussion
are provided in Section 5.

2. A dynamic hysteresis model for magnetostrictive
actuators

2.1. The preisach operator

The Preisach operator is brieOy reviewed in this sub-
section to 2x the notation and provide the background for
later developments. A detailed treatment can be found in
Mayergoyz (1991); Visintin (1994); Brokate and Sprekels
(1996). For a pair of thresholds (�; �) with �6 �, con-
sider a delayed relay �̂�;�[·; ·], as illustrated in Fig. 2. For
u∈C([0; T ]) (the space of continuous functions on [0; T ])
and an initial con2guration 	∈ {−1; 1}, != �̂�;�[u; 	] is de-
2ned as, for t ∈ [0; T ],

!(t),




−1 if u(t)¡�;

1 if u(t)¿�;

!(t−) if �6 u(t)6 �;

;

where !(0−) = 	 and t− , lim�¿0; �→0t − �.
De2ne the Preisach plane

P0 , {(�; �)∈R2 : �6 �};
where (�; �)∈P0 is identi2ed with �̂�;�. For u∈C([0; T ])
and a Borel measurable con2guration 	0 of all delayed re-
lays, 	0 : P0 → {−1; 1}, the output of the Preisach operator
� is de2ned as

�[u; 	0](t) =
∫
P0

�̂�;�[u; 	0(�; �)](t) d�(�; �); (1)

where � is a 2nite Borel measure on P0, called the Preisach
measure. In this paper � is called nonsingular if |�| is
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Fig. 2. A delayed relay �̂�;�[·; ·].

absolutely continuous with respect to the two-dimensional
Lebesgue measure. For a nonsingular �, (1) can be rewritten
as

�[u; 	0](t) =
∫
P0

�(�; �)�̂�;�[u; 	0(�; �)](t) d� d�; (2)

for some Borel measurable function �, called the Preisach
density function. It is assumed in this paper that � has a
compact support

P, {(�; �)∈P0|�¿ �0; �6 �0};
where �0 = −�0 = s0 for some s0 ¿ 0. P is also called the
Preisach plane when no confusion arises.
At any time t,P is a disjoint union of two sets,P+(t) and

P−(t), where P+(t) (P−(t), resp.) consists of points (�; �)
such that the output of �̂�;� at t is +1 (−1, resp.). Under mild
conditions, each of P+(t) and P−(t) is a connected set, and
the boundary between them, called the memory curve, char-
acterizes the memory of the Preisach operator. The memory
curve has a staircase structure and the coordinates of its in-
tersection with the line �=� correspond to the current value
of the input. The set of all memory curves is denoted as �.
The memory curve  0 at t = 0 is called the initial memory
curve and hereafter it will be put as the second argument of
�. The following theorem collects several properties of the
Preisach operator that are relevant to this paper:

Theorem 2.1 (Visintin, 1994). Let u∈C([0; T ]) and
 0 ∈�.

(1) (Rate independence) If � : [0; T ] → [0; T ] is an in-
creasing continuous function such that �(0) = 0 and
�(T ) = T , then

�[u ◦ �;  0](t) = �[u;  0](�(t)); ∀t ∈ [0; T ];

where “◦” denotes composition of functions.
(2) (Piecewise Monotonicity) Let �¿ 0. If u is either non-

decreasing or nonincreasing on some interval in [0; T ],
then so is �[u;  0].

(3) (Lipschitz Continuity) Let �¿ 0 and

�(N( ; �))6C��; ∀ ∈�; ∀�¿ 0;

where N( ; �) denotes the �-neighborhood of  . Then
� is Lipschitz continuous with Lipschitz constant 2C�.

In identi2cation of the Preisach measure, a discretization
step is involved in one way or another (see Tan (2002)

I M M2 y
W (  )2 G(s)
_

Fig. 3. Model structure of a magnetostrictive actuator.

I1 I-I1

Reddy

I

Fig. 4. Representation of eddy current losses.

for a review of identi2cation methods). One discretization
scheme is to divide the input range into L intervals uni-
formly (called discretization of level L), which results in
a discretization grid on the Preisach plane. An arbitrary
Preisach density function can then be approximated by one
that is constant within each discretization cell. Note that this
type of approximation enjoys nice convergence properties
(Ho0mann et al., 1988). To obtain such a piecewise con-
stant approximation to an unknown Preisach density func-
tion, one can 2rst identify the weighting masses for the dis-
cretization cells using a constrained least squares algorithm
(Tan et al., 2001), and then distribute each mass uniformly
over the corresponding cell.

2.2. The dynamic hysteresis model

The model for a magnetostrictive actuator has a cascaded
structure as shown in Fig. 3, where I , M and y denote the
current input, the bulk magnetization along the rod direc-
tion, and the displacement output, respectively. The block
TW takes care of the ferromagnetic hysteresis and the eddy
current losses as illustrated in Fig. 4, and G(s) is a lumped
model for the magnetoelastic dynamics.
The voltage V across the nonlinear inductor is NmAm

dB
dt ,

where B is the magnetic Oux density, Nm is the number of
turns of the coil, and Am is the cross-sectional area of the
rod. Since V = (I − I1)Reddy,
dB
dt

=
Reddy

NmAm
(I − I1): (3)

In SI units, B=�0(H+M), where �0=4$×10−7 Henry=m
is the permeability of vacuum and H is the magnetic 2eld
along the rod direction.H is related to I1 viaH=c0I1+Hbias,
where c0 is the coil factor andHbias is the bias 2eld necessary
for generating bi-directional strains. Letting M = �[H;  0],
one obtains the dynamic hysteresis model:{

Ḣ (t) + Ṁ (t) = c1(I(t) − H (t)−Hbias
c0

);

M (t) = �[H (·);  0](t);
; (4)

where c1 ,
Reddy

�0NmAm
.
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Fig. 5. A piecewise constant Preisach density function.

The following theorem shows that (4) is well-posed, the
proof of which can be found in Tan (2002).

Theorem 2.2. If the Preisach measure � is nonneg-
ative and nonsingular, and I(·) is piecewise continu-
ous, then ∀ 0 ∈�, ∀T ¿ 0, there exists a unique pair
{H (·); M (·)} ∈C([0; T ]) × C([0; T ]) satisfying (4) almost
everywhere.

G(s) has a state space representation:

Vy(t) + 2'!0ẏ(t) + !2
0y(t) =

!2
0lrod+s

M 2
s

M 2(t); (5)

where !0 = 2$f0, f0 is the 2rst resonant frequency of the
actuator, ' is the damping coe3cient, lrod is the rod length,
+s is the saturation magnetostriction and Ms is the saturation
magnetization.

2.3. Identi;cation of model parameters

The magnetostrictive actuator used in this study is an
AA-050H series Terfenol-D actuator (full operating range is
about 50 �m) manufactured by Etrema. The current input is
provided by a Kepco power supply (Model BOP 36-6M) op-
erating in Current Programming mode, which is controlled
by a Pentium III 450 MHz PC with a DSpace DS1103 PPC
Controller Board. The displacement of the actuator is mea-
sured with an LVDT sensor (Schaevitz 025MHR).
The following parameters are available from the manu-

facturer: Nm = 1300, Am = 2:83 × 10−5 m2, c0 = 1:54 ×
104=m, Ms = 7:87 × 105 A=m, lrod = 5:13 × 10−2 m, and
the following parameters can be identi2ed relatively easily:
+s =1:313× 10−3, Hbias = 1:23× 104 A=m, f0 = 392 Hz. A
piecewise uniform Preisach density function for �, shown
in Fig. 5, was identi2ed using the method explained in Sec-
tion 2.1, where the level of discretization L= 25.
To identify Reddy and ', one 2rst discretizes the

range [0; TR] for Reddy with the mesh points denoted as

0 20 40 60 80 100 120 140 160 180 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

ξ

30 
35 
40 
45 
50 
60 
70 
80 

Fig. 6. Variation of '(i)k with respect to the input frequency for di0erent

R(i)
eddy.

R(i)
eddy, i = 1; : : : ; N , and then perform the following:

• Step 1: Apply a sinusoidal current (with some dc shift)
I(·) of frequency f to the actuator and measure the phase
lag /y;I between the fundamental frequency component
of y(·) and I(·);

• Step 2: For each R(i)
eddy, numerically integrate (4) with

I(·) as the input, and calculate the phase lag /M 2 ; I be-
tween the fundamental frequency component of M 2(·)
and I(·);

• Step 3. The di=erence /y;I −/M 2 ; I is considered to be the
phase lag between the fundamental frequency component
of y(·) and that of M 2(·) in (5), from which one can
compute '(i).

Repeat the above procedure (Step 1 to Step 3) K times with
di0erent input frequencies and denote the damping coe3-
cients as {'(i)k }K

k=1 for R
(i)
eddy. If R

(i)
eddy is close to the true pa-

rameter Reddy, '
(i)
k should not vary much with k. Hence pick

i∗ ∈ {1; : : : ; N} such that {'(i∗)k }K
k=1 has the minimum vari-

ance, let Reddy = R(i∗)
eddy, and let ' be the mean of {'(i∗)k }K

k=1.
The current amplitude used in identi2cation is 0:8 A with

a 0:1 A dc shift. Fig. 6 shows the variation of ' with re-
spect to the frequency for di0erent R(i)

eddy’s, from which it
is determined that Reddy = 70 W, ' = 0:7783. Fig. 7 com-
pares the frequency-dependent hysteresis loops measured
in experiments to those obtained through simulation based
on the identi2ed parameters. Good agreement is achieved
up to 200 Hz. To further verify the model, comparison is
conducted at 10, 20, and 50 Hz for a di0erent input range
[−0:7A; 0:3 A], and good 2t is also achieved (Fig. 8). Hence
the model (4) and (5) is able to capture the dynamic and hys-
teretic behavior of magnetostrictive actuators in a reasonably
wide frequency range. Beyond 200 Hz, simulation results
and experimental measurements still qualitatively agree al-
though the 2t gets worse. This indicates that further details
of the eddy currents and the magnetoelastic dynamics need
to be considered to fully capture the dynamic behaviors at
very high frequencies.
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Fig. 7. Comparison of rate-dependent hysteresis loops (current input range:
[ − 0:7 A; 0:9 A]). Solid line: experimental measurement; Dashed line:
numerical prediction.
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Fig. 8. Comparison of rate-dependent hysteresis loops (current input range:
[ − 0:7 A; 0:3 A]). Solid line: experimental measurement; Dashed line:
numerical prediction.

3. Inverse compensation algorithms

3.1. Inversion of the Preisach operator

Consider a discretization scheme of level L and let the
Preisach density function �p be nonnegative and constant
within each discretization cell. The inversion problem is,
given  0 ∈� and a value TM , to 2nd TH such that TM =
�[ TH;  0].
Let the input and the output of the Preisach operator cor-

responding to  0 be H0 and M0, respectively. Assuming
TM ¿M0 (the case TM ¡M0 can be treated analogously), the
following algorithm is proposed to 2nd TH :

• Step 1: H (0) := H0, M (0) := M0,  (0) :=  0, n := 0;
• Step 2:


d(n) := min{d(n)
0 ; d(n)

1 ; d(n)
2 }

H (n+1) := H (n) + d(n)

M (n+1) := �[H (n+1);  (n)]

; (6)

where  (n) is the memory curve after {H (k)}n
k=1 is ap-

plied, and d(n)
0 ; d(n)

1 ; d(n)
2 are determined in the follow-

ψ(n)

H (n)(       ,       )H (n)

d1
(n)

d2
(n)

α

β

Fig. 9. Illustration of d(n)1 and d(n)2 on the Preisach plane (L = 8).

ing way (see Fig. 9 for illustration):
◦ Let d(n)

1 ¿ 0 be such that H (n) +d(n)
1 equals the next

discrete input level;
◦ Let d(n)

2 ¿ 0 be the minimum value such that apply-
ing H (n) + d(n)

2 would eliminate the next corner of
 (n);

◦ Compute a(n)1 ; a(n)2 ¿ 0 satisfying, for 0¡d¡
min{d(n)

1 ; d(n)
2 },

�[H (n) + d;  (n)] − �[H (n);  (n)] = a(n)2 d2 + a(n)1 d;

and let d(n)
0 ¿ 0 be the solution to

TM − �[H (n);  (n)] = a(n)2 (d(n)
0 )2 + a(n)1 d(n)

0 :

If d(n) = d(n)
0 , go to Step 3; otherwise let n := n+ 1

and go to Step 2;
• Step 3: TH := H (n+1) and stop.

The algorithm is based on the piecewise monotonicity prop-
erty of �. It yields the (exact) solution in no more than
Tn = nc( 0) + L iterations, where nc( 0) is the number of
corners of  0.

3.2. Inversion of the dynamic hysteresis model

Given  0 ∈� and a desired trajectory TM (·), the inversion
problem for (4) is to 2nd I(·), such that the corresponding
output of TW is TM (·). The following (formal) inverse scheme
for (4) is proposed:


TH (t) = �−1[ TM (·);  0](t)

I(t) =
1
c1
( ṪH (t) + ṪM (t)) +

TH (t) − Hbias

c0

: (7)

In implementation �−1 is constructed with the inversion
scheme presented in Section 3.1, and ṪM and ṪH are approx-
imated by the 2nite di0erence method.
Displacement tracking experiments are conducted to fur-

ther validate the model and examine the performance of the
inverse scheme (7). To avoid the input saturation in (5),
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Fig. 10. Experimental results of trajectory tracking. (a) Proportional feed-
back control; (b) inverse compensation based on the static hysteresis
model; (c) inverse compensation based on the dynamic hysteresis model.

the desired displacement trajectory Ty(·) is picked so that

06 Tu(t),
M 2

s

!2
0lrod+s

( VTy(t) + 2'!0 Ṫy(t) + !2
0 Ty(t))6M 2

s ;

in which case TM (·) is computed as: ∀t, TM (t) =
√

Tu(t).
The inverse control scheme (7) is compared with a pro-

portional feedback scheme and an inversion scheme based
on a static hysteresis model (which is essentially a Preisach
operator), see Fig. 10(a)–(c). In each 2gure, the displace-
ment trajectories (both the desired and the measured), the
tracking error, and the current applied are displayed. Al-

though the controller parameter has been carefully tuned,
the performance of the pure feedback scheme is poor
(Fig. 10(a)). This highlights the need for hysteresis com-
pensation. Under the static model-based inverse compensa-
tion, the achieved trajectory displays an appreciable phase
lag with respect to the desired one (Fig. 10(b)). On the
other hand, the inverse scheme based on the dynamic model
delivers satisfactory performance, and almost perfect track-
ing is achieved for the full operating range of the actuator
(Fig. 10(c)).

4. A robust control framework

Models for smart material actuators have a cascaded
structure as shown in Fig. 11(a). Here W is a hysteretic op-
erator which could be rate-independent or rate-dependent.
Ĝa(+) denotes the +-transform of a discrete-time, linear
time-invariant system Ga

1 , and represents the linear part
of the actuator dynamics. Note the resemblance of Fig.
11(a) with Fig. 3. In Fig. 11(b), Ĝ0(+) denotes the plant
to be controlled by the actuator, and W̃−1 denotes the ap-
proximate right inverse of W . The goal is to design the
controller K̂(+) which guarantees the closed-loop system
stability and minimizes the tracking error in the presence of
the inversion error eu = ũ − u and the uncertainties in Ĝa

and Ĝ0. It is also desired to meet the saturation constraint
in the controller design.

4.1. Quanti;cation of the inversion error

The error in inversion of the Preisach operator and the
dynamic hysteresis model are quanti2ed respectively next.
The signal space used is l∞, the space of sequences of
bounded magnitude.

4.1.1. Error in inversion of the Preisach operator
Let � be a nonsingular, nonnegative measure with density

�. For a discretization scheme of level L, let �p be a piece-
wise uniform approximation to � obtained as described in
Section 2.1. When several Preisach operators are involved
in the discussion, the corresponding Preisach measure will
be put as the subscript of � to avoid confusion. Given a
desired sequence TM [ · ]∈ l∞ and  0 ∈�, let

H [k] = �−1
�p [ TM [ · ];  0][k]; ∀k¿ 0;

where �−1
�p is the (exact) inverse of ��p constructed as in

Section 3.1. Let M̃ =��[H [ · ];  0] and de2ne the inversion
error eM [ · ] = M̃ [ · ] − TM [ · ].

Proposition 4.1. Let �6 T� for some constant T�. Denote
the integral of � over discretization cell i as �0i , 16 i6Nc,
where Nc is the number of cells. Denote by �i the identi;ed

1 The +-transform Ĝ(+) is just the usual z-transform of G with += z−1

(Dahleh & Diaz-Bobillo, 1995).
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Fig. 11. (a) A model structure for smart actuators; (b) the closed-loop
system incorporating inverse compensation.

Preisach weighting mass for cell i. Assume that the relative
error in identi;cation is 6I , i.e.,

|�i−�0i |
�0i

6 6I ; 16 i6Nc.

Then ‖eM‖∞6 6IMs +
8 T�s20
L , where Ms is the saturation

output of ��, and s0 is as de;ned in Section 2.1.

Proof. Let �0p be another piecewise constant Preisach mea-
sure obtained by distributing �0i uniformly over the cell i,
16 i6Nc. For any k¿ 0,

|eM [k]| = |��[H [ · ];  0][k] − ��p [H [ · ];  0][k]|
6 |��[H [ · ];  0][k] − ��0p [H [ · ];  0][k]|

+ |��0p [H [ · ];  0][k] − ��p [H [ · ];  0][k]|: (8)

All three Preisach operators involved in (8) share the same
memory curve  [k], ∀k¿ 0. It is clear that the second term
of (8) is bounded by 6IMs. To bound the 2rst term, note
that for any k¿ 0,  [k] spans L − 1 square cells and one
triangular cell. Any cell not touched by  [k] contributes
the same to ��[H [ · ];  0][k] and ��0p [H [ · ];  0][k]. Hence
the 2rst term of (8) is bounded by twice the interval of �
over cells spanned by  [k], which is further bounded by
2 T�(2s0)2(L−1=2)

L2 ¡ 8 T�s20
L .

From Proposition 4.1, the bound on the inversion error
consists of two parts: the 2rst part is proportional to the
relative identi2cation error, and the second part is inversely
proportional to the level L of discretization.

4.1.2. Error in inversion of the dynamic hysteresis model
For the dynamic hysteresis model, the inversion er-

ror based on scheme (7) is hard to quantify. Hence an-
other inversion algorithm is introduced here. When the
Preisach density � is piecewise continuous, (4) can be

rewritten as:{
Ḣ (t) = c1

1+g(t) (I(t) − H (t)−Hbias
c0

)

M (t) = �[H (·);  0](t)
; (9)

where g(t) carries the interpretation of “ dM
dH (t)”, and

06 g(t)6Cg for some constant Cg ¿ 0. Eq. (9) can be
viewed as perturbed from a decoupled system obtained by
replacing g(t) with some constant Tg∈ [0; Cg]. Based on the
decoupled system, an approximate inversion scheme for
(9) and thus for (4) is given by (in discrete-time)


TH [k] = �−1[ TM [ · ];  0][k];

I [k] = 1+ Tg
c1

TH [k]− TH [k−1]
h +

TH [k−1]−Hbias
c0

;
(10)

where h is the time step. In (10) the 2nite forward di0er-
ence of TH [ · ] is used to approximate the continuous time
derivative. Apply I [ · ] in (10) to the 2nite forward di0er-
ence implementation of (9), and denote the corresponding
solution as H̃ [ · ] and M̃ [ · ]. The inversion error eM [ · ] is
now de2ned as eM [k] , M̃ [k] − TM [k − 1], where the de-
lay is introduced due to the dynamics in (9). The following
result quanti2es ‖eM‖∞ assuming that parameters are exact
and �−1 is constructed perfectly in (10).

Proposition 4.2. Let the Preisach measure � be non-
negative and nonsingular with a piecewise continuous den-
sity, and � be Lipschitz continuous with Lipschitz constant
C�. Let TH [ − 1] = TH [0] = H̃ [0]. Pick Tg∈ [0; Cg]. Then
∀ TM [ · ]∈ l∞, ∀ 0 ∈�,

‖eM‖∞6 2C� T�1s0; (11)

where T�1 =
max{ Tg;

Cg− Tg
1+Cg

}

1−max{ hc1
c0

−1;1− hc1
c0(1+Cg)

}
. The optimal Tg to min-

imize T�1 is
Cg

Cg+2 .

Proof. De2ne eH [k] , H̃ [k] − TH [k − 1], k¿ 0. One can
verify that eH satis2es:

eH [k + 1] = a[k]eH [k] + b[k]( TH [k] − TH [k − 1]); (12)

where a[k] , 1 − hc1
c0(1+g[k]) , b[k] ,

Tg−g[k]
1+g[k] , and g[k] ,

g(kh). From (12), eH [k + 1]=(
k∏

i=0

a[i]

)
eH [0] +

k∑
i=0

 k∏
j=i+1

a[j]


 b[i]( TH [i] − TH [i − 1]);

which implies (noting that eH [0] = 0)

|eH [k + 1]|6 2

(
k∑

i=0

Tai

)
Tb‖ TH‖∞

6
2 Tb

1 − Ta
‖ TH‖∞; (13)
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Fig. 12. Formulation of the robust control problem for a magnetostrictive
actuator.

where Ta , maxx∈[0;Cg]|1 − hc1
c0(1+x) |, Tb , maxx∈[0;Cg]| Tg−x

1+x |.
Values of Ta and Tb can be easily determined:

Ta=max
{
hc1
c0

− 1; 1 − hc1
c0(1 + Cg)

}
;

Tb=max
{
Tg;
Cg − Tg
1 + Cg

}
:

Therefore ‖eH‖∞6 2 T�1‖ TH‖∞. Since ‖ TH‖∞6 s0, Eq. (11)
now follows using the Lipschitz continuity and the time
invariance properties of �. It’s easy to see that the optimal Tg
minimizing T�1 is

Cg

Cg+2 .

Similarly one can derive the bound on inversion error
when the 2nite backward di0erence method is used to ap-
proximate the time derivatives:

Proposition 4.3. Let the assumptions in Proposition 4.2
hold. Consider the ;nite backward di=erence method. Then
for any TM [ · ]∈ l∞, for any  0 ∈�,

‖eM‖∞6 2C� T�2s0; (14)

where T�2 = max{ Tg

1+
c1h
c0

; Cg− Tg

1+Cg+
c1h
c0

} c0(1+Cg)+c1h
c1h

. The optimal

Tg to minimize T�2 is
(c0+c1h)Cg

2(c0+c1h)+c0Cg
.

Note that the backward di0erence method is preferred in
general due to its stability property. Propositions 4.2 and
4.3 quantify the errors solely due to inversion algorithms.
Similar arguments can extend the error estimates to the case
where there are parametric uncertainties in c0 and c1. The
error in �−1 can be included using Proposition 4.1. Finally
‖eu‖∞ can be derived from ‖eM‖∞ when the square non-
linearity is considered.

4.2. Formulation of the robust control problem

Fig. 12 shows the closed-loop system after the inverse
compensation is done, where trajectory tracking of the
magnetostrictive actuator is considered. The exogenous
noise w represents the inversion error, ‖w‖∞6 Tw, and Tw is

quanti2able in terms of inverse schemes and parametric un-
certainties. Ĝa(+) stands for the discretized version of G(s)
in Fig. 3. Y ◦ Ŵ 0(+) represents the uncertainty in Ĝa(+),
where Y is a nonlinear uncertainty with ‖Y‖l∞−ind ¡ 1 and
Ŵ 0(+) is a frequency weighting function.

Let ‖yref‖∞6 Tr, where yref is the reference trajectory.
The error ey , yref −y is fed into the controller K̂(+). The
delay + following K̂(+) is due to inversion of (4), and an-
other delay is contained in Ĝa. Hence the tracking error is
de2ned as et[k] , yref [k − 2] − y[k]. Given �¿ 0, de2ne
e�0 ,

et
� . To ease the formulation,w and yref are also normal-

ized so that ‖w0‖∞6 1, ‖r0‖∞6 1 (see Fig. 12). Symmet-
ric input saturation |u|6 Tu translates into ‖u0‖∞6 1, where
u0 , u

Tu . Asymmetric saturation can be accommodated by
letting Tu = umax−umin

2 and adding a constant ub = umax+umin
2 to

the control.
The objective of controller design is to 2nd the smallest

�∗ and a stabilizing controller K̂(+), such that

(1) (Robust stability) the closed-loop system is stable for
any Y with ‖Y‖l∞−ind ¡ 1,

(2) (Tracking performance) ‖e�∗
0 ‖∞6 1 if Y=0, ∀w0; r0

with ‖w0‖∞6 1 and ‖r0‖∞6 1, and
(3) (Saturation constraint) ‖u0‖∞6 1 if Y = 0, ∀w0; r0

with ‖w0‖∞6 1 and ‖r0‖∞6 1.

Note that K̂ will be dependent on �∗ although the dependence
is suppressed in the notation. Item (2) implies that the l1
norm of the closed-loop mapping from the inputs {w0; r0}
to the tracking error et is less than �∗. Hence �∗ will be
called the optimal disturbance attenuation level. Design
of K̂ is a standard l1 robust control problem, which can
be solved using a linear programming approach (Dahleh &
Diaz-Bobillo, 1995).

4.3. Numerical and experimental results

The design parameters, Ŵ 0, Tw, Tr, and Tu, are determined
by the accuracy of model identi2cation, the inversion algo-
rithm, and the problem of interest. Understanding the e0ects
of these parameters on �∗ helps in making tradeo0 decisions
in identi2cation and inversion. In this work Ŵ 0(+) is chosen
to be 1:1759cw(+−1:0005)

+−1:1765 , where cw ¿ 0 reOects the magnitude
of uncertainty. Figs. 13–15 show the dependence of �∗ on cw,
Tw, and Tu. Since the range of u for the case of magnetostrictive
actuators is [0; M 2

s ], parametrizing Tw and Tu in terms of M 2
s

gives a concrete sense on these numbers. From the 2gures,
the higher the uncertainty or the inversion error, the bigger
�∗, and �∗ drops when Tu is increased until Tu hits 4:5M 2

s ,
beyond which the saturation constraint no longer plays
a role.
From Fig. 15 the tracking performance deteriorates as the

saturation constraint Tu is tightened. For the magnetostric-
tive actuator, Tu = 0:5M 2

s and strictly enforcing this con-
straint would lead to large tracking errors. Hence a practical
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Fig. 14. E0ect of the inversion error on �∗. Other parameters: Tr = 30,
cw = 6:53 × 10−13, Tu = 1:25M 2

s .

approach is to properly relax the constraint. Fig. 16(a) and
(b) show the simulation results and the experimental results
of tracking a 20 Hz sinusoidal signal, respectively. In both
2gures, the measured trajectory and the desired trajectory
are in phase, which shows that the controller is e0ective. Al-
though Tu is relaxed to 3:25M 2

s in the design, the output uc of
K̂ stays in the (true) unsaturated region [ − 0:5M 2

s ; 0:5M
2
s ]

except during the transient period (see Fig. 17 for uc in
the simulation). The same controller has also been used to
track a non-sinusoidal, aperiodic signal (frequency compo-
nents centering around 30 Hz) with a di0erent amplitude
range, and it delivers consistent tracking performance (see
Fig. 18). This demonstrates the robustness of the controller
with respect to reference trajectories.
On the other hand, the tracking errors are relatively

large comparing with the results of inverse compensation
(Fig. 10(c)). This can mainly be attributed to the satura-
tion constraint (note that in Section 3.2 Ty was chosen such
that the saturation constraint was automatically satis2ed).
Fig. 15 reveals a 64% performance degradation when Tu
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Fig. 15. E0ect of the saturation limit on �∗. Other parameters: Tr = 30,
cw = 6:53 × 10−13, Tw = 0:1M 2

s .
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Fig. 16. Results of tracking a sinusoidal signal based on the robust
controller ( Tu = 3:25M 2

s used in the design). (a) Simulation result; (b)
Experimental result.

is reduced from 4:5M 2
s to 3:25M 2

s . The output of K̂(+) is
“weaker” than it should be to avoid exceeding the satura-
tion constraint. Unfortunately, Tu cannot be “over-relaxed”.
Fig. 19 shows that when Tu is relaxed to 5M 2

s in the design, the
tracking performance su0ers from persistent saturation of K̂
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Fig. 17. The output uc of K̂ in simulation of tracking the sinusoidal signal.
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Fig. 18. Experimental results of tracking a non-sinusoidal signal with the
same controller as in Fig. 16.
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Fig. 19. Experimental results of tracking a sinusoidal signal based on an
“over-relaxed”robust controller ( Tu = 5M 2

s used in the design).

(corresponding to the Oat regions of the current input tra-
jectory in Fig. 19). This justi2es the necessity of including
the saturation constraint in the problem formulation.

5. Conclusions and Discussion

In this paper modeling, identi2cation and control of hys-
teresis in magnetostrictive actuators were studied with the
goal of achieving high-bandwidth, full-range operation of
these actuators. A novel hysteresis model was proposed to-
gether with a parameter identi2cation method and an ef-
2cient inverse compensation scheme. Experimental results
have demonstrated that the model captures the dynamic and
hysteretic behaviors of a magnetostrictive actuator, and that
the identi2cation and inverse compensation methods are
e0ective.
To improve the robustness of inverse compensation, a ro-

bust control framework was developed by combining the
inverse compensation with l1 control theory. The reasons to
explore l1 control (instead of H∞ control) are that the inver-
sion error belongs to l∞ and that the saturation constraint
can be appropriately handled. The saturation constraint ap-
pears to be a signi2cant performance limiting factor. From
the results in Section 4.3, one could improve the tracking
performance through improvement of model identi2cation
and inversion (smaller cw and Tw).
Displacement control was the major concern of this paper.

As for future work, it would be interesting to extend the
results reported here to deal with applications involving the
force output of magnetostrictive actuators. Finally it should
be noted that some results in this paper (in particular, the
inversion algorithm for the Preisach operator and the robust
control framework) can be applied to control of a wide class
of smart material actuators.
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