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Abstract

The rate-dependent hysteresis existing in magnetostric-
tive actuators presents a challenge in control of these
actuators. In this paper we propose a novel dynamical
mcdel for the hysteresis in a thin magnetostrictive ac-
tuator. The model features the coupling of the Preisach
operator with an ordinary differential equation (QDE).
We prove the well-posedness of the model, study the
parameter identification methods, and propose an in-
verse control scheme. The effectiveness of the identi-
fication and inverse control schemes is demonstrated
through experimental results.

1 Introduction

Smart materials, such as magnetostrictives, piezo-
electrics, shape memory alloys {SMAs), and magne-
torheclogical (MR) fluids, all display certain coupling
phenomena between applied electromagnetic/thermal
fields and their mechanical/rheological properties.
Smart actuators and sensors made of these materials
can be built into structures, often called smart struc-
tures, with the ability to sense and respond to envi-
ronmental changes to achieve desired goals. The rate-
dependent hysteretic behavior existing in smart materi-
als, however, makes the effective use of these actuators
and sensors quite challenging.

A fundaments] idea in coping with hysteresis is to for-
mulate the mathematical model of hysteresis and use
inverse compensation to cancel out the hysteretic ef-
fect. This idea can be found in [1, 2, 3, 4, 5, 6], to
name a few. There have been a few monographs de-
voted to modeling of hysteresis and study of dynamical
systems with hysteresis [7, 8, 9, 10]. Hysteresis mod-
els can be roughly classified into physics-based mod-
els [11, 12, 13] and phenomenological models. The
most popular phenomenological hysteresis model used
in control of smart actuators has been the Preisach
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model (1, 14, 15, 5, 6]. A similar type of operator, called
Krasnosel'skii-Pokrovskii (KP) operator has also been
used [4, 16]. Although in general the Preisach model
does not provide physical insight into the problem, it
provides a means of developing phenomenclogical mod-
els that are capable of producing behaviors similar to
those of physical systems (see Mayergoyz [8] for an ex-
cellent exposition).

In this paper, we study modeling and control of a mag-
netostrictive actuator. Magnetostriction is the phe-
nomenon of strong coupling between magnetic prop-
erties and mechanical properties of some ferromagnetic
materials (e.g., Terfenol-D): strains are generated in re-
sponse to an applied magnetic field, while conversely,
mechanical stresses in the materials produce measur-
able changes in magnetization. Magnetostrictive actu-
ators have applications in micro-positioning, robotics,
ultrasonics, vibration control, etc. Figure 1 shows a
sectional view of a Terfenol-D actuator manufactured
by ETREMA Products, Inc. By varying the current in
the coil, we vary the magnetic field in the Terfenol-D
rod and thus control the motion of the rod head.
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Figure 1: Sectional view of a Terfenol-D actuator

{171(Original source: Etrema Products, Inc.).

The hysteretic behavior of 2 magnetostrictive actua-
tor at low frequencies (typically below 5 Hz) is rate-
independent: roughly speaking, the shape of the hys-
teresis loop does not depend on the frequency of the
input. This is no longer the case when the operating
frequency gets high, due to the eddy current effect and
the magnetoelastic dynamics of the magnetostrictive
rod. The (rate-independent) Preisach operator alone
is not capable of modeling the rate-dependent hystere-



Figure 2: The elementary Preisach hysteron.

sis. In this paper we propose a novel dynamical model
for a thin magnetostrictive actuator, featuring the cou-
pling of the Preisach operator and an ODE.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an introduction to the Preisach opera-
tor. In Section 3 we describe the new model and prove
its well-posedness. Parameter identification methods
are discussed in Section 4 along with the experimen-
tal results. In Section 5 we present an inverse control
scheme based on the dynamical model and examine
its performance in an open-loop tracking experiment.
Concluding remarks are provided in Section 6.

2 The Preisach Model

Consider a simple hysteretic element (a delayed relay)
shown in Figure 2. The relationship between the “in-
put” variable u and the “output” variable v at each
instant of time ¢t can be described by:

v=+41 if u>a,
v=-1 if u<§p,
v remains unchanged if A< u<a

ey

Call the operator relating u(-) to v(-) as 9g.4[-], where
we now view the input and output variables as func-
tions of time. Note to be precise, 95 o also depends on
the initial value of ». This operator is sometimes re-
ferred to as an elementary Preisach hysteron since it is
a basic block from which the Preisach operator I'[:] will
be constructed. The output of the Preisach operator is
defined as: )

y(t) = Tful(t) = / j ,, B aYisalul(0agdo, ()

where (-, ) is a weighting function, cailled the Preisach
measure.

‘The memory effect of the Preisach operator can be cap-
tured by curves in the Preisach plane. The Preisach
plane is defined as P 2 {{8,e)la > B}, and each

(8,2) € P is identified with the hysteron 9g,. At
time ¢, P can be divided into two regions:

A

P-(t)
Pi(t)

{(8,a) € P|
{(B,0) € P|

output of %5, at tis—1},

e

output of 4g. at tis+ 1},
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so that P = P_(t) U P.(f) at all times. Equation (2)
can be rewritten as:

y(t) = //;er (8, a)dﬁda—ffpﬂ(t) u(f, a)dBdo.
3)

In most cases of interest, each of P and Py is a con-
nected set, and the output of the Preisach operator is
determined by the boundary between P_ and Py. The
boundary is also called the memory curve, since it pro-
vides information about the state of any hysteron. A
precise characterization of the set of memory curves
can be found in [18]. The memory curve ¢y at t = 0
is called the initial memory curve and it represents the
initial condition of the Preisach operator. Hereafter we
will put ¥y explicitly as one of the arguments of T to
emphasize the dependence of the Preisach operator on

Y.

Theorem 1 summarizes some basic properties of the
Preisach operator, see, e.g., [9]. We say that the
Preisach measure p is nonsingular if for any memory
curve ¥,

/] (8, a){dBda = 0.
graph of ¢

Theorem 1: Let u be the Preisach measure and
u, 1y, uz € C{[0,T]), and let iy be some initial memory
curve.

1. [Rate Independence] If¢ : [0,T] — [0,T] is en
increasing homeomorphism, then Uluod, ¥o](t) =
[[u, o] (p(t)), ¥t € [0,T], where o7 denotes
composition of functions.

2. [Strong Continuity] If 4 is nonsingular, then
T 90) : C([0, T} — C({0,T)) is strongly contin-
uous (in the sup norm).

3. [Piecewise Monotonicity] Assume p > 0. Ifu
is either nondecreasing or noninreasing in some
interval in [0,T], then so is T'[u, ).

4. [Order Preservation] Assume p > 0. If u; <
uy in [0,T), then Tluy, o) < Tusz, o) in [0,T].

3 A Dynamical Model for the Hysteresis

Venkataraman and Krishnaprasad proposed a bulk
magnetostrictive hysteresis model based on energy bal-
ancing principles [12, 17]. The model has a cascaded
structure as shown in Figure 3. The W block takes care
of the M wvs. H hysteresis and the eddy current loss,
where M and H denote the bulk magnetization and the
magnetic field (assumed uniform) along the rod direc-
tion, respectively. G{s) is a second order linear system



modeling the magnetoelastic dynamics of the rod. In
[12, 17}, the eddy current loss was considered by con-
necting a resistor Hggqy, in parallel with a hysteretic
inductor, and the M - H hysteresis was described by a
low dimensional ferromagnetic hysteresis model. This
leads to a model for W described by switching ODEs

[12, 17).
Lt 2P G e

Figure 3: Model structure of a magnetostrictive actuator.

In this paper we propose a new dynamical model where
the Preisach operator I' is used to model the M - H

hysteresis. The W block now reads
H(t) + M(t) = 545 -
M) =T[H(), %](t)

where I is the input current, po is the permeability of
vacuum, V,, is the number of turns of the coil, A, is
the cross sectional area of the rod, and ¢p is the coil fac-
tor (the constant relating the current to the magnetic
field it generates).

G(s) has a state space representation [12, 17](after
some manipulations):

wilmAs
M2 )

where y is the displacement, wo = 27 fg, fo is the first
resonant frequency of the actuator, £ is the damping co-
efficient, {; is the length of the rod, ), is the saturation
magnetostriction and M, is the saturation magnetiza-
tion.

#(8) + 26wod(t) + wiylt) = 22 M2 (),

Thus our new model replaces the switching ODE model
of [12, 17} for IV with the above coupling of the Preisach
operator with an ODE.

Note if we set derivatives in (4) and (3) to zero, the
dynamical model degenerates to the (rate-independent)
static hysteresis model used in [5]:

{ H{t) = col(t)

M(t) =TH(), dal(t)

u(t) = g2 M2(2)
Eq. (4) involves time derivatives of both H and M.
It is well known that, in general, a Preisach operator
does not map C' into C! [9]. Hence we will interpret
{4) in the sense of Carathéodory. Some partial differ-
ential equations with hysteretic operators appearing in
the principal parts have been studied, see {9, 10] and
references therein. Existence and uniqueness prool of
solutions to equations of the form

¥=flt,y.T(2)}, z = 9(y),

(6)

(M
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can be found in {10]. To our best knowledge, no such
result has been published for equations like (4).

Theorem 2: If the Preisach measure p is nonnegative
and nonsinguler, and I(-) is piecewise continuous, then
for any initial memory curve g, for any T > 0, there
exists o unigue pair {H(-), M(-)} € C{[0,T)) x C([0,T))
satisfying (4) almost everywhere.

Proof. 1. We first show the existence. From %, one

can evaluate initial values H(0) and M(0). Eq. (4} is

equivalent to the following: ¥t € [0, T,

{ H(t) + M(t) = H{0) + M(0) + f} c1(I(s) —
M(t) = TIH(), %o (2)

where we have defined ¢;

%ﬂ)ds

. ®)
= ﬁj\:. As in the proof of

existence for the heat equation with hysteresis in {10},
we use an Euler polygon method to approximate (4):
for N > 0 and hy = %, solve consecutively

AT _gr(m) petmd1) o) H(
{ 2 N =a(ly” - %)
MG = D EGHY ]
(9)
for 0 <m < N—1,with HY = H(0), M = 2(0),

If(vm) f(m+1)hN

o I{8)ds, and ¥y, the memory curve
correspondmg to Hj(vm). With a little notational abuse,
we tacitly understand that the input of T is changed
monotonically from H)(V'") to H}vmﬂ). Since by hypoth-
esis, ['[-,%,] is continuous and piecewise monotone,
(9) admits a unique solution for H{"" and thus for

Ibf}vm"'l). Furthermore, by the piecewise monotonicity,

H‘,(\;thlJ — HJ(V"‘) and AI}VMH) — M‘.(\;") have the same
sign, and hence

H(m+1) _ H(m) H(m)

R L I LY

From (10) and piecewise continuity of I(-}, we can get
H <c, Ml <, (11)

for all m, where C is a constant independent of V.

We then obtain Hy(-), Mn(-) € C([0,T]) by linearly
interpolating {H{™} and {M{}. Combining (10)
and (11), we see that Hp({-) is Lipschitz continuous
with some Lipschitz constant I, and the same is true for
Mp(-). Therefore {Hy(-)}w>1 is a family of equicon-
tinuous, equibounded functions, and by Ascoli-Arzeld
Theorem, Hy(:) — H{:) € C([0,T]) uniformly. Simi-
larly My (-) — M(-} € C([0,T]) uniformly.

Now define ey (t) = Hn{t) + My (8) — ey (J(£) — M)

By the definitions of Hy(-} and My (), we derive, for

t € (mhy,(m+ 1)hn),

C]_(H}Vm) -
e

entt) = I - 1) - Hy{t))



Integrating

. . Hylt
i 6) + () = a1 — L) 1 o),
from 0 to ¢, and letting N — oo, one can show H(.)
and M(-) satisfy the first part of (8) and we are left to

show M(t) = T[H(-), %ol(t), ¥t € [0,T).

Let My = T[Hn{-),%0]. By the strong continuity of
T, My — T[H(), %ol since Hy(:) — H(). Further-
more we have My(mhy) = My(mhy), 0 < m < N.
This together with the piecewise monotonicity of I' en-
ables us to conclude sup;ciq 1 | My (t)— My (t)] < Lhy.
Therefore {My} and {My} have the same limit, i.e.,
RE(t) = TIH(), $ol(@), V¢ € 0,T]

2. We now prove the uniqueness. By contradiction
we assume there exist two solutions {H,(-), M1(-)} and
{H(:}, Ma()} and Hy(¢') # Ha(t') for some t' > 0
(we know H;(0) = H2(0)). Define ey = H; — H; and
en = Mo — M. Using (4), we get

t
en(t) +en(t) = 2 ] err(s)ds. (12)
o Jo

Let

£ =sup{t:eu(r)=0,vr € [0,£]}.

<t ‘

By continuity of eg, there exists § > 0.such that ey (£)
has a constant sign, say, > 0 (without loss of general-
ity), in (£, + &}. Using the order preservation property
of I (Theorem 1), eps(t) > 0, ¥t € [£,£+ 6]. This to-
gether with (12) leads to

en@I <2 [lentlas e oird, a3

which implies |eg(#)] < 0 by the Gronwall inequal-
ity, ¥t € {0, + 8], and this contradicts with |egy(t)] >
0,Vt ¢ (I, +4]. QED.

Remark: With minor modification, we can show well-
posedness of more general systems where the right hand
side of the first equation in (4) is replaced by some func-
tion f(H,I) continuous in I and Lipschitz continuous
in H.

Continuous dependence of the solution to (4) on the
parameters and the initial condition can be proved us-
ing the strong continuity property of I' and analysis
techniques for ordinary differential equations [18].

4 Parameter Identification Methods

In this section we discuss how to identify parameters
involved in (4) and (5). The experimental setup for
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identification and inverse control (Section 5) is shown
in Figure 4. The displacement of the actuator head
is measured with a LVDT sensor, whose precision is
about 1 pm.

gy B

Amplifier

Figure 4: Experimental setup.

A constrained least squares scheme was proposed to
identify the Preisach measure in [5], which is briefly
reviewed here. We first discretize the Preisach plane
and that leads to a discretized Preisach operator, i.e.,
a weighted sum of finitely many hysterons. We then ap-
ply an input and measure the output trajectory. The
input should be “rich” enough to single out the contri-
bution of every hysteron. Finally the weighting masses
of hysterons are determined in such a way that the
square error between the measured trajectory and the
output of the Preisach operator is minimized. What
was identified in [5], was a collection of measure masses
sitting at centers of cells in the discretization grid. Fig-
ure 5 shows the distribution of the identified measure -
masses [18]. In this paper, we obtain a nonsingular
Preisach measure by assuming each mass identified is
distributed uniformly over the corresponding cell.

We get the following parameters from the manufac-
turer: N, = 1300, A, = 2.83 x 10~%m?, |,
5.13x1072m, ¢p = 1.54x10*m ™!, M, = 7.87x10°A/m.
By applying a large input current, we have estimated
As = 0.001313. The first resonant frequency has been
identified to be 392 Hz.

The most difficult parameters to identify are R.gay

Figure 5: Distribution of the identified measure masses.



and £ due to the coupling of (4) and (5). A thecreti-
cal value of Reqdy can be computed with the formula
Regay = % [17], where p is the resistivity
of the magnetostrictive material, & and ¢ are the outer
and inner radii of the magnetostrictive rod. We obtain
an upper bound R of Regqy by letting a = 0. We then
discretize {O,R] and denote the mesh points by Rg;)dy,
i =1,---,N. The discretization need not be uniform
and we make it finer in the region where the dynamics
of (4) is more sensitive to Ready-

We observe a periodic motion of the actuator head
when a periodic input is applied. The existence of pe-
riodic solutions of the model under periodic forcing has
been proved in [18]. In addition, numerical simulation
shows that the steady-state solution of (4} and (5) is
periodic when I(-) is. These observations motivate the
following scheme to identify Heaay and £:

e Step 1. We apply a sinusoidal current (with
some dc shift) I(-) with frequency f to the ac-
tuator and measure the phase lag 0, ; between
the fundamental frequency component of () and

HOF

¢ Step 2. For each Rf;d)dy, we numerically inte-
grate (4) with I(.) as the input, and calculate
the phase lag 0,42 ; between the fundamental fre-
quency component of MZ2{-) and I{-).

e Step 3. The difference 8,1 — @2 ; is considered
to be the phase lag between the fundamental fre-

quency component of #(-) and that of M2(.) in
(5), from which we can compute £9.

Remarks: The idea of relating the phase shift between
the output and the input to hysteresis can also be found
in [19). We note that in general, the phase lag de-
pends highly nonlinearly on the initial conditions, and
the amplitude and the frequency of I(-), so we should
make sure that the initial conditions in simulation are
consistent with experiment conditions.

We repeat the above experiment (Step 1 to Step 3) K
times with different input frequencies and denote the
damping coefficients as {f,(:)}le for Rgz)dy. 1f Rgt)dy
is close to the true parameter Reggy, ffj) should not
vary much with k. Therefore we pick i* € {1,---,N}
such that {{,(:') }le has the minimum variance, and

estimate Regay via Reqq, = Rgﬁy and let £ be the

mean of {f,(:‘)}.

Figure 6 shows the variation of £ with respect to fre-
quency for different jo)dy’s. The parameters are de-
termined to be Reqqy, = 709, £ = 0.7783. Figure 7

compares the rate-dependent hysteresis loops measured
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in experiments to those obtained through simulation
based on the identified parameters. We see that the
simulation results agree with the experimental results
reasonably well up to 200 Hz. Since the depth of eddy
current penetration depends on the frequency, so does
Regqy. This explains why the comparison in Figure 7
goes worse when the frequency is beyond 200 Hz. In
practice, one can identify Req4q, according to the oper-
ating frequency range of the specific application.

1 0 10w

w
Frequency (Hz)

3

Figure 6: Identification of Reqqy and &.
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Figure 7:

Model validation. Solid line: experimental mea-
surement; Dashed line: numerical prediction.

5 An Inverse Control Scheme

A pure feedback scheme performs poorly in the control
of a smart actuator due to the hysteresis. Figure 8
shows the experimental result of trajectory tracking
with a proportional feedback controller. In the fig-
ure, the displacement trajectories (both the desired
and the measured), the tracking error and the input
are displayed. Although the controller parameter has
been carefully tuned, the tracking performance is very



unsatisfactory. This highlights the need for hystere-
sis compensation. The idea of inverse compensation is
illustrated in Figure 9, where W represents the hys-
teresis {and other nonlinearities) and W~ is a right
inverse of W. The problem of controller design is now
reduced to synthesizing a linear controller K (s) for the
linear system G(s).
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Figure 9: Controller design schematic [20}.

A review of inversion algorithms for the Preisach oper-
ator was provided in [5]. Also in [5] the closest match
algorithm was proposed as an approximate inverse al-
gorithm for the discretized Preisach operator. When
the (nonsingular) Preisach measure is assumed to be
uniform in each cell on the discretized Preisach plane
(see discussions in Section 4), we can develop an algo-
rithm to compute the exact inverse I'! of the Preisach
operator [ in the discrete-time setting, see [18].

In this section we propose an invérse scheme for the
dynamical hysteresis model (4). Given an initial mem-
ory curve o and a desired trajectory M(-) (obtained,
e.g., 8s an output of K(s) in Figure 9}, we compute

H =T, 4). We then (formally) let
H(t)
co

).

Due to the uniqueness of solution to (4), we expect the
output M(-} under I(-} to agree with A7(-).

(9 = &(1’?(0 + A1) +

In the discrete-time setting, M and H are approxi-
mated by the finite difference method.

Two inverse control schemes have been implemented to
track a desired displacement trajectory (-}, one based
on the dynamical hysteresis model and the other based
on the static hysteresis model (6}. To highlight the idea
of inverse control, we have picked %(-) from the space
of attainable y(-)’s under some contro! u(-) € C({0, 7))
with 0 < u(t) < M2, ¥t ¢ [0,T}. In this case, M can
be directly computed as: ¥t, M (t) = /a(t), where

M
 wilm Ay

a(t) (#(¢) + 28wofi(t) + w7 (t))-
Experimental results are shown in Figure 10 and 11.
The sampling period used was 5 x 107> second. We
can see that the performance of the first scheme is very
satisfactory.

Di!plac&‘n;:nl {pm)

Bmw (g m}
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[ oo a1 015 [} 025 03 [ o4
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Figure 10: Inverse control based on the dynamical model.
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6 Conclusions

In this paper, we have proposed a novel dynamical
hysteresis model for a thin magnetostrictive actuator
and proved well-posedness of the model. We have pre-
sented methods for parameter identification. Based on
the model, an inverse control scheme hag been devel-
oped. Experimental results have shown that the model
can capture high frequency effects in the actuator, and
that our identification and inverse control schemes are
effective.

Due to the open loop nature of the inverse control
scheme, its performance is susceptible to model un-
certainties and to errors introduced by the inverse
schemes. To ensure the robustness of the control
scheme, one can treat the inversion error as an ex-
ogenous noise and attenuate its impact using robust
control techniques [18].
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