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Abstract

Hysteresis in smart material actuators makes the effective use of these actuators quite challenging. The Preisach operator
has been widely used to model smart material hysteresis. Motivated by positioning applications of smart actuators, this paper
addresses the value inversion problem for a class of discretized Preisach operators, i.e., to find an optimal input trajectory
given a desired output value. This problem is solved through optimal state transition of a finite state machine (FSM) that
corresponds to the discretized Preisach operator. A state-space reduction scheme for the FSM is developed, which significantly
saves the memory and the computation time. Experimental results on micro-positioning control of a magnetostrictive actuator
are presented to demonstrate the effectiveness of the proposed approach.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Smart materials, such as magnetostrictives, piezo-
electrics, electroactive polymers (EAPs) and shape
memory alloys (SMAs), all display certain coupling
phenomena between applied electro-magnetic/thermal
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fields and their mechanical properties. Actuators and
sensors made of such materials, often calledsmart ac-
tuatorsandsmart sensors, have been receiving tremen-
dous interest in the past two decades, due to their broad
applications in areas of aerospace, manufacturing, de-
fense, and civil infrastructure systems. However, the
hysteretic behavior widely existing in these materials
makes their effective use quite challenging[12].

A fundamental idea in coping with hysteresis is to
formulate the mathematical model of hysteresis and
use inverse compensation to cancel out the hysteretic
effect, see, e.g.,[10,20,16,6,19]. Hysteresis models
can be roughly classified into physics-based models
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and phenomenological models. The most popu-
lar phenomenological hysteresis model used for
smart materials has been the Preisach operator
[1,10,15,7,8,19,13,5]. A similar type of operator,
called Krasnosel’skii-Pokrovskii (KP) operator has
also been used[2,6].

The inverse compensation approach mentioned
above is concerned with thetrajectory inversion prob-
lem: given a desired output trajectory, one computes
the corresponding input trajectory whose output tra-
jectory matches the desired one. In many applications
like micro-positioning, one might be more interested
in the following problem: given a desired output
value, find the input trajectory such that the final
value of the output matches the desired value. To dis-
tinguish this problem from trajectory inversion, it is
called thevalue inversionproblem in this paper. Such
problems have been well studied for linear systems
(see, e.g.,[14] and the references therein), but to the
authors’ best knowledge, very little has been done in
the context of hysteretic systems.

In this paper the value inversion problem for a
class of discretized Preisach operators is formulated
and solved. Such an operator is represented as a
finite state machine (FSM), and the value inversion
problem is transformed into a reachability problem
for the FSM. The hysteretic dynamics of the FSM is
fully characterized, based on which its reachability
is proved. Construction of the input sequence for a
given state transition is described through an exam-
ple. Having observed that in practice there may exist
a large number of equivalent states for the FSM, we
propose a state space reduction scheme, which signif-
icantly saves the storage space and the computation
time. An algorithm for generating the optimal (the
sense of “optimality” will be clear later) represen-
tative state in each equivalence class is presented.
Experimental results on micro-positioning control of
a magnetostrictive actuator are used to demonstrate
the effectiveness of the proposed approach.

The remainder of the paper is organized as follows.
The Preisach operator is briefly reviewed and a dis-
cretization scheme is introduced in Section 2. Sec-
tion 3 studies the state reachability problem for the
FSM. Section 4 is devoted to the state-space reduc-
tion scheme. Experimental results are reported in Sec-
tion 5. Finally, concluding remarks are provided in
Section 6.

2. The Preisach operator and its discretization

2.1. Review of the Preisach operator

For a detailed treatment on the Preisach operator,
one is referred to[11,22,4]. For a pair of thresholds
(�, �) with ���, consider a simple hysteretic element
�̂�,�[·, ·], as illustrated inFig. 1. Foru ∈ C([0, T ]) (the
space of continuous functions on[0, T ]) and an initial
configuration� ∈ {−1, 1}, �= �̂�,�[u, �] is defined as,
for t ∈ [0, T ],

�(t)�
{−1 if u(t) <�,

1 if u(t) > �,

�(t−) if ��u(t)��,

where�(0−) = � andt−�lim�>0,�→0 t − �.
The operator̂��,� is often referred to as a Preisach

hysteron (called hysteron hereafter). Definethe
Preisach plane

P0�{(�, �) ∈ R2 : ���},
where (�, �) ∈ P0 is identified with �̂�,�. For u ∈
C([0, T ]) and a Borel measurable configuration�0 of
all hysterons,�0 : P0 → {−1, 1}, the output of the
Preisach operator� is defined as

�[u, �0](t) =
∫
P0

�(�, �)�̂�,�[u, �0(�, �)](t) d� d�,

(1)

where the weighting function�(�, �) is called the
Preisach density function. It is assumed in this paper
that� has a compact support

P�{(�, �) ∈ P0|���0, ���0},

β α

ω
+1

-1

u

Fig. 1. A Preisach hysteron̂��,�[·, ·].
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Fig. 2. (a) Discretization of the Preisach plane(L = 3); (b) memory curve “001” (bold-faced lines).

for some�0, �0. P is also called the Preisach plane
when no confusion arises.

At any time t, P is a disjoint union of two sets,
P+(t) andP−(t), whereP+(t) (P−(t), resp.) con-
sists of points(�, �) such that the output of̂��,� at
t is +1 (−1, resp.). Under mild conditions, each of
P+(t) andP−(t) is a connected set, and the bound-
ary between them, calledthe memory curve, char-
acterizes the memory of the Preisach operator. The
memory curve has a staircase structure and the coordi-
nates of its intersection with the line�=� correspond
to the current value of the input. Theset of all mem-
ory curvesis denoted as	. The memory curve
0 at
t = 0 is called theinitial memory curveand hereafter
it will be put as the second argument of�.

2.2. The discretized Preisach operator

In identification of the Preisach density function a
discretization step is involved in one way or another
(see[17] for a review of identification methods). A
natural discretization scheme is as follows.

Considering the operating limits of actuators, we
assume the input range to be[umin, umax]. This range
is uniformly discretized intoL + 1 levels. The set of
input levels is denoted asU�{ul, 1� l�L + 1} with
ul = umin + (l − 1)�u, where�u = (umax − umin)/L.
L will be called thediscretization level. Input dis-
cretization leads to discretization of the Preisach plane.
Fig. 2(a) shows the discretization scheme forL = 3.
The density distribution inside each cell is assumed to

.

.

.

.

.

.

ν(β1,α1)

ν(β2,α2)

ν(βn,αn)

+

β1 α1

β2 α2

βn αn

u y

Fig. 3. The discretized Preisach operator.

concentrate at the cell center (represented by dark dots
in Fig. 2(a)) and this results in a discretized Preisach
operator, which is now a weighted sum ofL(L+1)/2
hysterons (seeFig. 3). In Fig. 3, �(�i , �i ) denotes
the weight for the hysteron̂��i ,�i

. Note that although
uniform discretization is considered here, the results
presented in this paper apply directly to the case of
non-uniform discretization.

3. The value inversion problem

3.1. Formulation of the value inversion problem

Since the Preisach operator is rate-independent[11],
and at any timet the memory curve (and thus the out-
put value) depends only on the dominant maximum
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and minimum values in the past input[11], we re-
strict ourselves to the discrete time setting and put a
sequence instead of a continuous time function as the
first argument of�.

Let S be the set of input strings taking values in
U={ul, 1� l�L+1}, i.e., if s ∈ S is a string of length
n, then s[i] ∈ U, 1� i�n. To avoid ambiguity, it is
tacitly understood that the input is changed monotoni-
cally froms[i] to s[i+1]. DefineSA to be the set of al-
ternating input strings[4], in the sense that, ifsa ∈ SA,
then(sa[i+2]−sa[i+1])(sa[i+1]−sa[i]) < 0, ∀i > 0.

In micro-positioning, one is mainly interested in the
final position and cares less about the transient tra-
jectory. This motivates us to study the value inversion
problem for the (discretized) Preisach operator. Let	d
denote the set of memory curves for the discretized
Preisach operator. Thevalue inversion problemis for-
mulated as: given a desired output valuey and an ini-
tial memory curve
0 ∈ 	d, find s∗

a ∈ SA, such that

|�f [s∗
a,
0] − y| = min

sa∈SA
|�f [sa,
0] − y|, (2)

where�f [s,
0] denotes the final value of the output
of the Preisach operator under input sequences. If
there is more than one such string achieving (2), find
the one of the minimum length.
Remarks. (1) A discretized Preisach operator is not
“onto” since its output takes values in a finite set.
Therefore, perfect match is not sought in the formula-
tion above.

(2) Any s ∈ S can bereducedto somesa ∈ SA
using the following rules, starting fromi =1: if (s[i +
1] − s[i])(s[i + 2] − s[i + 1])�0, deletes[i + 1] and
re-index. For example,s=(u1, u3, u3, u5, u4, u2) ∈ S

can be reduced tosa = (u1, u5, u2) ∈ SA. The final
values of the output undersandsa are identical (easy
to verify). Hence one only needs to search the optimal
input sequence inSA.

(3) The length of an alternating input string is di-
rectly linked to the number of input reversals and thus
the complexity of implementing that input. Therefore,
one seekss∗

a of the minimum length.

3.2. The state reachability problem

The discretized Preisach operator is an FSM. Since
there areL(L + 1)/2 hysterons in a discretized
Preisach model with discretization levelL and each

hysteron takes value in{−1, 1}, the number of states
appears to be 2L(L+1)/2. This is not the case in gen-
eral, recalling that each ofP− andP+ is a connected
set (refer to Section 2) and the true state is the mem-
ory curve.

Proposition 3.1. For a discretized Preisach operator
with discretization level L, the number of states is2L.

Proof. For a discretized Preisach operator, each mem-
ory curve consists ofL horizontal or vertical segments
of length�u, so the total number of memory curves
is 2L. �

The proof motivates an indexing scheme for the
memory curve. Starting from the upper-left corner, we
number each memory curve withL bits correspond-
ing to the L segments: 0 represents vertical, and 1
represents horizontal. For instance, the memory curve
represented by the bold-faced lines inFig. 2(b) reads
“001”. To fix the ordering of bits, we refer to the left-
most (rightmost, resp.) bit as bitL (bit 1, resp.).

A complete description for the FSM can now be
given. It has state space

	d = {
 : 
 = (�L, �L−1, . . . , �1),

�j ∈ {0, 1}, j = 1, . . . , L}
and input spaceU. It is a state outputautomaton[3]
since the outputy of the Preisach operator depends
only on the memory curve
. Therefore,the value
inversion problem is solved if any state of the FSM is
reachable, because then all one has to do is to find
the state whose corresponding output is closest to the
desired valuēy.

A state-space representation of a general Preisach
operator can be found in[9] and it is shown there
that the state space isapproximately reachable. This
“approximate reachability” result was also stated in
[11,22] (in a more casual way). As one shall see next,
the hysteretic dynamics of a discretized Preisach op-
erator can be characterized elegantly in terms of the
FSM. The reachability of the FSM then follows from
the characterization.

The state transition function
d : 	d×U → 	d for
the FSM can be best described in terms of two state
operations, INC :	d → 	d and DEC :	d → 	d.
For any state
 ∈ 	d, one can immediately determine
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Fig. 4. Operations INC and DEC forL = 3.

the current input̃u(
): ũ(
) = un+1 if 
 containsn
“1”s. For 
 ∈ 	d, define

INC(
)�



 if ũ(
) = uL+1,

the state after the input
is increased
by one level ifũ(
) �= uL+1

and

DEC(
)�



 if ũ(
) = u1,

the state after the input
is decreased
by one level ifũ(
) �= u1.

As one can easily verify, INC changes the first “0” bit
counting from the right to “1” and leave other bits un-
touched. A symmetric remark applies to the operation
DEC. Therefore, bitL (bit 1, resp.) is the most (least,
resp.) important bit, in the sense that to switch bitj
from 0 (1, resp.) to 1 (0, resp.), one has to first switch
all the lower bits to 1 (0, resp.).Fig. 4 illustrates the
INC and DEC operations for the case ofL = 3.

Given u ∈ U , the state transition function can be
expressed as:


d(
, u)=

 if u − ũ(
) = 0,

INC ◦ · · · INC︸ ︷︷ ︸
n INCs

(
) if u − ũ(
) = n�u,

DEC◦ · · · DEC︸ ︷︷ ︸
n DECs

(
) if u − ũ(
) = −n�u.

where “◦” denotes composition of functions.

Proposition 3.2. Any state is reachable. Let
i , i =
1, 2, be two states. Let bitn0 be the leftmost bit at
which
1 and
2 differ, and letna be the number of

alternating bit pairs in
2 from bit n0 through bit1.
Then
2 is reachable from
1 by applying an input
string s∗

a ∈ SA of lengthna+1,and this is the shortest
possible string length for achieving the transition.

The proposition is a straightforward consequence of
the state transition map
d.

Corollary 3.1. Any state is reachable from any other
state with somes∗

a ∈ SA of length no more than L.

The following example illustrates Proposition 3.2
as well as how to actually construct the input string.

Example 3.1.AssumeL=5,
1=00100,
2=01011.
Thenn0 = 4, na = 2, and the alternating input string
s∗
a for achieving the state transition has length 3. The

procedure for the state transition is as follows:
Step0: 
1 contains one “1”, so the current input

value isu2.
Step1: Apply u5 (3 consecutive INCs) to make bit

4 “1” and the state becomes 01111.
Step2: Apply u2 (3 consecutive DECs) to make bit

3 “0” and the state becomes 01000.
Step3: Apply u4 (2 consecutive INCs) to get
2.

4. A state-space reduction scheme

4.1. Reduction of the state space

In general, one needs to store the output values of
2L states for the value inversion problem. For a rea-
sonable discretization levelL, this may take lots of
memory. In addition, computation cost for sorting and
searching these states will be very high. Therefore,
reducing the number of states without compromising
control accuracy is of practical interest.

Two states
1,
2 ∈ 	d areequivalent, denoted as

1 ≡ 
2, if

�[s,
1] = �[s,
2], ∀s ∈ S.

We call a hysteron in the discretized Preisach opera-
tor non-trivial if its associated weight is not zero, and
trivial otherwise. Existence of trivial hysterons leads
to equivalent states. This is illustrated inFig. 5(a),
where the hysterons marked with “•” (and labeled by
�1, . . . , �5) are assumed to be non-trivial and those
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Fig. 5. (a) Illustration of equivalent states(L = 4), (b) illustration
of the shaded set.

marked with “◦” are assumed to be trivial. It is easy to
verify that the following states inFig. 5(a) are equiva-
lent: 0101, 0110, 1001 and 1010. From the experimen-
tal result of density identification (seeFig. 8), indeed
many hysterons carry weights of zero or close to zero,
and this provides room for the state-space reduction.

The original state space	d is thus a disjoint union
of equivalence classes of states.	d can be reduced,
so that in the reduced state space	̃ each element is
an equivalence class in	d, i.e., 	̃ = 	d/ ≡. Denote
the set of non-trivial hysterons asN, i.e.,N�{�̂�,� :
��,� > 0}, where��,� is the weight of̂��,�. For
 ∈ 	d,
defineS(
) to be the set of non-trivial hysterons un-
derneath the memory curve corresponding to
. From
the example above, one can see that
1 ≡ 
2 if and
only if S(
1) = S(
2). Therefore, a member of̃	
can be identified with a subset
̃ of N that satisfies
the following condition: there exists
 ∈ 	d, such that

̃ = S(
). To better capture the latter property, we
introduce the notion of alower-left-shaded set. The
lower-left-shaded set (abbreviated as the shaded set
hereafter)A(�̂�,�) of a hysteron̂��,� ∈ N is defined
to be

A(�̂�,�) = {�̂�′,�′ ∈ N : �̂�′,�′

�= �̂�,�,�
′ ��, �′ ��}.

The geometric interpretation of the shaded set of�̂�,�
is clear: imagining two rays from̂��,� in the Preisach
plane, one pointing downwards and the other to the
left, the shaded set consists of non-trivial hysterons
lying between the two rays. For example, inFig.
5(b), A(�5) = {�1, �2, �3}. If �̂�,� lies underneath
some memory curve
′, it follows that all elements

of A(�̂�,�) must also lie underneath
′. Therefore,


̃ ⊂ N is identified with a member of̃	 if and only
if the following holds:

A(�̂�,�) ⊂ 
̃ , ∀ �̂�,� ∈ 
̃. (3)

To ease presentation, from now on we will simply
write 
̃ ∈ 	̃ if (3) is satisfied. One can now list all
members iñ	 using a tree-structured algorithm:
Step1: List the equivalence class having no non-

trivial hysterons (negative saturation).
Step2: List equivalence classes with one constituent

non-trivial hysteron, i.e., the shaded set of every such
hysteron is empty.
Step3: Starting from each equivalence class (parent

class) 
̃ with n non-trivial hysterons, list equivalence
classes (children classes) with n + 1 non-trivial hys-
terons by finding another hysteron�̂ ∈ N such that:

◦ �̂ is not included in
̃,
◦ A(�̂) ⊂ 
̃, i.e., 
̃ ∪ �̂ is an eligible member of

	̃, and
◦ 
̃ ∪ �̂ does not coincide with any other equiva-

lence class̃

′

with n + 1 constituent hysterons
that has been listed so far.

Step4: Continue Step 3 until̃
 =N (positive sat-
uration) is listed.

The equivalence classes are sorted according to their
output values during the above enumeration process.
One can save computation time by using the fact that
the output of a child class is always greater than that
of its parent.

4.2. Generation of best representative states

For the purpose of realizing state transition, one
needs to find a representative state
 ∈ 	d, i.e., a
memory curve, for everỹ
 ∈ 	̃. From Proposition
3.2, the number of alternating bit pairs of a state

is closely related to the number of input reversals re-
quired for the state transition. Therefore, the best rep-
resentative state
∗ ∈ 	d for 
̃ ∈ 	̃ should have the
least number of alternating bit pairs among all states
in the equivalence class̃
.

An algorithm is developed here to generate the op-
timal representative
∗ for 
̃ ∈ 	̃. First draw two
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Fig. 6. Illustration of the proof of Proposition 4.1.

candidate memory curves
∗
↓ and
∗

→, and then pick

∗ to be the one whose number of alternating bit pairs
is less. When growing a memory curve starting from
the left upper corner of the discretized Preisach plane,
one has two possible directions for each segment of
the curve: going downwards (denoted as “↓”) or go-
ing to the right (denoted as “→”). The candidate
∗

↓
is obtained as follows: start with “↓” and continue
that direction as long as it is feasible to do so (i.e., no
constituent hysteron of̃
 is left out); when it is infea-
sible to continue “↓”, switch to “→” and keep going
with that direction until it is infeasible for̃
 (i.e., non-
constituent hysterons will be included). Continue with
these rules until allL segments are drawn. Similarly
one obtains
∗

→ by starting with “→”. Note that “→”
is feasible whenever “↓” is not, and vice versa.

Proposition 4.1. The representative
∗ obtained in
the above scheme has the least number of alternating
bit pairs among all states in the equivalence class
̃.

Proof. For any state
 ∈ 
̃ starting with “↓”, one can
show its number of alternating bit pairs is no less than
that of
∗

↓ by exploiting the strategy in generating
∗
↓.

Instead of giving a general proof, we will illustrate
the essential idea by looking at a concrete example
with discretization levelL = 8 (Fig. 6). Assume that
the memory curve represented by the bold-faced lines
A–B–C–D–E (“00111001”) is
∗

↓. Let 
 be any other

state in the same equivalence class
̃ starting with “↓”.
Now imagine we are growing the two curves
∗

↓ and

 segment by segment, starting from the left upper
corner. The curve
 has to switch to “→” no later
than it reaches the point B (since otherwise it will be

infeasible). This implies that when the first alternating
bit pair in 
∗

→ occurs, at least one alternating bit pair
has occurred in
. For the same reason,
 has to switch
to “↓” before 
∗

↓ does so at point C. This argument
goes on until the line� = � is hit and the drawing is
completed. Hence, the number of alternating bit pairs
in 
 is no less than that in
∗

↓. The curve represented
by the dashed lines A–F–G–H–I–E inFig. 6 gives an
example of such
.

Analogously for any state
 starting with “→”, one
can show its number of alternating bit pairs is no less
than that of
∗

→. The proof is now complete.�

Example 4.1. For the equivalence class{�1, �2, �3} in
Fig. 5(a),
∗

↓ =0110 with two alternating bit pairs and

∗

→ = 1001 with the same number of alternating bit
pairs. So
∗ = 
∗

↓ (or 
∗
→).

5. Experimental results

In this section the value inversion approach together
with the state-space reduction scheme is applied to
micro-positioning control of a magnetostrictive actu-
ator. Refer to[18] for a description of the experimen-
tal setup. The displacement outputy of the actuator
is controlled by the magnetic field generated through
the currentI in a coil. Fig. 7 displays the hysteresis
between the displacement output and the current input
in the actuator.
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Fig. 7. Hysteresis in the magnetostrictive actuator.
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Fig. 8. Distribution of the Preisach weighting masses(L = 25).

When operated in a low-frequency range (typically
below 5 Hz), the displacementy can be related to the
bulk magnetizationM by a square law� = a1M

2 for
some constanta1 > 0, and the input currentI can be
related to the magnetic fieldH along the rod direction
by H = c0I , wherec0 is the coil factor[21]. Then the
magnetostrictive hysteresis betweeny and I is fully
captured by the ferromagnetic hysteresis betweenM
andH, which is modeled by the Preisach operator. The
Preisach plane is discretized withL=25 which results
in 300 hysterons.Fig. 8 displays the experimentally
identified Preisach weighting masses. By treating 201
hysterons whose weights are zero or very small as
trivial, we are left with 99 non-trivial hysterons. The
final number of states in the reduced state space is
99,217 compared to 33,554,432 in the original state
space.

Given a sequence of eight desired displacement
values (10, 30, 15, 40, 20, 40, 60 and 50�m), the
control objective is to drive the actuator head to these
positions consecutively. Three control schemes are
implemented to achieve the positioning goal. The first
one is based on the value inversion scheme, the second
is based on the closest match algorithm for trajectory
inversion (see[19]), and the third scheme is based
on a non-hysteretic model where the input–output
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Fig. 9. Micro-positioning control based on the value inversion
scheme.

relationship is approximated by a single-valued func-
tion y = −7.44I3 − 2.63I2 + 40.81I + 30.34. The
trajectories of the current input and the measured
displacement under these schemes are shown in
Figs. 9–11. For presentation purposes, we intention-
ally hold the input current constant for about 1 s after
each positioning is completed.Fig. 12 compares the
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Fig. 10. Micro-positioning control based on the closest match
algorithm.
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Fig. 11. Micro-positioning control based on a non-hysteretic model.

errors of the three schemes for the eight position-
ing tasks. It can be seen that Scheme 1 yields the
minimum positioning error. As a trajectory inversion
algorithm, Scheme 2 does not allow input reversals
for each desired output value and thus has less con-
trol freedom than Scheme 1 does. This explains why
Scheme 1 is better than Scheme 2. Scheme 3 delivers
the worst performance because hysteresis is not taken
into account.
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Fig. 12. Comparison of three schemes. Scheme 1: the value inver-
sion algorithm; Scheme 2: the closest match algorithm; Scheme
3: the inversion algorithm based on a non-hysteretic model.

6. Conclusions

In this paper a novel type of inversion problem,
called the value inversion problem, for a class of dis-
cretized hysteresis operators has been studied. Unlike
most inversion problems discussed in the literature on
hysteresis control, the value inversion problem is to
find an optimal input trajectory given a desired value
of the hysteresis output. This problem was motivated
by positioning applications of smart actuators.

The Preisach operator has been used for the mod-
eling of hysteresis. When discretized, it can be rep-
resented by an FSM. Based on a concise indexing
scheme for the memory curve, the dynamics of the
FSM is captured by simple rules. The original value
inversion problem was converted to a state reacha-
bility problem of the FSM. Implementation of state
transitions were illustrated through examples. The
notion of state-space reduction was developed for a
discretized Preisach operator, and algorithms for gen-
erating the reduced state space and for constructing
the optimal representative state were also presented.
This approach has been applied to micro-positioning
control of a magnetostrictive actuator and its effec-
tiveness has been demonstrated through comparison
with two other inversion schemes.
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