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ABSTRACT 

Computational micromagnetics in three dimensions is of increasing interest with the development of magnetostrictive 
sensors and actuators. In solving the Landau-Lifshitz-Gilbert (LLG) equation, the governing equation of magnetic 
dynamics for ferromagnetic materials, we need to evaluate the effective field. The effective field consists of several 
terms, among which the demagaetizimg field is of long-range nature. Evaluating the demagnetizing field directly 
requires work of O(N2) for a grid of N cells and thus it is the bottleneck in computational miuomagnetics. A 
fast hierarchical algorithm using multipole approximation is developed to evaluate the demagnetizing field. We 
first construct a mesh hierarchy and divide the grid into boxes of ditferent levels. The lowest level box is the 
whole grid while the highest level boxes are just cells. The approximate field contribution from the cells contained 
in a box is characterized by the box attributes, which are obtained via multipole approximation. The algorithm 
computes field contributions from remote cells using attributes of appropriate boxes containing those cells, and it 
computes contributions from adjacent cells directly. Numerical results have shown that the algorithm requires work 
of O(N1ogN) and a t  the same time it achieves high accuracy. It makes micromagnetic simulation in three dimensions 
feasible. 
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1. INTRODUCTION 

Computational micromagnetics in three dimensions is of increasing interest with the development of magnetostrictive 
sensors and actuators. The Landau-Lifshitz-Gilbert (LLG) equation is the governing equation of magnetic dynamics 
for ferromagnetic materials.' By integrating the LLG equation, we can solve for the evolution of magnetization 
as well as the steady state magnetization profile. This helps us understand the underlying physical principles, 
characterize material properties, and design and control magnetostrictive transducers. 

The effective magnetic field He@ needs to he evaluated in solving the LLG equation. %e is the sum of several 
terms: the externally applied field H,t, the anisotropy field H,,i, due to the crystalline anisotropy, the exchange 
field Huch due to the quantum-mechanical exchange effect between nearest neighbours, and the demagnetizing 
field Hdemag produced by the whole magnetization distribution. The last term is non-local, because the decay of 
the demagnetizing field with distance is so slow that all interactions must he accounted for. Therefore evaluation 
of Hdemag is the most time-consuming part and thus the bottleneck in computational micromagnetics. For a 
discretization grid of N cells, an amount of work of O(N2) is required to evaluate all pairwise interactions. In three 
dimensional micromagnetics, to be of physical interest, the simulation is usually involved in thousands of cells. As a 
result, the computation would be prohibitive if we calculate the demagnetizing field directly. 

Many techniques have been proposed to speed up the evaluation of Gemas. The simplest method is trnncation 
of the interaction range.' Although it reduces the computation time to O(N)F the loss of accuracy is signi6cant. 
The Fast Fourier Transform (FFT) technique is used widely and it requires work of o ( N l ~ g N ) . ~ - '  Multipole 
approximation is another useful method to accelerate the computation of Hd.,ag.6.4 The general strategy of the 
multipole algorithm is clustering cells at  ditferent spatid scales and using multipole expansions t o  d u a t e  the 
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interactions between clusters that are sufficiently far away from each other. The interactions between nearby cells 
are calculated directly. Greengard adopted a two-pass (upward and downward! multipole algorithm in electrostatic 
calculations and obtained O(N) complexity? Following this approach, a fast algorithm fully implementing the 
multipole and local expansions of the field integral was shown to yield O(N) computation time in 2D micro magnetic^.^ 
But this technique can't be generalized to 3D directly because the closed form' ~f multipole and local expansions in 
3D do not exist. Blue and Scheinfein used only a single upward pass in multip. expansion for 2D micromagnetics, 
which yielded a computation time of o ( N l ~ g N ) . ~  Direct generalization of tb dgorithm to 3D case is not trivial 
either. 

Inspired by the work of Blue &d Scheinfein," this paper is aimed at propo: a simple but efficient hierarchical 
algorithm for evaluation of Hd,,, in 3D. We first construct a mesh hierarc and divide the grid into boxes of 
different levels. The approximate field contribution from the cells contained i a box is characterized by the box 
attributes, which are obtained via multipole approximation. The algorithm com: tes field contributions from remote 
cells using attributes of appropriate boxes containing those cells, and it compu : contributions from adjacent cells 
directly. The paper is organized as follows: Section 2 describes the fast algorit~.m in detail, Section 3 presents the 
numerical results and Section 4 provides the conclusions. 

2. FAST HIERARCHICAL ALGORITHM USING MUL'IZPOLE APPROXIMATION 

Assuming that a ferromagnetic body with magnetization M occupies a regio: ', the demagnetizing field at r ,  
Hdemag(r), can be written down directly from magnetostatics8: 

where drf ,ds '  are the volume element and the area element, respectively, the i.,tegrals are taken over she space 
variable r', "V." is the divergence operator with respect to r', I/ . I/ is the Euclidr norm of a 3D vector, 8V is the 
boundary of V, and n(rf) is the unit outward normal at r'. I t  is clear from (1) t Haemg depends on the whole 
distribution of M. 

In this paper, we consider a ferromagnetic body with rectangular geometry. We discret~ze the body into cells 
of size do. The numbers of cells along the x, y, z axes are denoted by N,, N, an.. V z ,  so the total number of cells 
N = N,N,N,. M is assumed to be constant within each cell (including at the bo dary). 

In this section, we will first look at the demagnetizing field Hd produced by i ?11 with magnetization M. The 
analytic expression for Hd turns i. it to be very complicated. We then show that .h can be approximated by the 
field produced by a magnetic dipole with moment Md;: located at the center of the ,.?!.I. Although the dipole formula 
looks much simpler, direct pairwise evaluation is still very time-consuming when N . - large. A hierarchical algorithm 
incorporating multipole approximation is then used to accelerate the evaluation of :demg. 

2.1. Demagnetizing Field Contribution from a Cell 
We want to evaluate the demagnetizing fiel? 9 d  at the center of cell (i, j, k) - oduced by cell (i', j': k') with 
magnetization M. Denote the region that ct  j', j', k') occupies as 0. Since hi rs constant within a, we have 
V . M = 0 and only the second term in. (1) survives. Let Hd., Hdy,  H d z  be thc x, y,z components of Ha, and let 
n, = i - il,n, = j - j l ,n, = k - k'. I t  follows tbat 

where (x y z ) ~  = do(n, n, n,)T, and z', y', 2' E [-+,%I. Carrying out the ::itegral, we w~ll get the analytic 
expression for Hdz , 

4 8 n; i , + M z  ,- = M*(C arctan i,j - C arctan 1,:) + M, In 
i=l i=5 H i s  ig: UL5 lz i  ' 

where M z ,  At,,, M, are the x, y, z components of M, and I,,, I,,, l,i, i = 1,. . .8  are fu .tions of n,, n,, n,, as defined 
in Appendix A. Similar expressions can be obtained for H d ,  and H d z .  Note tbat H,, does not depend on the cell 

T size do; instead, it depends only on M and (n, nz) . 



2.2. A p p r o x i m a t i o n  t o  Hd by the D i p o l e  F o r m u l a  

Expanding 

in (2), we will get 

where r= (z y z ) ~ .  Plugging the first order approximation in (5) rather than (4) into (2) and carrying out the 
integral leads to the approximation to Hdz, denoted as ~ d = :  

Similarly, we can get Hdy and H*;. It's easy to see that, letting & = ( ~ d ~  id,dY and i = r/ / I  r I/, 

which is the familiar dipole formula. 

Definina the error 

we expect e to be of order O(l/(n: + n i  + n:)) from (2), (5) and z', y', 2' t [-$Q, *]. 
The dipole formula (7) is much simpler than (3), which we shall refer as the integral formula. But we can't be 

too optimistic here. When N goes large, the computation time of direct pairwise evaluation increases with O(N2). 
In other words, halving the cell size will multiply the computation time by 64. Even with the dipole formula, the 
computation may become prohibitive well before the grid is fine enough. Thus we resort to the following hierarchical 
algorithm. 

2.3. A Hie ra r ch i ca l  E v a l u a t i o n  A l g o r i t h m  

As pointed out earlier, the cell size do does not appear in the analytic expression of Hd, therefore from now on we 
will assume unit cell size. We start with a 3 0  grid of N cells and embed the grid into a box of size 2'", with the 
smallest possible m to enclose the grid. Mesh level 0 corresponds to the entire computational box, while mesh level 
L + 1 is obtained from level L by subdividing each box into eight subhoxes. Continue this process until there is at 
most one cell in each box. A tree structure is imposed on this mesh hierarchy, so that if B is a box at  level L, the 
eight boxes at  level L + 1 obtained by subdividing B are considered its children. 

As we will show in the next subsection, the approximate demagnetizing field contribution from cells contained 
in each box can he characterized with two attrihutes of that box. Assume that we have got these attrihutes for all 
boxes and pick a threshold value 0. The following steps can be taken to evaluate the field at the center of each cell 
in the grid: 

. Step 1. Put all boxes of level 1 on a stack (since the box of level 0 will contain the current cell); . Step 2. If the stack is empty, go to Step 6 ;  otherwise . Step 3. Take the last box on the stack. Denote the distance between the center of the box and the field point 
(i.e., the center of the current cell) as d ,  and the size of the box as a .  Let p = 9:. If p < p, which implies 
that the box is far enough away, compute the contributions from all cells contained in that box using only the 
attrihutes of the box and remove the box from the stack; otherwise 



Step 4. If tbe box contains only one cell, compute the contribution of the cell directly using the integral formula 
and remove the box from the stack; otherwise . Step 5. Remove the box from the stack, put all its children boxes on the stack, and go to Step 2; . Step 6. If the field evaluation at centers of all cells is completed, go to Step 7; otherwise go to Step 1 and start 
field evaluation for the next cell. 

Step 7. End I 
I 

Figure 1 illustrates the idea for a 2D 8 by 8 grid, but the same idea applies in a 3D grid. To e d u a t e  the field 
at the center of cell A, we need only calculate the contributions from the solid line boxes. Since in a N-cell grid, 

I 
the field evaluation at one point involves O(1ogN) boxes, the work to evaluate the field at centers of all N cells is 

I 
I 

O(N1ogN). 

Figure 1. An 8 x 8 grid of cells divided into boxes suitable for evaluation of the demagnetizing field at the center 
of cell A. 

2.4. Multipole Approximation to the Dipole Formula  

We now derive the attributes for each box. Assume that a box is centered at the origin and that a cell with 
magnetization M is contained in the box. Let the center of the cell be ro. From (7), the demagnetizing field at r, 
produced by the cell, is approximately 

Taking Taylor's series expansion to the first order, we have 

where I is the identity matrix. If we define the approximation error in (10) in a similar way as in (S), it is expected 
to be O(IJ r o  11' / I /  r 11'). Therefore when the field point is far enough away from the center of a box (comparing 
with the size of the box), the total approximation error incurred in (5) and (10) will be small enough. The first term 
of (11) is linear in M, and the second term is linear in elements of tbe matrix Mrz. Having noticed that M and ro 
are all the useful information associated with the cell, we are now ready for deriving the attributes for each box. 



Suppose a box b has k cells, each with center position r ~ ( s )  and magnetization M(s), s = 1,. . . , k. There are cwo 
attributes associated with box b: A1 (b) = ~ t = ,  M(s) and Az(b) = EL, M(s)rz(s). 

Let Dij, (i, j = 1,2,3) be the i-th row j-th column element of &d(r)/dr, and write Di, as OZM. Note that O i j  

is a function of only r .  Let Oi = (Oil, Oi2,fli3), i = I, 2,3, and let 

Tben it's easy to verify that the demagnetizing field at r produced by all cells inside box b is approximately 

The work to compute the attributes for all boxes is O(N1oqN) since each cell is involved in O(1ogN) boxes. After 
we obtain the attributes, the field evaluation at centers of N cells is of O(N1ogN) as mentioned in Subsection 2.3. 
Thus the total work of the algorithm is still O(N1ogN). 

3. NUMERICAL RESULTS 
Three methods of evaluating the demagnetizing field are compared: direct pairwise evaluation using the integral 
formula (Integral Algorithm, abbreviated as IA), direct pairwise evaluation using the dipole formula (Dipole Alga- 
rithm, abbreviated as DA), and the fast hierarchical algorithm (abbreviated as FA). We take the result of IA as 
the true value, and calculate the root mean square (RMS) errors for DA and FA. Let H ; ' ,  ~ g t , ~ g ~  he the 
demagnetizing field at the center of cell (i , j ,  k) calculated using IA, DA, FA, respectively. Tben the RMS errors for 
DA and FA are defined as 

Table 1 compares IA, DA and FA for an 8 by 8 by 16 grid. All the numerical experiments reported in this paper 
were done on Ultra 10 workstations of Sun Microsyscems. 

I Table 1. Results of IA, DA and FA for an 8 by 8 by 16 grid. 0 is the threshold value in FA 

\ l u r ~ i  ( 'l'irn~ t s e c  I R\IS error 
1 ;\ I 29 I 0 

FA, 0 = 0.2 
FA, p =  0.4 
FA, p = 0.6 

From Table 1, we can control the accuracy of FA by varying the threshold 0. The algorithm can be as accurate 
.as desired. FA outperforms DA in both computing time and RMS error within a wide range of P. 

Table 2 compares 1A and FA for grids of different sizes. 

From Table 2, it is clear that the computation time of IA increases with O(N2), while that of FA increases 
with O(Nlog1V). When N goes bigger, we'll get more out of the fast algorithm. Note that the error in Table 2 is 
acceptable in consideration of the error incurred by the discretization. 



Table 2. Results of DA and FA for different grid sizes. f l  = 0.4 

Grid size I Time (IA) (sec.) 1 Time (FA) (sec.) ( RMS error of FA 
6 b v 6 b v 1 2  1 15 I 2 I 1.3 x lo-' 

The fast algorithm has been used in a 3D n~icromagnetics and magnetostriction computation p r ~ g r a m . ~  Figure 
2 shows the H - M hysteresis curve of a 3D 2 x 2 x 5 grid computed using the program, where H is the external 
field and M is the bulk magnetization of the ferromagnetic body. 

Figure 2. Hysteresis curve of a 2 x 2 x 5 grid computed using the 3D micromagnetic program 

4. CONCLUDING REMARKS 
?t algorithm using multipole approximat is presented. It's easy to implement and yields computation time of 

C. logN). By choosing the appropriate threshold value, we can make the algorithm as  accurate as desired while 
mluntaining acceptable computing speed. It makes micromagnetic computation in three dimensions feasible. 

APPENDIX A. EXPRESSIONS FOR l,i, l,i, l,i, i = 1.. .8  , in (3) 

(ny + $)(nr - $) 
1z1 = , 1,2 = (ny - i)(n, + a)  

(nz + $)J(n, + $)2 + (ny + +)2 + (n; - f ) 2  (nz + f ),/(n, + +)? + (n, - i)2 + (nl + I )  1 2  ' 



1 = n, + q + d(n, + +)' + (n, + 4)' + (nz + $ ) 2 ,  

lZs = ny + 4 + d(n ,  - 4)' + (n, + 4)' + (n: + $ ) 2 ,  

1 = ny - q + J(nz + +)2 + (n, - 4 1 2  + (nz + $12, 
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