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ABSTRACT 
Securing multicast communications in ad hoc networks has 
become one of the most challenging research directions in the 
areas of wireless networking and security. This is especially true 
as ad hoc networks are emerging as the desired environment for 
an increasing number of civilian, commercial and military 
applications, also addressing an increasingly large number of 
users. In this paper we study a very basic security question for Ad 
Hoc Networks: Key Agreement against passive adversaries. 
Despite being a widely studied area in wired networks, the 
problem becomes significantly more challenging for ad hoc 
networks, and even more for sensor networks, due to lack of 
trusted entities, infrastructures, full connectivity, routing 
structures, and due to severe limitations on the resources and 
capabilities of network nodes. In this paper we perform a 
comprehensive investigation of Key Agreement over resource 
constrained ad hoc networks. First, we formally model the key 
agreement problem over multi-hop ad hop networks, and we 
directly extend known key agreement protocols for wired 
networks, and evaluate the efficiency of such approaches. We 
then go beyond natural extensions of such protocols, by proposing 
non-trivial extensions based on efficient topology-driven 
simulations of logical networks over an arbitrary physical 
network, in order to optimize the most significant metrics of 
interest for such networks: i.e. bandwidth, latency, processing 
cost. Indeed, the resulting protocols are significantly more 
efficient in some or all of the above metrics, as our analytical 
results indicate. 

Categories and Subject Descriptors 
C.2 [Computer-Communication Networks]: C.2.1 Network 
Architecture and Design: Network Communications, Network 
Topology, C.2.2 Network Protocols: Routing Protocols, C.4 
Performance of Systems: Modeling Techniques, Performance 
Attributes, G.2 [Discrete Mathematics]: G.2.2 Graph Theory: 
Graph Algorithms, Network Problems, Trees. 

General Terms 
Algorithms, Performance, Design, Security. 

Keywords 
Group Key Agreement, Topology Driven Protocols, Performance 
Evaluation, Optimization, Approximation Algorithms, Efficiency 

1. INTRODUCTION 
A basic security area in building secure protocols for group 
communication is that of group key agreement (GKA). Indeed, this 
area has received a significant amount of attention in the wired 
network literature, and since the foundational Diffie-Hellman (DH) 
protocol [2], several other protocols have been proposed for the 
group case. The lack of infrastructure and, frequently, of trusted 
entities in ad hoc networks further increases the importance of KA 
over such networks. In fact, a secure KA protocol for ad hoc 
networks can be used as the crucial component to bootstrap security 
in most, if not all, applications over ad hoc networks that require any 
type of security property. Previous work on KA over ad hoc 
networks does not deal with what we believe to be basic features of 
any realistic protocol implementation over the discussed 
environment: partial connectivity due to limited radio range, and 
parties’ self-processing of routing duties due to lack of trusted 
authorities. As a result, the analysis of previously proposed protocols 
only gives a partial account on their real performance. Also, existing 
performance evaluation of the protocols has been done only with 
respect to a logical abstraction of the underlying physical network, 
without consideration of the underlying routing. While routing is 
often assumed to be efficient and available between any two parties 
in wired networks, this is not the case for ad hoc networks. 
Therefore, in evaluating the efficiency of direct adaptations of 
protocols for wireless networks, some protocols lose even significant 
efficiency properties. On the other hand, it might be the case that KA 
solutions naturally take advantage of the unique ad hoc network 
features, such as topology-driven redundancy and localization of 
communications and computations, possibly resulting in more 
efficient protocols.   

A thorough understanding of these basic features is essential towards 
the design of optimal or at least more suitable KA schemes for the 
environment of study, and in this paper, we propose methodologies 
towards that. We propose non-trivial extensions of known KA 
protocols over logical networks based on efficient simulation of  
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logical networks over arbitrary physical networks. This defines, for 
each known KA protocol, a network simulation problem similar 
to the simulation (or, embedding) of logical networks over physical 
networks of parallel computers, where the goal is to minimize some 
metric inherent to the performance of the specific protocol itself. 
Our contribution in this paper is to: a) formulate the corresponding 
network simulation problem, b) define a number of optimization 
problems related to the KA execution over the network, and c) 
present our own solutions to these problems. 

2. MODEL 
We model the connectivity among the parties with a connectivity 
graph G(V,E), where E∈V×V and an edge between any two nodes 
exists if and only if the two associated parties are within each other’s 
radio range (bidirectional connectivity considered). We make the 
simplifying assumptions that each message from a node in G is 
timely sent (i.e., there is no congestion) and reliably and timely 
received by all neighbors. Additionally, in this current analysis we 
do not consider link failure or party mobility. We stress that we only 
deal with KA over an ad hoc network in the passive adversary 
model. Extending our approaches to deal with party mobility or more 
involved adversaries (i.e., active or Byzantine), is the object of our 
future research. Similarly, the re-keying problem is out of the scope 
of this paper. Our schemes inherit the same security properties as 
those of their original ancestors. In addition to designing key 
agreement protocols over arbitrary ad hoc networks satisfying 
correctness and security requirements, we want to meet efficiency 
requirements of low bandwidth (defined as the maximum, over all 
possible graphs G and executions of protocol instances P over G, of 
the total size of messages exchanged by all parties in V(G)), 
computation (maximum, over all possible graphs G and executions 
of P over G, of the number of exponentiations performed by all 
parties in V(G)), and latency (maximum, over all possible graphs G 
and executions of P over G, of the number of parallel protocol 
atomic steps, such as communication rounds or 1-hop transfers).  

3. TOPOLOGY BLIND GKA OVER AHNets 
3.1 Overview of Logical GKA Schemes  

The most immediate way to construct GKA protocols over AHNets 
is a topology-blind approach, denoted as “tb”, where known GKA 
protocols over logical wired networks are composed with an 
underlying arbitrary routing protocol that implements on the physical 
AHNet G any single step done on the logical wired networks. In this 
paper we describe this approach for some among the most efficient, 
to our knowledge, GKA protocols over wired networks currently: 
GDH.1, GDH.2 [1], ING [4], and BD [3], referred all in [1]. We 
briefly recall them for the sake of self-containment.  

3.1.1 GDH1: This protocol assumes that all parties are connected 
according to a logical Hamiltonian path and consists of two stages: 
up-flow (collecting members’ contributions) and down-flow 
(allowing all members to compute the common key). In the up-flow, 
each member does 1 exponentiation and the message between Mi and 
Mi+1 contains i intermediate values. After obtaining Kn, Mn initiates 
the down-flow stage. Each member Mi does i exponentiations: 1 to 
compute Kn and (i-1) to provide intermediate values to lower indexed 
members, by raising them to the power of its own exponent. The size 
of the down-flow message decreases on each link, as a message 
between Mi+1 and Mi includes i intermediate values. 

3.1.2 GDH2: In order to reduce the total number of rounds, 
GDH.1 is slightly varied, so that: a) in the up-flow stage each 
member has to compose i intermediate values (each with i-1 
exponents) and one cardinal value with i exponents; Mn is the first 
member to compute the key Kn and the last batch of intermediate 
values, b) in the down-flow stage Mn broadcasts the (n-1) 
intermediate values to all group members. It is assumed that all 
parties are connected through a logical Hamiltonian path, and the last 
party on the path can reach all others using a broadcast channel. 

3.1.3 BD: This scheme only requires 2 logical rounds and can be 
divided into three phases: (1) Member Mi generates random Ni and 

broadcasts zi = iNa ; (2) Every member M computes and broadcasts 

Xi = 1
1

( ) ii
i

Nz
z

+
−

; (3) Mi can compute the group key Kn = 
1 2

1 1 2... modinN n n
i i i iz X X X p− −
− + − = 1 2 2 3 1... nN N N N N Na + + + . The key 

defined by this scheme is different from the previous protocols. It is 
assumed that parties can simultaneously reach all others through 
broadcast channels.   

3.1.4 ING: It requires that all parties are connected according to a 
logical ring, and completes in (n-1) rounds after a synchronous 
start-up. In any round, every party raises the previously-received 
intermediate key value to the power of its own random exponent 
and forwards the result to the next party. After (n-1) rounds 
everyone computes the same key.   

3.2 Topology Blind Implementation over          
Arbitrary AHNets 

The referred protocols describe the KA algorithms and the resulting 
overhead from key exchanges only. If we consider however 
executing the latter protocols in a resource constrained multi-hop 
network, then every message exchange among the intended group 
members may involve multiple relays that carry the intended key 
messages. The overhead invoked by these relays is not considered 
in the previous analyses. Also, in certain cases, it is assumed that a 
member can directly reach the rest of the group members and 
broadcast to them in one round, which is unrealistic in AHNets. In 
the case that the selection of the parties is not “topology-aware”, 
(e.g. based on members’ IDs), the placement of members and 
consequently the routes formed are random and the physical graph 
generated is actually not expected to resemble the logical graph and 
therefore is not optimal. This arbitrary factor that emerges when we 
merge the key generation algorithm “blindly” with the underlying 
routing is what we try to capture and model. We quantify it in the 
analytical results that follow as we merge and measure the overhead 
of both communication and routing exchanges for the 
aforementioned protocols. We denote as D the diameter diam(G) of 
G; that is, the max number of hops between a pair of nodes in V. 
Moreover, we denote the number of hops in the path between two 
graph nodes Ni and Ni+1, as Route (Ni, Ni+1) = Ri,i+1. Throughout the 
analysis, we will use the following two facts: first, for each i, it 
holds that Ri,i+1≤D≤ |V(G)|=n; second, a logical broadcast step 
requires at most |E(G)| messages (assuming a simple controlled 
flooding strategy) and at most D≤ |V(G)|=n hop transfers over the 
network graph G. We denote by K the length of an element in the 
algebraic group used (over which the decision DH problem is 
assumed to be hard). By Bdw we denote the total bandwidth, and by 
Lt the total latency encountered to the network by any KA protocol. 
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We discuss the computation of metric performances for all 
protocols and summarize them in a table.  

3.2.1 GDH.1: We compute the efficiency metrics for this 
protocol by summing the metrics obtained for the up-flow and 
down-flow stages; since the two stages are symmetric, it is enough 
to describe the computation for one stage only, and then multiply 
both metrics by 2. 

Up-Flow: On a logical Hamiltonian path, member Mi composes i 
values to send to member Mi+1 through all relays in Ri,i+1.All relays 
in Ri,i+1 will carry the same message (i×K bit size). Hence:  

Lt =
1

, 1
1

n

i i
i

R
−

+
=
∑ ≤D× (n -1) ,               Bdw(Mi)=Ri,i+1× i×K,      

Bdw =
1

, 1
1

n

i i
i

KR i
−

+
=

× ×∑ ≤
1

1

n

i

KD i
−

=

× ×∑ =D×K× 1
2 ( 1)n n× − ,     

3.2.2 GDH.2: We compute the efficiency metrics by summing 
those obtained for the up-flow and down-flow stages. 
Up-Flow: The analysis for the bandwidth and latency is identical to 
the up-flow stage of GDH.1.  
Down-Flow: Member Mn composes (n-1) values to broadcast to all 
members Mi. We denote this broadcast cost as Bn(n-1). Assuming 
that in a realistic implementation each node broadcasts the same 
message only once to its neighbors, we could upper bound the 
broadcast cost as follows: Bn(n-1)≤ |E(G)|× (n-1) × K . Under the 
assumption of omni-directional antennas, allowing each node to 
send messages to all of its neighbors, we can bound Bn(n-1) by : 
Bn(n-1)≤D×(n-1)×K. Another physical implementation of the 
logical broadcast can be obtained by (n-1) simultaneous unicasts 
from the sender to each member of a single message corresponding 
to each member i through the routing path Rn,i. The latency is 
determined by the last member to get the broadcast and requires 
time D in the worst case. Hence:                                               

Lt≤D,        Bdw = 
1

1
,

i

n

n i KR
=

−

×∑ ≤D×n(n-1)×K.  

3.2.3. BD: It can be abstracted as the execution of two 
simultaneous broadcasts from each member to all others. We can 
analyze each broadcast from a user in each phase according to the 
down-flow stage of GDH.2. If we use a controlled-flooding 
implementation of broadcast we obtain:   

Bdw =|E(G)|×K×2n,                            Lt  =D×2. 

Using simultaneous unicasts instead, we obtain the following 
analytical expressions for the previous costs:  

Lt = Lt (Mi) = ,2 i jR ≤ 2D (max. distance for Mi), and  

Bdw =
1

,
1 1,

2
n n

i j
i j j i

KR
−

= = ≠

×∑ ∑ ≤ 2n× (n-1)×D×K. 

3.2.4 ING: It uses a logical ring where each member Mi processes 
any value received from Mi-1 and communicates a new value to Mi+1 
for (n-1) times, through Ri,i+1. Then: Bdw(Mi) = Ri,i+1× (n-1)×K. 
Observe that in the worst case scenario, the size of the physical 

implementation of the ring is D× (n-1). This also means that it takes 
time (and routing) D× (n-1) for the contribution of member Mi+1 to 
reach eventually member Mi, or, equally, for any member to 
complete the (n-1) execution rounds. The related metrics are now: 

Bdw =
1

, 1 ( 1)
i

n

i i KnR
=

+ × − ×∑ ≤  D×n× (n-1)×K,       and            

Lt (Mi) = Lt = D× (n-1). 

Summary: Table 1 summarizes Lt and Bdw of the 4 protocols (Bdw 
is divided by a factor of K ), w.r.t. first the logical and then the tb 
implementation over AHNETs. Observe that the efficiency of 
essentially all tb protocols decreases by at least a factor of D. 

Table 1. Performance of: (a) KA protocols over logical AHNets, 
(b) tb KA protocols over AHNets 

 Wired Lt Wired Bdw tb-Lt tb-Bdw 
ING n-1 n(n-1) D(n-1) Dn(n-1) 
BD 2 2n 2D 2Dn(n-1)  
GDH1 2(n-1) n(n-1) 2D(n-1) Dn(n-1) 
GDH2 n (n-1)(n/2+2) Dn  Dn(n-1)/2 
 

3.3 Implementation of GKA over MANETs 
We have just evaluated the above protocols by executing them 
blindly on a real network, where multi-path routing is required for 
group members to communicate. We ran them on top of this 
framework based merely on member IDs as designated by the key 
generation algorithms. This tb approach leads to excessive 
unnecessary routing and relay nodes, and high bandwidth 
requirements, as also seen from the table of our relevant results. In 
AHNets, bandwidth and power consumption are valuable resources, 
that nodes cannot afford to waste. Reducing the combined costs 
resulting from the routing and communication becomes essential if 
we want to apply the KA schemes on resource-constrained AHNet. 
In this paper, we attempt to improve the efficiency of each of these 
protocols. Towards this end, we are exploring the potential of 
optimizing the combined communication and routing costs for these 
protocols with the use of a topology-driven “td” simulation of the 
logical network over any arbitrary AHNet graph G. We formulate 
several network simulation problems, which can be seen as 
variations of the classical “network embedding problem” studied in 
the area of Parallel Algorithms (see, e.g. [5]), with a few technical 
differences: (a) we have to embed a logical simple graph such as a 
cycle or a (broadcast) star into a given, arbitrary graph having the 
same number of nodes; (b) we obtain various optimization 
functions, depending on the behavior and performance of the 
original protocol on the logical network. Specifically, each 
protocol poses two different optimization problems as the 
routing structure of each defines a specific optimization function 
for each of the two metrics of latency and bandwidth. In summary, 
we define and later focus on minimizing the following 6 quantities, 
or performance metrics:  

Bandwidth:  

Bdw1 = (n-1)× , 1
1

n

i i
i

R +
=
∑       (1),          
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 Bdw2 = 
1

, 1
1

2
n

i i
i

i R
−

+
=

× ×∑    (2),               

 Bdw3 = (n-1)Bn   (3), 

 Latency:  

 Lt1 = , 1
1

n

i i
i

R +
=
∑ , or = (n-1)×max{ , 1i iR + }    (4),     

Lt2 = 2× , 1
1

n

i i
i

R +
=
∑     (5),             

Lt3 = max_length (Bn)    (6). 
Given these 6 quantities, we can develop bounds for the bandwidth 
and latency of the four considered protocols (after scaling them 
down by K) as follows: ING:  from (1), (4), (5), GDH.1: from (1), 
(2), (5), GDH.2: from (3), (5), (6), BD: from (3), (6). 
Thus, finding approximations of optimal solutions to these 6 
quantities, or even improving those provided via the tb approach, 
results in more efficient metrics for the four protocols. We introduce 
our td approach in the following section. In the remainder of this 
section, we present two crucial low-cost auxiliary protocols that 
generate the core framework for running our td extensions: a 
randomized distributed leader election algorithm, and an arbitrary 
rooted spanning tree generation algorithm.  

3.3.1 A: Root Election Protocol 
We wish to construct a rooted spanning tree, denoted as ST, with the 
goal to perform a traversal of all tree members. In order to traverse 
the tree, a starting point is required. However, each node, initially at 
least, is ignorant of the global network topology: it is directly aware 
only of its neighbors and their identities (IDs). Even if we impose 
that a node with a certain attribute only initiates the tree traversal or 
a broadcast, the issue is that it is not known among all nodes which 
one acquires this attribute. Multiple nodes may attempt to start the 
traversal thinking that they are the best or the only candidates. The 
problem of a distributed network of nodes discovering one another 
through their network connections is known as the resource 
discovery problem, analyzed in [6, 7] and elsewhere. Discovering a 
single node with a certain attribute constitutes a subset of the former 
problem (nodes need to be aware of one node only) and we propose 
a different approach from the existing, in order to lower the resulting 
overhead as much as possible. To prevent a potentially 
overwhelming flooding, we use a probabilistic approach that allows 
only a small subset of members to initiate the search to learn or 
propagate the ID of the root.  

3.3.1.1 Overview 
In a first trial each of the n network members attempts to become an 
“initiator” with probability p = 1

n . In the end, the member with the 
highest (or lowest) ID among the initiators becomes the global root. 
Each initiator propagates its ID through link state information. When 
a node receives a member ID it propagates it if it is greater than the 
IDs received before, otherwise it drops it. Eventually, all members 
will learn of the highest ID initiator, who becomes the root. If a node 
does not hear from any other node for sometime, that could designate 
that there are no initiators, or that the associated messages are lost. 
To remedy this, the next trial is run and each node re-runs the 

probabilistic trial for itself, after remaining idle for a given “silence 
period”, defined from the maximum number of rounds required for a 
message to be propagated to the network. 

3.3.1.2 Properties and Analysis 
A message originating from the initiator is propagated along the 
vertices of the network graph. The message carrying the highest ID 
will be allowed to propagate to all network nodes. Messages carrying 
lower IDs will be propagated up to a point since they will be dropped 
by nodes that have already received messages of higher or equal IDs. 
In the worst case, they reach all nodes before they are dropped. In 
order to compute an upper bound on the average overhead incurred 
by B, we first bound the overhead due to any initiator and then 
multiply it by the expected number of initiators in the network. We 
see that for any initiator v, it takes at most D steps for all nodes for 
all nodes to receive v’s ID (since at round i all nodes at distance i 
from v receive its ID) or to discover that the current execution has 
produced no initiators. Moreover, for any initiator v, at most 3n 
messages are sent to disseminate v’s ID, since each node will receive 
v’s ID at most twice and send it at most once.  Let X  be the random 
variable denoting the number of initiators; the probability that no 

initiator is generated in a trial is Pr{X=0}= q = 1(1 )n
n− ≈ 1e . 

Then, Pr{X=k}=qk-1(1-q) (geometric distribution), and the expected 
number of trials before success is E[X]= 1

p . Then the average Bdw 
of protocol  A  is:  
E[Bdw]= 1

p ×3n = 1
e

e− ×3n < 4.8 n, 

And its average latency is 
E[Lt] = 1

p ×2D = 1
e

e− ×2D < 3.2D.   

3.3.2 B: Generation of a rooted Spanning Tree (ST)   
In order to derive a good approximation for the minimum number of 
hops necessary to visit all group members, we use the well-known 
approach of simulating Hamiltonian paths and cycles with a full 
walk over a rooted spanning tree – denoted as ST - of the connected 
network graph G (V, E). A ST of G is a connected acyclic sub-graph 
T(V ′ , E ′ ) of G , s.t. V=V ′  and E ′ ⊆ E, in fact | E ′ | = |V|-1. In a 
rooted ST, the tree edges are consistently directed w.r.t. a particular 
node (root). The purpose of our framework provides the flexibility 
to generate STs with potentially various attributes (i.e. low weight, 
where weight is typically the latency, loss rate, inverse of 
bandwidth, or low node degree to promote load balancing, low 
diameter, low edge count,  etc.) at the expense of extra overhead 
however. The impact of running our KA protocols on top of STs 
with specific characteristics is not within the scope of this current 
work, it is being explored in our on-going work. For the purposes of 
this study, we are interested in applying a very simple and 
lightweight algorithm for the generation of a ST. Hence, an 
arbitrary ST is sufficient for our current focus. On the other hand, 
we do not consider a weighted graph for our current GKA 
algorithms. Below, we give an overview of the following - among 
others - simple, low cost protocols to generate a ST. 

3.3.2.1 Overview  
It turns out that for the applications in this paper (i.e. to obtain 
upper bounds on latency and bandwidth) we can even use the most 
naive approach of generating a distributed ST after reduction to the 
standard sequential algorithm (that is, first each node propagates its 
neighborhood information to all other nodes, and then each node 
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computes the same ST by running the sequential algorithm). This 
algorithm has latency O(D)  and bandwidth O(n2) and yet it only 
affects the overall performance of our KA protocols by a low-order 
factor. 

A more communication-efficient approach goes as follows. Each 
node x that becomes part of the ST sends a single “connect” 
message to each one of its neighbors (except for its ancestor in the 
tree). A neighbor node y accepts node x as its parent (and sends an 
ACK message to all 1-hop neighbors) if it receives the “connect” 
message for the first time from node x (i.e. it did not receive and 
accept a prior request from another node and it is not part of the ST 
already). It is obvious that this algorithm converges (as long as the 
graph remains connected) and does not generate cycles, since each 
node accepts only one “connect” message, that is, it obtains only 
one parent.  

More generally, to deal with mobility issues in AHNets (which we 
do not target in this paper), one may use self-stabilizing spanning 
tree generation protocols (see, e.g. Dolev at al [11], or [13] for a 
survey). The algorithm based on [11] has latency O(D) and 
bandwidth approximately Bdw = O(D×n).  

3.4 Topology Driven AHNet Simulation for 
known GKA Schemes 

We now use the auxiliary protocols A, B, to generate efficient 
embeddings of logical networks over arbitrary ad hoc networks for 
the protocols we are considering. We analyze the bandwidth and 
latency of the resulting performance by computing upper bounds on 
the six quantities related to the optimization problems defined in 
section 3.3. All bounds reported in this section are scaled by K.  

3.4.1 Solution to (1),  (5): ST Full Walk 
 Using protocols A and B we can simulate Hamiltonian paths and 
cycles, by just performing a full walk of the rooted ST. Any of the 
well-known tree visit walks traverses every edge exactly twice, 
resulting in a cost twice the number of tree members. We then obtain 

that: 
1

, 1
1

n

i i
i

R
−

+
=
∑ ≤  2n in the simulation of Hamiltonian paths and 

rings, and the quantities (1), (5) are upper bounded as  

(1)≤ 2n(n-1) and  

(5)≤ 4n.  

However, this is still not enough to obtain an efficient simulation for 
problem (2), which we now address. 

3.4.2 Solution to (2), (4): Extended ING Ring with 
Dilation 2 
 Under this approach, the basic idea is that of “doubling” the size of 
the Hamiltonian ring or path by using the rooted ST generated 
obtained at the end of the distributed protocols described in (A, B), 
and then executing the same protocol previously run over a logical 
path or ring, which is now of at most twice the size.  Specifically, a 
(say, preorder) visit of all ST nodes goes through at most (2n-1) 
nodes. We map every node visited consecutively during the full walk, 
to an “entity” placed on a new Hamiltonian ring/path. This ring/path 
consists of (2n-1) “entities” that represent the nodes visited in the 
order of the full walk. For example, a visit of a depth-2 complete 
binary tree results in the sequence of node visits: N1, N2, N4, N2, N5, 

N2, N1, N3, N6, N3, N7, N3, N1. These entities are in fact the n = 7 
network nodes, some of which are replicated in the extended 
ring/path, in the spaces designated by the full walk. All parties are one 
hop away from their predecessor and successor (if any) in the new 
path, as is the case in the original logical n-size ring/path.   

3.4.3 Solution to (2): Closest Point Heuristic  
The following inequality should hold for the minimization of (2) 
that corresponds to GDH.1 Bdw: 1, 2, 1 1,2....n n n nR R R− − −≤ ≤ ≤ . 

Since the number of values a member communicates to its 
successor in the schedule is always incremental in GDH.1, the 
routing paths of successive members must be non-increasing. In 
GDH.1 the last visited member Mn uses the established schedule 
backwards to forward the intermediate messages to the rest of 
members. An approximation to (2) is given by the closest point 
heuristic. It begins with a trivial cycle of an arbitrarily chosen 
vertex. At each step, a vertex u that is not on the cycle but whose 
distance to any vertex on the cycle (e.g. vertex v) is minimum is 
identified. We extend the cycle to include u by inserting u just after 
v. We repeat this procedure until all vertices are on the cycle. This 
heuristic returns a tour whose total cost is not more than twice the 
cost of an optimal tour. If we fix the backward schedule first, so 
that the first edge selected in the cycle (minimum) is assigned to 
relay the maximum number of messages (n-1), the second edge is 
assigned to relay (n-2) messages, etc., we immediately satisfy the 
“non-incremental” requirement. We can obtain a ST by deleting any 
edge from a tour, and we already acquire the MST in our setting. 
Thus, the closest point heuristic has direct application to our 
problem. We use the appropriate traversal method to visit all 
vertices of the ST and establish the GDH.1 backward schedule 
first. By examining the common traversal methods, we select the 
pre-order tree walk. An intuitive reason for this is that a pre-order 
tree walk prints (visits) the root before the values in either sub-tree. 
So, it uses a rather greedy approach by adding the “best nodes” 
first, in a forward manner, the earliest possible in the generated 
schedule. Under this method, the root is the last member visited, 
whereas the node that initiates GDH.1 is the last node listed by the 
pre-order walk. We want to upper limit (2) by using a td schedule 
that generates the backward GDH.1 path of the n nodes. The 
topology of the nodes and their configuration determines the nature 
of the formed ST, and consequently the value of (2). Towards this 
end, we studied a few examples of particular ST and computed (2) 
over them. A few indicative cases considered are: the single chain 
tree, the star tree of depth X, the fully balanced Z-ary tree, etc.  It 
can be shown that the value of (2) computed via pre-order traversal 

of any ST,  is upper bounded by 23
2 n . 

3.4.4 Solution to (3), (6): Broadcast Tree 
 The controlled flooding strategy discussed before is based on a 
broadcast tree (BT) over the network nodes. An internal node that 
receives a message from its parent, forwards it to its immediate tree 
offspring only once. For each different source, the same ST is used, 
but rooted at the given source each time. It is assumed the parent-
children associations are modified on the fly. Now, we only need to 
perform broadcast over a rooted tree, which is quite simple as the root 
can broadcast to its children who can recursively broadcast into their 
sub-trees. W.r.t. GDH.2, (3) is further improved if each parent 
removes this part from the received message that corresponds to itself 
before forwarding the remaining message to its children. Under the 
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worst case scenario that the ST is a chain, (3) =
( 1)

2
n n−

. Computing 

(3), (6) on a BT with height h(BT) we obtain: (3)<
( 1)

2
n n−

, and 

(6)≤ h(BT)≤D. 

3.4.5  Solution to (3),(6): Simultaneous Unicasts 
Another physical implementation of the logical broadcast is obtained 
by (n-1) simultaneous unicasts from the sender Mn to each member 
Mi of a single message through Rn,i. We then obtain: (3) 

=
1

1

,

n

i
n iR

−

=
∑ ≤D× (n-1),  and (6)≤D. 

Summary: Table 2 summarizes the upper bounds on the bandwidth 
and latency of the 4 protocols, when the above td improvements are 
performed; all scaled by K. These values should be contrasted with 
those in Table 1. In almost all cases the efficiency of all protocol 
increases by a factor of D or n.   

Table 2. Performance Comparison of 4 td protocols over AHNets. 

 Latency Bandwidth Exp. 

tdING 7n+4.2D+3 2n2+ n× (2D+7.6) n2 
tdBD 3D 2n2 + (D-2)n n2+n 

tdGDH1 4.2D+9n 23
2 n +(D+7.6)n (n2+3n)/2 

tdGDH2 7n+6.2D 25
2 n + 17

2 +(D-0.4)n (n2+3n)/2 

 

3.5 Comparative Performance Evaluation 
We compared the td-known KA schemes in terms of the following 
characteristics: a) latency, b) bandwidth resulting from the combined 
consideration of the relays for the message exchanges over multi-hop 
routing, which reflects the actual communication overhead in the 
network, and c) the total number of modular exponentiations . 

Figure 1. Comparative evaluation of tb-GDH.1 and td-GDH.1 
(framework (wf) vs. non-framework (nf) consideration). 
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Figure 2. A comparison of td-GKA protocols w.r.t. bandwidth, 
including the OH for framework generation, D is assumed spheric. 
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