
Towards Integrating Key Distribution with Entity
Authentication for Efficient, Scalable and Secure

Group Communication in MANETs
Maria Striki, John S. Baras

Electrical and Computer Engineering and
the Institute for Systems Research

University of Maryland, College Park
College Park, Maryland, 20740, U.S

mstriki@isr.umd.edu, baras@isr.umd.edu,

Abstract— In this paper we focus on the design of key
management (KM) schemes tailored for the environment
of Mobile Ad Hoc Networks (MANETs). A MANET is a
collection of wireless mobile nodes, communicating among
themselves over possibly multi-hop paths, without the help
of any infrastructure such as base stations or access points.
The fact that no central authorization entity is assumed at
all times for all nodes makes the task of network
operations more difficult and indicates the need for
distributed algorithms to provide the functions of
centralized entities. KM ensures communication security
among nodes and the capability of their cooperation as a
secure group. It consists of key generation, user
authentication and key distribution services. In this work
we address key distribution, group key generation, entity
authentication: we emphasize that entity authentication
should be designed with key distribution algorithms in
mind and vice versa, to achieve efficient and scalable KM
schemes for MANETs. We present an entity authentication
scheme based on the Merkle Tree algorithm, applied on a
key generation protocol recently developed – MOT- to
produce an efficient, scalable and secure KM scheme.

Keywords; MANET, key generation, authentication, Merkle Trees

I. INTRODUCTION
 As the development of wireless multicast services such as
cable TV, secure audio and conferencing, visual broadcasts,
military control, grows, research on security for group
communication becomes increasingly important. There is
demand consequently for more efficient KM schemes, suitable
for wireless mobile networks. Moreover, collisions, low link
quality and other factors result in unreliable links or excessive
delay in MANETs. All these network constraints should be
anticipated for the design of a scalable, fault-tolerant KM
scheme that operates securely and efficiently in MANETs. In
our work, we focus on the design of group key distribution and
authentication techniques in networks of limited bandwidth,
unreliable channels, where topology is changing fast. Network
nodes may have limited capacity, computation, transmission

power (satellites, laptops, PDAs, cell-phones). We show how
entity authentication can be merged with key distribution
techniques to produce a powerful, efficient, autonomous KM
scheme (in particular we present a Merkle Tree based entity
authentication scheme combined with an existing key
distribution protocol to reduce the additional KM overhead).

 Most of the current KM schemes are designed for wire-line
networks that are free from most of the constraints of
MANETs. Group KM functions, robust to tolerate frequent
node failures, network partitions/merges, delays in critical
messages, extensive computations etc., are required. Also, a
change in the topology of a group might occur while the group
key is being calculated. In some protocols re-keying may
cause enormous overhead, as the key establishment operation
must start over, and nodes might have to be re-authenticated.
These constraints make it hard for most group KM schemes to
catch up with the rapidly changing topology of the network.

 For secure communications, there is no point in distributing
shared or session keys if we cannot verify the identity of the
participant nodes. Thus, entity authentication should occur
prior to key distribution. Key distribution is usually more
sensitive to the deployment of nodes within the network, and
thus considered a much heavier operation in terms of
bandwidth and processing than entity authentication. So, it
would be more appropriate to decide first on suitable key
distribution protocols, and then on entity authentication
schemes. Extensive research has been done in terms of node to
node authentication. Such algorithms are rather prescribed and
do not provide as much freedom as key distribution schemes.
One may argue that incorporating existing authentication
schemes, to selected key distribution protocols should be very
simple. Next, we will briefly justify why entity authentication
demands a substantial merit of our investigation.

 The environment of interest in this work is this of Flat
MANETs: few, if any trusted special entities exist, that may
not be accessible to all nodes at all times. We want key
distribution schemes to be fault-tolerant in the following
aspects: the group leader should not be single point of failure,
the protocol should recover from member failures during key

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE4377

establishment and tolerate group partitions/merges at any time
during a session. We want to investigate the desired properties
of such protocols to operate well in this framework. To this
end we classified existing protocols in two families:
contributory where all members take equally part in key
generation, and non-contributory, where usually a group
leader distributes the group key alone. In previous work we
studied the limitations of these two families in MANETs, for
the design of a fault-tolerant key distribution protocol.

 In the case of non-contributory protocols, a multi-tasking
group leader is a single point of failure. Leader failure may
occur quite often in MANETs, and this is the weak point of
non-contributory protocols in comparison to contributory
ones. Finding group members to replace a faulty leader is not
enough. The new leader should securely, quickly, and with
low overhead, obtain all information gathered by the previous
leader up to that point which is not always easy. It would be
preferred that the role of the leader is rather coordinating, as in
contributory schemes, storing information that can be easily
retrieved by a next leader (e.g. TGDH). To reduce group
partitions and frequent leader elections, parameters such as
mobility, processing capabilities of a node etc. should be
considered. In tree-based non-contributory protocols, in the
event of a node failure, a new group key is computed,
updating only a restricted number of keys. On the other hand,
the strongest point of non-contributory schemes is that
members’ contributions for establishing a key are independent
and need not follow a strict ordering. In the event of failures or
delays, the rest of the nodes proceed normally to key
establishment. In a contributory protocol (e.g. GDH.2), each
member is expected to contribute its sub-share according to a
defined pattern. If a node does not respond on time, the whole
procedure comes to a standstill as all further actions depend
now on this contribution and the process starts all over again.
No node constitutes a single point of failure in these schemes.
Considering these, we claim that the hybrid 2d-Octopus (O)-
based on Hypercube - is well-suited for MANETs: it tolerates
various kinds of failures or resumes with low overhead.
Observing this, we designed two new hybrid protocols based
on (O): (GDH.2-based MO and TGDH-based MOT). MO and
particularly MOT are more efficient than the original (O).
MOT has very satisfactory overall performance and is very
robust as seen in previous work [5]. We have thus chosen to
design authentication algorithms with (O) and MOT in mind.

 Our main concern in selecting entity authentication
algorithms is that the resulting KM scheme operates efficiently
as a whole. We should not design efficient independent
solutions for each service, but rather exploit any kind of
redundancies that might result from their integration, further
reducing the total cost. Regarding the above, certain issues
arise. Is it preferable to design re-authentication based on
credentials the member initially or progressively obtains?
Which members should (re)-authenticate a node: the group
leader, an arbitrary subset of members? According to one
scenario, the member that first contacted the node should be
authorized to execute these operations, based on its partial

view of trust. According to another scenario, the policy might
require that all group members vote (global view of trust) to
accept or not the node in the group. The issue of low overhead
vs. trust and security must be investigated.

 The resources available during network bootstrapping
significantly determine the appropriate entity authentication
scheme for the first time at least, with the potential to switch
to lighter methods after the appropriate security associations
are established. The unavailability of CAs, makes it difficult to
obtain correct public keys (PKs) for the parties involved - on
which most authentication algorithms rely. So, the first issue
concerning authentication is to develop dynamic mechanisms
to substitute the functionality of centralized CAs. We still then
have to decide on the most appropriate node to node
authentication method, based on the metrics that we are mostly
interested to reduce. A seemingly suitable solution would be to
use id-based (IBE) schemes. It turns out that it can be reduced
to distributing the functionality of an absent centralized entity,
so it is no better than the already stated approaches.

 A subtle problem that KM schemes do not handle is the
following: a compromised member, once it gets the session
key, can use it to mislead other nodes in terms of the message
originator. KM does not provide data authentication and
unless it uses proper mechanisms to detect compromised
nodes, this attack could disrupt its correct function. A
proactive method based on Merkle Trees [15] has been
proposed to alleviate this problem. We propose a method to
construct a distributed dynamic CA well-suited for MANETs,
based on KM groups and on Merkle Trees (MTs). It is easy to
understand now why the topic of entity authentication for KM
in MANETs should be thoroughly investigated.

II. PREVIOUS WORK

 Becker et al.[1], derived lower bounds for contributory key
distribution and proved them for DH protocols. Steiner et
al.[2], extended DH protocols to groups. GDH.2 acquires
implicit entity authentication. TGDH by Kim et al. [3], is a
new hybrid protocol that blends binary key trees with DH.
Becker in [1], introduced Hypercube as one requiring the min.
number of rounds. In [4], Asokan et al. added recovery from
node failures. Becker introduced Octopus that required min.
number of messages and then 2d-Octopus that combined
Octopus with Hypercube to an efficient protocol for arbitrary
number of nodes. Non-contributory protocols are based on a
key distribution center. The simplest is GKMP. Logical Tree
Hierarchy (LKH), creates a hierarchy of keys for members.
Efficient evolution is One-Way Function Tree (OFT) [6] that
minimizes the total bits broadcast after a membership change.

 A large number of private or public entity authentication
schemes currently exist (RSA, Schnorr etc.). Lamport invented
the one-time password scheme [7] that uses hash chains to
prevent certain attacks. Bellovin et al. created the first strong
password protocols. Fiat-Shamir efficiently transforms a
public key identification to a signature scheme. In Kerberos,

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE4378

two entities authenticate each other via a globally trusted CA.
PGP follows a web-of-trust model that does not scale beyond a
relatively small community of trusted nodes. SUCV [8], binds
a node’s public key to its IP so that given its public key,
correctness of IP is instantly verified (many drawbacks). An
approach to deal with the absence of a CA is to distribute its
functionality among a fixed group of servers, according to
notions of threshold cryptography and proactive secret sharing
[9], where a small group with rich network connectivity is
assumed. More efficient proposals are those of Zhou [10] and
Luo [11] that attempt to extend [9] to MANETs. For data
authentication, Lamport, Merkle etc. created and refined
digital signatures using one-way functions. Perrig et al.
contributed to the design of authenticated broadcasts,
introducing protocols like: BIBA, TESLA [12], SPINS etc.
based on hash chains, loose time synchronization. Tree-
authenticated values or Merkle trees [13], provide low storage
overhead, and are used in [23], for hop-by-hop authentication.
Bobba et al.[14] ensure entity authentication by using SUCVs.

III. PROTOCOLS USED TO CONSTRUCT MOT

 We briefly describe the protocols used to construct MOT.
They are documented in detail in the TR [5].

1. Octopus Protocol
Four parties A, B, C, D generate a group key by four key
exchanges (KE). First, A-B, then C-D do a DH KE generating
keys abα , cdα . Then, A-C as well as B-D do a DH KE using
as secret values the keys generated in the 1st step. A(B) sends

()abaφα to C(D), which sends ()cdaφα to A(B) so that A-C (B-

D) generate the joint key () ()cd aba aφ φα . P1, P2,…, Pn-4, A,…, D
generate a common group as follows: A,…, D take charge of
central control. The rest distribute themselves into 4 groups:
{Pi | i∈IA}, …,{Pi | i∈ID}, IA,…, ID, are pair-wise disjoint.
P1,…,Pn generate a group key as follows:

1. ∀ X∈{A,…,D}, ∀ i∈IX, X generates joint key ki with Pi via
DH KE.

2. A, B, C, D do 4-party KE using values: a=K(IA),…,d=K(ID),
where K(J):= ()i J ikφ∈∏ , J⊆{1,..,n-4} and hold the joint key K=

()()() ()K I IK I I C DA Ba aaφ φ ∪∪

.

3. The step is described for A. Parties B, C, D act accordingly.

∀ j∈IA, A sends 2 values to Pj:
(\{ })B AK I I ja ∪ ,

()()K I IC Daaφ ∪

. Pj

derives ()(\{ }() jB A kK I I ja φ∪ = ()A BK I Ia ∪ & K=
() ()() ()K I I K I IC D A Ba aaφ φ∪ ∪

2. Hypercube Protocol
2d parties agree on a key within d rounds via DH key KE on
the edges of a d-dimensional cube. In round 1, every
participant v generates random number rv and executes DH KE
with participant v+b1 using values rv and rv+b1. In round i,
every participant v does a DH KE with v+bi. Both parties use
as secret the value generated in round i-1.

3. Tree Group DH (TGDH) protocol
 TGDH acquires the binary tree structure. The leaves are the
members and the group key is associated with the root. Any
member can be leader at any point. Node x is associated with
secret key kx and blinded key kx’ = g(kx); g is a one-way
function. Each member knows the un-blinded keys on its root
path, and all blinded keys of the tree. Members compute un-
blinded keys along their path. If a blinded key changes and the
appropriate member gets the new value, it re-computes the
keys on its path to find the new key. The secret key of an
internal node is the result of a DH KE between its offspring.
Initially all members becomes sponsors [5].

4. 2d- Octopus Based Protocol (O)
For a group of arbitrary size, Octopus is generalized. In (O), 2d
parties now take charge of the central control. The remaining
n-2d parties divide into 2d groups. (MO), (MOT) are based on
GDH.2, TGDH respectively: they maintain the 2nd step of (O)
intact and substitute the centralized scheme of the 1st and 3d
step with GDH.2 or TGDH. The subgroup key becomes:
 = Nα (MO) or xyα = Nα (MOT). During the 1st
step each subgroup establishes its own key and handles
membership changes as indicated by GDH.2 and TGDH. In
both protocols the subgroup key acquires the desired structure
(not all protocols are appropriate to incorporate in (O)).

IV. BRIEF DISCUSSION ON RESULTS FOR MOT

 A reactive algorithm [4] and a proactive one [5], have been
added to Hypercube, to allow recovery from node failures,
introducing either significant bandwidth overhead or extra
computation overhead. Papers on (O) do not address cases of
membership change. We analyzed all cases and calculated the
cost values for (O), MO, and MOT. Hypercube is the core for
all Octopus-based schemes, but the key generation scheme of
each subgroup is important as well: Subgroups in (O) and
(MO) assume either a single fixed leader or strict ordering
during key establishment (GDH.2), cannot tolerate delays or
failures and are not fault tolerant. TGDH however, assumes
that any node should be ready to become sponsor and that the
same amount of information is stored in all members with no
considerable overhead. Since the subgroup is relatively small
in size now and is deployed on a restricted area of the network
too, TGDH can be considered more robust for flat MANETs.

 Each “edge” of Hypercube represents a subgroup leader. The
subgroup keys construct the initial secret share for Hypercube,
which is used to calculate the group key. The subgroup leaders
distribute parts of the group key to their members so that only
they are able to reconstruct it. The subgroup key generation
protocols may be selected with freedom. Each subgroup is
deployed on a relatively restricted network area and it is easier
to handle locally. Arbitrarily many members can be assigned
to each subgroup, given the topology of the network. This
results in less routing traffic and less bandwidth consumption.
Also, a faulty leader can be replaced by another node from its
own subgroup. It is clear how these properties render the
protocol robust to node failures, group merges/partitions.

Prepared through collaborative participation in the Communications and
Networks Consortium sponsored by the U. S. Army Research Laboratory
under the Collaborative Technology Alliance Program, Cooperative
Agreement DAAD19-01-2-0011. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes not withstanding
any copyright notation thereon

zaba

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE4379

V. AUTHENTICATION ISSUES & KEY GENERATION

A. Simple and Inexpensive Entity Authentication in MANETs

Lamport’s Hash is a password protocol for wire-line networks.
It achieves simple, low cost authentication, prevents replays,
eavesdropping, impersonation attacks, with successive hashes.
Alice and Bob share a password: pwd. Initially, Alice selects
number n, computes xn=Hn(pwd), and sends Bob values <n,xn>.
When Alice wishes to prove her id to Bob, Bob sends <n>. She
computes and sends Bob value xn-1 = Hn-1(pwd). Bob compares
H(xn-1) to the value currently stored. Upon verification, Bob
replaces <n,xn> with <n-1,xn-1> for a future re-authentication.

 To apply this scheme to MANETs, and achieve mutual
authentication, we modify it as follows: at bootstrapping,
nodes execute an authenticated DH KE (e.g. sign the DH
values they send), to obtain a secret key. They use this key
once, in order to exchange initial quantities <n,xn>, <m,xm>
with a challenge response protocol for mutual authentication
that requires low number of exchanges. From now on, each
time they request re-authentication, they apply the original
Lamport. This method has several advantages particularly if
combined with protocols (O) or MOT: a subgroup leader may
contribute the same value computed only once for its share in
the DH KE. The members will send their individual shares
<n,xn> to the leader, along with key distribution information,
so that no extra bandwidth is required for this action. After
bootstrapping, the leader can easily re-authenticate any
subgroup member. If a member moves to another subgroup it
need not re-initiate Lamport with the new subgroup leader: the
previous leader communicates the “authentication state” of the
member to the rest of subgroup leaders. This method requires
public keys (PKs) for the initial phase. Our approach on how
nodes get and trust other nodes’ PKs, is discussed next.

B. Bootstrapping - Certification Authorities (CAs)

 Preloading nodes with the appropriate information prior to
deployment, becomes especially important in the absence of
on-line CAs. To go around this problem, a node could use
SUCVs to bind its IP with its PK at bootstrapping only at least.
An obvious problem of this approach is that when a node
moves to another LAN, it must comply with the auto-
configuration hierarchy and may not be able to retain its IP
and consequently its PK. Also, when the PK of the node must
be refreshed, its IP should change, which is impractical. If the
node relies only on off-line CAs, that bind its PK with its id,
then time-sensitive certificate renewal/revocations, cannot be
handled in a timely manner. Furthermore, how do nodes that
have initially “spoken” to different off-line CAs “recognize”
each other and form initial security associations? How to
replace the functionality of CAs after deployment?

 We address the first question by assuming that all nodes
initially carry a certificate issued by an off-line CA which also
includes a key ring that contains a predefined number of PKs
of other trusted off-line CAs at random. Assume that node A
wants to securely communicate with node B. If A knows the
correct PK of the CA that authenticated B vice versa, then the

two nodes will get the correct PK for each other and execute a
public identification scheme. Otherwise, each node attempts to
discover and authenticate nodes that have spoken to one of the
CAs designated by its key-ring, with the goal to find a
“certification path” that leads to the PK of the CA it is looking
for. A utilizes the key-ring of B upon verification only. During
the discovery process, a node obtains the PKs of several CAs.
This approach is similar to [16], which we can be used to
determine optimal parameters, e.g. length of the key-ring etc.,
to ensure that the certification paths are relatively small.

C. Simple and Inexpensive Data Authentication in MANETs
 As we mentioned, Merkle Trees were used in [15] to provide
data authentication. In brief, the scheme works as follows: to
authenticate a sequence of n values u0,,…, uw-1 the sender
virtually places them at the leaves of a binary tree, and blinds
them with hash function H, so that ui

’ = H(ui). The value of any
internal tree node p comes from its offspring l, r so that mp
=H(ml|mr). The root authenticates all leafs. To ensure
authenticity and non-repudiation, it is signed by the sender. To
authenticate value ui the sender discloses i, ui, the signed root
and all required values (sibling to those in the path to the root)
that allow the receiver to reconstruct the root value and verify
that it equals the expected value. It is not possible for another
group member to impersonate the sender. This method is more
efficient than signatures or TESLA since it is based on hashing,
and requires only one signature per tree. The sender can pre-
compute the appropriate 2n hashed values. The only price to
pay is this extra bandwidth. Next, we will show how to use this
concept to address our second question: create dynamic,
distributed “CAs” from nodes that belong to a KM group.

D. Modified Merkle Trees for dynamic CA Construction
 Assume a KM scheme that uses MOT for key generation.
Subgroups form virtual binary trees. A CA per subgroup will
be created, and initially all members will participate to the CA
construction: each subgroup member creates its secret share mi
via DH KE with the sponsor. The sponsor uses Merkle Trees
to authenticate these values with the unique root value. At this
point we suggest a slight variation to the previous scheme:
assume that the offspring of the root produce values L and R,
known both only to the sponsor, which broadcasts values: gL
and gR to the subgroup. It also sends the proper hashed values
to members, so that each may reconstructs only L or only R.
Through a DH KE, all members are able to calculate the value
mroot: gLR. This value will be used as the CA PK, whereas the
CA SK <LR> will be known only to the subgroup leader. The
CA PK will be communicated to the rest of nodes.

 The CA of a subgroup is robust to membership changes and
certificates may still be valid, as long as there still exists an
adequate amount of members having initially participated to
the creation of the CA, and the subgroup leader that owns the
CA SK is still the same. In this variation, the evicted node
does not know the CA SK, and thus cannot tamper with its
operations. If a node moves to another subgroup, it will
eventually need to get a certificate from the new subgroup

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE4380

(smooth handoff) so that operations like update/revocation are
faster, “localized”, and cause less bandwidth overhead. The
scheme is very robust to failures, but has certain drawbacks:
it takes only two colluding members to reconstruct the CA
SK, the sponsor knows the CA SK and is thus a single point
of failure. We may also distribute the knowledge of the CA
SK to a larger members’ subset. Further details can be found
in our TR [17]. Our method combines attributes of KM groups
with the low cost Merkle Tree scheme to construct efficient
and robust CAs. We wish to avoid existing impractical heavy
bandwidth-delay solutions for MANETs (e.g. based on
Threshold Crypto etc.). Future research focuses on the design
of more efficient “authentication” schemes, on determining
appropriate entities to participate, and on the design of
distributed ways to monitor and collect “state information”.

VI. RESULTS AND DISCUSSION

Cost (O)+Mod. Lamport MOT+Mod. (Lamport+Merkle)
GSC
Store K( d

dn
2

2− +d) or

K(3  d
dn
2

2− +d+1)

( d
n
2 +2log  d

n
2 +d+  d

dn
2

2− +2)K

Memb.
Store

(2+d)K+(X+1)K ( d
n

2 +2log  d
n

2 +d+2+X)K
Initial
GSC

Comp.
(2  d

dn
2

2− +2d)CE+( d
dn
2

2−)
4/3+ 1.25

( d
dn
2

2−)K2+  d
n

2 Crr+

(CE +CPD) +  d
dn
2

2−

(CE+CPE)+CSD+ 30K

(2log  d
n

2 +2d)CE+  d
n

2 Crr

max. +(CE+CPD)+  d
dn
2

2− (CE +

CPE) +CSD+ 30K (Lamport)

+60  d
n
2 K +3CE(2K) +( d

n
2 -3)

CSE(2K) (Merkle)
Initial
Comm. (2n+(d-1)2d+1 +2  d

n
2) K (2d2  d

n
2 +2d+1d+6  d

n
2)K

Table1: Key Generation Costs after addition of authentication algorithms

Table1 shows some of the comparison results of (O) and MOT
key generation schemes: an entity authentication scheme
(Modified Lamport) has been added to both, and our modified
Merkle Scheme for authentication and distributed CA services
has been added only to MOT. It is interesting to observe that
MOT continues to have the lowest initial computation cost
despite the two authentication services it provides. As of
communication cost, (O) performs slightly better for smaller d,
but as d increases MOT becomes more and more efficient.

Figure1. Initial Comm/tion vs. Group Figure 2. Initial Comm/tion vs. Group
Size, d=6. Non authenticated MOT, size, d=6, for authenticated (O), MOT
(O) achieve almost same lowest compared to OFT. O & MOT achieve
cost, OFT is slightly worse. almost the same lower cost

Figure 3. Previous results on Init. GSC Figure 4. GSC computation cost of
comp. cost w/o authentication. authenticated (O), MOT.

VI. SUMMARY AND CONCLUSIONS
We show how “authentication” can be merged with key
distribution to produce efficient KM schemes in MANETs.
We present a modified entity authentication scheme and
construct dynamic distributed CAs, based on Merkle Trees.
We integrated them with key generation protocols (O), MOT,
and evaluated the results. We observed that MOT could still
outperform the protocols it had been compared to before. The
results underline the importance of combining KM techniques
to exploit redundancies, and show that there is scope for
further improvement. Research on the design of efficient,
secure and robust “authentication”, is still on-going.

REFERENCES
[1] Klaus Becker, Uta Wille. Communication Complexity of Group Key

Distribution. Proc.5th ACM Conference on Computer & Comm/tions
Security, pages 1-6, San Francisco, CA, November 1998. ACM Press

[2] Steiner M., Tsudik G., Waidner M., Diffie-Hellman. Key Distribution
Extended to Groups. 3rd ACM Conference on Computer & Comm/tion
Security, ACM Press, 1996.31-37

[3] A.Perrig. Efficient Collaborative Key Management Protocols for Secure
Autonomous Group Communication. Int’l Workshop on Cryptographic
Techniques E-Commerce CryptTEC’99.

[4] Asokan, Ginzboorg. Key-Agreement in Ad-Hoc Networks. Elsevier’00
[5] M. Striki, J. Baras. Efficient Scalable Key Agreement Protocols for

Secure Multicast Comm/tion in MANETs. CSHCN TR 2002.
[6] D. McGrew. A.T.Sherman. Key-Establishment in Large Dynamic

Groups Using One-Way Function Trees. May 1998.
[7] L. Lamport, “Password Authentication with Insecure Communication,“

Comm/tions of the ACM, Vol 24, No 11, November 1981, pp 770-772
[8] Montenegro, Castelluccia, “Statistically Unique and Cryptographically

Verifiable (SUCV) Identifiers and Addresses,” NDSS 2002
[9] A. Shamir, “How to Share a Secret,” Communications of ACM, 1979
[10] Zhou, Haas. “Securing adhoc networks”, IEEE Networks, 13:24-30, ‘99
[11] J.Kong, P.Zerfos, H.Luo, S.Lu and L.Zhang. “Providing robust and

Ubiquitous security support for MANET,” IEEE ICNP 2001, 2001
[12] A.Perrig, R.Canetti, D.Song, J.D.Tygar.,”Efficient and Secure

SourAuthentication for multicast,”. Procs of the Symposium on Network
and Distributed Systems Security (NDSS 2001), pages 35-46. Feb. 2001

[13] R.C.Merkle.,”Secrecy, Authentication and Public Key Systems,”.
Technical Report, Stanford University, June 1979

[14] R.Bobba, L.Eschenauer, V.Gligor, W.Arbaugh.,”Bootstrapping Security
Associations for Routing MANETs,”. TR, UMD, 2002-44, 2002

[15] A.Perrig, Y.C.Hu, D.B.Johnson,”Packet Leashes: A defense against
Wormhole Attacks in Wireless Ad Hoc Networks”, Infocom 2003

[16] L.Eschenauer, V.Gligor., “A Key Management Scheme for distributed
sensor networks”., Procs of ACM CCS’02, pages 41-47, Nov, 2002

[17] M. Striki. J. Baras,” Towards integrating key distribution with entity
authentication for efficient, scalable and secure group communication in
MANETs”,CSHCN,TechnicalReport,2004

 Initial Communication vs. Group Size, d=6 (log. Scale)

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

20
00

60
00

10
00

0

14
00

0

18
00

0

22
00

0

26
00

0

30
00

0

Group Size (n)

(O)

(MO)

(MOT)

(OFT)

 Communication Cost vs. Group Size
d=6

1.00E+06
2.10E+07
4.10E+07
6.10E+07
8.10E+07
1.01E+08

2.0
0E

+03

6.0
0E

+0
3

1.0
0E

+04

1.4
0E

+04

1.8
0E

+0
4

2.2
0E

+04

2.6
0E

+0
4

Group Size

C
om

m
un

ic
at

io
n

C
os

t f
or

(O

),
M

O
T,

 O
FT

(O)
MOT
OFT

Overall GSCs Initiall Computation vs. Group Size, d=6 (log.
Scale)

1.00E+12

1.00E+13

1.00E+14

1.00E+15

1.00E+16

1.00E+17

20
00

60
00

10
00

0
14

00
0

18
00

0
22

00
0

26
00

0
30

00
0

Group Size (n)

(O)
(MO)
(MOT)
(OFT)

 GSC Computation Cost vs. Group Size
d=6

1E+11
1E+12
1E+13
1E+14
1E+15
1E+16
1E+17

2.0
0E

+03

6.0
0E

+03

1.0
0E

+04

1.4
0E

+04

1.8
0E

+04

2.2
0E

+04

2.6
0E

+04

Group Size

G
SC

 C
om

pu
ta

tio
n

Co
st

fo

r (
O

),
M

O
T,

 O
FT

(O)
MOT
OFT

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE4381

	footer1:

