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Abstract— In this paper we focus on the design of key 
management (KM) schemes tailored for the environment 
of Mobile Ad Hoc Networks (MANETs). A MANET is a 
collection of wireless mobile nodes, communicating among 
themselves over possibly multi-hop paths, without the help 
of any infrastructure such as base stations or access points. 
The fact that no central authorization entity is assumed at 
all times for all nodes makes the task of network 
operations more difficult and indicates the need for 
distributed algorithms to provide the functions of 
centralized entities. KM ensures communication security 
among nodes and the capability of their cooperation as a 
secure group. It consists of key generation, user 
authentication and key distribution services. In this work 
we address key distribution, group key generation, entity 
authentication:  we emphasize that entity authentication 
should be designed with key distribution algorithms in 
mind and vice versa, to achieve efficient and scalable KM 
schemes for MANETs. We present an entity authentication 
scheme based on the Merkle Tree algorithm, applied on a 
key generation protocol recently developed – MOT- to 
produce an efficient, scalable and secure KM scheme.  
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I.  INTRODUCTION 
    As the development of wireless multicast services such as 
cable TV, secure audio and conferencing, visual broadcasts, 
military control, grows, research on security for group 
communication becomes increasingly important. There is 
demand consequently for more efficient KM schemes, suitable 
for wireless mobile networks. Moreover, collisions, low link 
quality and other factors result in unreliable links or excessive 
delay in MANETs. All these network constraints should be 
anticipated for the design of a scalable, fault-tolerant KM 
scheme that operates securely and efficiently in MANETs. In 
our work, we focus on the design of group key distribution and 
authentication techniques in networks of limited bandwidth, 
unreliable channels, where topology is changing fast. Network 
nodes may have limited capacity, computation, transmission 

power (satellites, laptops, PDAs, cell-phones). We show how 
entity authentication can be merged with key distribution 
techniques to produce a powerful, efficient, autonomous KM 
scheme (in particular we present a Merkle Tree based entity 
authentication scheme combined with an existing key 
distribution protocol to reduce the additional KM overhead). 

    Most of the current KM schemes are designed for wire-line 
networks that are free from most of the constraints of 
MANETs. Group KM functions, robust to tolerate frequent 
node failures, network partitions/merges, delays in critical 
messages, extensive computations etc., are required. Also, a 
change in the topology of a group might occur while the group 
key is being calculated. In some protocols re-keying may 
cause enormous overhead, as the key establishment operation 
must start over, and nodes might have to be re-authenticated. 
These constraints make it hard for most group KM schemes to 
catch up with the rapidly changing topology of the network. 

    For secure communications, there is no point in distributing 
shared or session keys if we cannot verify the identity of the 
participant nodes. Thus, entity authentication should occur 
prior to key distribution. Key distribution is usually more 
sensitive to the deployment of nodes within the network, and 
thus considered a much heavier operation in terms of 
bandwidth and processing than entity authentication. So, it 
would be more appropriate to decide first on suitable key 
distribution protocols, and then on entity authentication 
schemes. Extensive research has been done in terms of node to 
node authentication. Such algorithms are rather prescribed and 
do not provide as much freedom as key distribution schemes. 
One may argue that incorporating existing authentication 
schemes, to selected key distribution protocols should be very 
simple. Next, we will briefly justify why entity authentication 
demands a substantial merit of our investigation. 

   The environment of interest in this work is this of Flat 
MANETs: few, if any trusted special entities exist, that may 
not be accessible to all nodes at all times. We want key 
distribution schemes to be fault-tolerant in the following 
aspects: the group leader should not be single point of failure, 
the protocol should recover from member failures during key 
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establishment and tolerate group partitions/merges at any time 
during a session. We want to investigate the desired properties 
of such protocols to operate well in this framework. To this 
end we classified existing protocols in two families: 
contributory where all members take equally part in key 
generation, and non-contributory, where usually a group 
leader distributes the group key alone. In previous work we 
studied the limitations of these two families in MANETs, for 
the design of a fault-tolerant key distribution protocol. 

    In the case of non-contributory protocols, a multi-tasking 
group leader is a single point of failure. Leader failure may 
occur quite often in MANETs, and this is the weak point of 
non-contributory protocols in comparison to contributory 
ones. Finding group members to replace a faulty leader is not 
enough. The new leader should securely, quickly, and with 
low overhead, obtain all information gathered by the previous 
leader up to that point which is not always easy. It would be 
preferred that the role of the leader is rather coordinating, as in 
contributory schemes, storing information that can be easily 
retrieved by a next leader (e.g. TGDH). To reduce group 
partitions and frequent leader elections, parameters such as 
mobility, processing capabilities of a node etc. should be 
considered. In tree-based non-contributory protocols, in the 
event of a node failure, a new group key is computed, 
updating only a restricted number of keys. On the other hand, 
the strongest point of non-contributory schemes is that 
members’ contributions for establishing a key are independent 
and need not follow a strict ordering. In the event of failures or 
delays, the rest of the nodes proceed normally to key 
establishment. In a contributory protocol (e.g. GDH.2), each 
member is expected to contribute its sub-share according to a 
defined pattern. If a node does not respond on time, the whole 
procedure comes to a standstill as all further actions depend 
now on this contribution and the process starts all over again. 
No node constitutes a single point of failure in these schemes. 
Considering these, we claim that the hybrid 2d-Octopus (O)-
based on Hypercube - is well-suited for MANETs: it tolerates 
various kinds of failures or resumes with low overhead. 
Observing this, we designed two new hybrid protocols based 
on (O): (GDH.2-based MO and TGDH-based MOT). MO and 
particularly MOT are more efficient than the original (O). 
MOT has very satisfactory overall performance and is very 
robust as seen in previous work [5]. We have thus chosen to 
design authentication algorithms with (O) and MOT in mind. 

    Our main concern in selecting entity authentication 
algorithms is that the resulting KM scheme operates efficiently 
as a whole. We should not design efficient independent 
solutions for each service, but rather exploit any kind of 
redundancies that might result from their integration, further 
reducing the total cost. Regarding the above, certain issues 
arise. Is it preferable to design re-authentication based on 
credentials the member initially or progressively obtains? 
Which members should (re)-authenticate a node: the group 
leader, an arbitrary subset of members? According to one 
scenario, the member that first contacted the node should be 
authorized to execute these operations, based on its partial 

view of trust. According to another scenario, the policy might 
require that all group members vote (global view of trust) to 
accept or not the node in the group. The issue of low overhead 
vs. trust and security must be investigated. 

    The resources available during network bootstrapping 
significantly determine the appropriate entity authentication 
scheme for the first time at least, with the potential to switch 
to lighter methods after the appropriate security associations 
are established. The unavailability of CAs, makes it difficult to 
obtain correct public keys (PKs) for the parties involved - on 
which most authentication algorithms rely. So, the first issue 
concerning authentication is to develop dynamic mechanisms 
to substitute the functionality of centralized CAs. We still then 
have to decide on the most appropriate node to node 
authentication method, based on the metrics that we are mostly 
interested to reduce. A seemingly suitable solution would be to 
use id-based (IBE) schemes. It turns out that it can be reduced 
to distributing the functionality of an absent centralized entity, 
so it is no better than the already stated approaches.  

   A subtle problem that KM schemes do not handle is the 
following: a compromised member, once it gets the session 
key, can use it to mislead other nodes in terms of the message 
originator. KM does not provide data authentication and 
unless it uses proper mechanisms to detect compromised 
nodes, this attack could disrupt its correct function. A 
proactive method based on Merkle Trees [15] has been 
proposed to alleviate this problem. We propose a method to 
construct a distributed dynamic CA well-suited for MANETs, 
based on KM groups and on Merkle Trees (MTs). It is easy to 
understand now why the topic of entity authentication for KM 
in MANETs should be thoroughly investigated. 

II. PREVIOUS WORK 

   Becker et al.[1], derived lower bounds for contributory key 
distribution and proved them for DH protocols. Steiner et 
al.[2], extended DH protocols to groups. GDH.2 acquires 
implicit entity authentication. TGDH by Kim et al. [3], is a 
new hybrid protocol that blends binary key trees with DH. 
Becker in [1], introduced Hypercube as one requiring the min. 
number of rounds. In [4], Asokan et al. added recovery from 
node failures. Becker introduced Octopus that required min. 
number of messages and then 2d-Octopus that combined 
Octopus with Hypercube to an efficient protocol for arbitrary 
number of nodes. Non-contributory protocols are based on a 
key distribution center. The simplest is GKMP. Logical Tree 
Hierarchy (LKH), creates a hierarchy of keys for members. 
Efficient evolution is One-Way Function Tree (OFT) [6] that 
minimizes the total bits broadcast after a membership change.  

   A large number of private or public entity authentication 
schemes currently exist (RSA, Schnorr etc.). Lamport invented 
the one-time password scheme [7] that uses hash chains to 
prevent certain attacks. Bellovin et al. created the first strong 
password protocols. Fiat-Shamir efficiently transforms a 
public key identification to a signature scheme. In Kerberos, 
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two entities authenticate each other via a globally trusted CA. 
PGP follows a web-of-trust model that does not scale beyond a 
relatively small community of trusted nodes. SUCV [8], binds 
a node’s public key to its IP so that given its public key, 
correctness of IP is instantly verified (many drawbacks). An 
approach to deal with the absence of a CA is to distribute its 
functionality among a fixed group of servers, according to 
notions of threshold cryptography and proactive secret sharing 
[9], where a small group with rich network connectivity is 
assumed. More efficient proposals are those of Zhou [10] and 
Luo [11] that attempt to extend [9] to MANETs. For data 
authentication, Lamport, Merkle etc. created and refined 
digital signatures using one-way functions. Perrig et al. 
contributed to the design of authenticated broadcasts, 
introducing protocols like: BIBA, TESLA [12], SPINS etc. 
based on hash chains, loose time synchronization. Tree-
authenticated values or Merkle trees [13], provide low storage 
overhead, and are used in [23], for hop-by-hop authentication. 
Bobba et al.[14] ensure entity authentication by using SUCVs.  

III. PROTOCOLS USED TO CONSTRUCT MOT 

     We briefly describe the protocols used to construct MOT. 
They are documented in detail in the TR [5]. 

1. Octopus Protocol 
Four parties A, B, C, D generate a group key by four key 
exchanges (KE). First, A-B, then C-D do a DH KE generating 
keys abα , cdα . Then, A-C as well as B-D do a DH KE using 
as secret values the keys generated in the 1st step. A(B) sends 

( )abaφα to C(D), which sends ( )cdaφα  to A(B) so that A-C (B-

D) generate the joint key ( ) ( )cd aba aφ φα . P1, P2,…, Pn-4, A,…, D 
generate a common group as follows: A,…, D  take charge of 
central control. The rest distribute themselves into 4 groups: 
{Pi | i∈IA}, …,{Pi | i∈ID}, IA,…, ID, are pair-wise disjoint. 
P1,…,Pn  generate a group key as follows: 

1. ∀ X∈{A,…,D}, ∀ i∈IX, X generates joint key ki with Pi via 
DH KE. 

2. A, B, C, D do 4-party KE using values: a=K(IA),…,d=K(ID), 
where K(J):= ( )i J ikφ∈∏ , J⊆{1,..,n-4} and hold the joint key K= 

( )( )( ) ( )K I IK I I C DA Ba aaφ φ ∪∪

. 

3. The step is described for A. Parties B, C, D act accordingly. 

∀ j∈IA, A sends 2 values to Pj: 
( \{ })B AK I I ja ∪ ,

( )( )K I IC Daaφ ∪

. Pj 

derives ( )( \{ }( ) jB A kK I I ja φ∪ = ( )A BK I Ia ∪  & K=
( ) ( )( ) ( )K I I K I IC D A Ba aaφ φ∪ ∪

 

2. Hypercube Protocol 
2d parties agree on a key within d rounds via DH key KE on 
the edges of a d-dimensional cube. In round 1, every 
participant v generates random number rv and executes DH KE 
with participant v+b1 using values rv and rv+b1. In round i, 
every participant v does a DH KE with v+bi. Both parties use 
as secret the value generated in round i-1.  

3. Tree Group DH (TGDH) protocol 
   TGDH acquires the binary tree structure. The leaves are the 
members and the group key is associated with the root. Any 
member can be leader at any point. Node x is associated with 
secret key kx and blinded key kx’ = g(kx); g is a one-way 
function. Each member knows the un-blinded keys on its root 
path, and all blinded keys of the tree. Members compute un-
blinded keys along their path. If a blinded key changes and the 
appropriate member gets the new value, it re-computes the 
keys on its path to find the new key. The secret key of an 
internal node is the result of a DH KE between its offspring. 
Initially all members becomes sponsors [5].   

4. 2d- Octopus Based Protocol (O) 
For a group of arbitrary size, Octopus is generalized. In (O), 2d 
parties now take charge of the central control. The remaining 
n-2d parties divide into 2d groups. (MO), (MOT) are based on 
GDH.2, TGDH respectively: they maintain the 2nd step of (O) 
intact and substitute the centralized scheme of the 1st and 3d 
step with GDH.2 or TGDH. The subgroup key becomes:             
             =  Nα  (MO) or xyα  = Nα  (MOT). During the 1st 
step each subgroup establishes its own key and handles 
membership changes as indicated by GDH.2 and TGDH. In 
both protocols the subgroup key acquires the desired structure 
(not all protocols are appropriate to incorporate in (O)).  

IV. BRIEF DISCUSSION ON RESULTS FOR MOT 

    A reactive algorithm [4] and a proactive one [5], have been 
added to Hypercube, to allow recovery from node failures, 
introducing either significant bandwidth overhead or extra 
computation overhead. Papers on (O) do not address cases of 
membership change. We analyzed all cases and calculated the 
cost values for (O), MO, and MOT. Hypercube is the core for 
all Octopus-based schemes, but the key generation scheme of 
each subgroup is important as well: Subgroups in (O) and 
(MO) assume either a single fixed leader or strict ordering 
during key establishment (GDH.2), cannot tolerate delays or 
failures and are not fault tolerant. TGDH however, assumes 
that any node should be ready to become sponsor and that the 
same amount of information is stored in all members with no 
considerable overhead. Since the subgroup is relatively small 
in size now and is deployed on a restricted area of the network 
too, TGDH can be considered more robust for flat MANETs. 

   Each “edge” of Hypercube represents a subgroup leader. The 
subgroup keys construct the initial secret share for Hypercube, 
which is used to calculate the group key. The subgroup leaders 
distribute parts of the group key to their members so that only 
they are able to reconstruct it. The subgroup key generation 
protocols may be selected with freedom. Each subgroup is 
deployed on a relatively restricted network area and it is easier 
to handle locally. Arbitrarily many members can be assigned 
to each subgroup, given the topology of the network. This 
results in less routing traffic and less bandwidth consumption. 
Also, a faulty leader can be replaced by another node from its 
own subgroup. It is clear how these properties render the 
protocol robust to node failures, group merges/partitions. 
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Agreement DAAD19-01-2-0011. The U.S. Government is authorized to 
reproduce and distribute reprints for Government purposes not withstanding 
any copyright notation thereon 
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V. AUTHENTICATION ISSUES & KEY GENERATION 

A. Simple and Inexpensive Entity Authentication in MANETs 

Lamport’s Hash is a password protocol for wire-line networks. 
It achieves simple, low cost authentication, prevents replays, 
eavesdropping, impersonation attacks, with successive hashes. 
Alice and Bob share a password: pwd. Initially, Alice selects 
number n, computes xn=Hn(pwd), and sends Bob values <n,xn>. 
When Alice wishes to prove her id to Bob, Bob sends <n>. She 
computes and sends Bob value xn-1 = Hn-1(pwd). Bob compares 
H(xn-1) to the value currently stored.  Upon verification, Bob 
replaces <n,xn> with <n-1,xn-1> for a future re-authentication.  

  To apply this scheme to MANETs, and achieve mutual 
authentication, we modify it as follows: at bootstrapping, 
nodes execute an authenticated DH KE (e.g. sign the DH 
values they send), to obtain a secret key. They use this key 
once, in order to exchange initial quantities <n,xn>, <m,xm> 
with a challenge response protocol for mutual authentication 
that requires low number of exchanges. From now on, each 
time they request re-authentication, they apply the original 
Lamport. This method has several advantages particularly if 
combined with protocols (O) or MOT: a subgroup leader may 
contribute the same value computed only once for its share in 
the DH KE. The members will send their individual shares 
<n,xn> to the leader, along with key distribution information, 
so that no extra bandwidth is required for this action. After 
bootstrapping, the leader can easily re-authenticate any 
subgroup member. If a member moves to another subgroup it 
need not re-initiate Lamport with the new subgroup leader: the 
previous leader communicates the “authentication state” of the 
member to the rest of subgroup leaders. This method requires 
public keys (PKs) for the initial phase. Our approach on how 
nodes get and trust other nodes’ PKs, is discussed next. 

B. Bootstrapping - Certification Authorities (CAs) 

   Preloading nodes with the appropriate information prior to 
deployment, becomes especially important in the absence of 
on-line CAs. To go around this problem, a node could use 
SUCVs to bind its IP with its PK at bootstrapping only at least. 
An obvious problem of this approach is that when a node 
moves to another LAN, it must comply with the auto-
configuration hierarchy and may not be able to retain its IP 
and consequently its PK. Also, when the PK of the node must 
be refreshed, its IP should change, which is impractical. If the 
node relies only on off-line CAs, that bind its PK with its id, 
then time-sensitive certificate renewal/revocations, cannot be 
handled in a timely manner. Furthermore, how do nodes that 
have initially “spoken” to different off-line CAs “recognize” 
each other and form initial security associations? How to 
replace the functionality of CAs after deployment? 

    We address the first question by assuming that all nodes 
initially carry a certificate issued by an off-line CA which also 
includes a key ring that contains a predefined number of PKs 
of other trusted off-line CAs at random. Assume that node A 
wants to securely communicate with node B. If A knows the 
correct PK of the CA that authenticated B vice versa, then the 

two nodes will get the correct PK for each other and execute a 
public identification scheme. Otherwise, each node attempts to 
discover and authenticate nodes that have spoken to one of the 
CAs designated by its key-ring, with the goal to find a 
“certification path” that leads to the PK of the CA it is looking 
for. A utilizes the key-ring of B upon verification only. During 
the discovery process, a node obtains the PKs of several CAs. 
This approach is similar to [16], which we can be used to 
determine optimal parameters, e.g. length of the key-ring etc., 
to ensure that the certification paths are relatively small.  

C. Simple and Inexpensive Data Authentication in MANETs 
 As we mentioned, Merkle Trees were used in [15] to provide 
data authentication. In brief, the scheme works as follows: to 
authenticate a sequence of n values u0,,…, uw-1 the sender 
virtually places them at the leaves of a binary tree, and blinds 
them with hash function H, so that ui

’ = H(ui). The value of any 
internal tree node p comes from its offspring l, r so that mp 
=H(ml|mr). The root authenticates all leafs. To ensure 
authenticity and non-repudiation, it is signed by the sender. To 
authenticate value ui the sender discloses i, ui, the signed root 
and all required values (sibling to those in the path to the root) 
that allow the receiver to reconstruct the root value and verify 
that it equals the expected value. It is not possible for another 
group member to impersonate the sender. This method is more 
efficient than signatures or TESLA since it is based on hashing, 
and requires only one signature per tree. The sender can pre-
compute the appropriate 2n hashed values. The only price to 
pay is this extra bandwidth. Next, we will show how to use this 
concept to address our second question: create dynamic, 
distributed “CAs” from nodes that belong to a KM group.   

D. Modified Merkle Trees  for dynamic CA Construction 
   Assume a KM scheme that uses MOT for key generation. 
Subgroups form virtual binary trees. A CA per subgroup will 
be created, and initially all members will participate to the CA 
construction: each subgroup member creates its secret share mi 
via DH KE with the sponsor. The sponsor uses Merkle Trees 
to authenticate these values with the unique root value. At this 
point we suggest a slight variation to the previous scheme: 
assume that the offspring of the root produce values L and R, 
known both only to the sponsor, which broadcasts values: gL 
and gR to the subgroup. It also sends the proper hashed values 
to members, so that each may reconstructs only L or only R. 
Through a DH KE, all members are able to calculate the value 
mroot: gLR. This value will be used as the CA PK, whereas the 
CA SK <LR> will be known only to the subgroup leader. The 
CA PK will be communicated to the rest of nodes.                

   The CA of a subgroup is robust to membership changes and 
certificates may still be valid, as long as there still exists an 
adequate amount of members having initially participated to 
the creation of the CA, and the subgroup leader that owns the 
CA SK is still the same. In this variation, the evicted node 
does not know the CA SK, and thus cannot tamper with its 
operations. If a node moves to another subgroup, it will 
eventually need to get a certificate from the new subgroup 
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(smooth handoff) so that operations like update/revocation are 
faster, “localized”, and cause less bandwidth overhead. The 
scheme is very robust to failures, but has certain drawbacks: 
it takes only two colluding members to reconstruct the CA 
SK, the sponsor knows the CA SK and is thus a single point 
of failure. We may also distribute the knowledge of the CA 
SK to a larger members’ subset. Further details can be found 
in our TR [17]. Our method combines attributes of KM groups 
with the low cost Merkle Tree scheme to construct efficient 
and robust CAs. We wish to avoid existing impractical heavy 
bandwidth-delay solutions for MANETs (e.g. based on 
Threshold Crypto etc.). Future research focuses on the design 
of more efficient “authentication” schemes, on determining 
appropriate entities to participate, and on the design of 
distributed ways to monitor and collect “state information”. 

VI. RESULTS AND DISCUSSION 
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Table1: Key Generation Costs after addition of authentication algorithms 

Table1 shows some of the comparison results of (O) and MOT 
key generation schemes: an entity authentication scheme 
(Modified Lamport) has been added to both, and our modified 
Merkle Scheme for authentication and distributed CA services 
has been added only to MOT. It is interesting to observe that 
MOT continues to have the lowest initial computation cost 
despite the two authentication services it provides. As of 
communication cost, (O) performs slightly better for smaller d, 
but as d increases MOT becomes more and more efficient.   

 

 

 

 
 
 
 
Figure1. Initial Comm/tion vs. Group   Figure 2. Initial Comm/tion vs. Group 
Size, d=6. Non authenticated MOT,      size, d=6, for authenticated (O), MOT  
(O) achieve almost same lowest            compared to OFT. O & MOT achieve 
cost, OFT is slightly worse.                   almost the same lower cost                                                       

 

 

 

 

 
 
 
 
Figure 3. Previous results on Init. GSC    Figure 4. GSC computation cost of  
comp. cost w/o authentication.                 authenticated (O), MOT.  

VI.        SUMMARY AND CONCLUSIONS 
We show how “authentication” can be merged with key 
distribution to produce efficient KM schemes in MANETs. 
We present a modified entity authentication scheme and 
construct dynamic distributed CAs, based on Merkle Trees. 
We integrated them with key generation protocols (O), MOT, 
and evaluated the results. We observed that MOT could still 
outperform the protocols it had been compared to before. The 
results underline the importance of combining KM techniques 
to exploit redundancies, and show that there is scope for 
further improvement. Research on the design of efficient, 
secure and robust “authentication”, is still on-going. 
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