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Abstract. We revisit the classical multi-agent distributed consensus problem under the dropping
of the assumption that the existence of a connection between agent implies weights uniformly bounded
away from zero. We formulate and study the problem by establishing global convergence results in
discrete time, under fixed, switching and random topologies. We study the application of the results
to flocking networks.
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1. Introduction and Motivation. Consensus problems arise in many instances
of collaborative control of multi-agent complex systems; where it is important for the
agents to act in a distributed, whereas coordinated, manner, [14, 7, 10], to name a
few. However, in the vast majority of all relevant works the exchange of information
among any two communicating nodes occurs under an established connection with
a weight that is uniformly bounded away from zero. This rudimentary assumption
ensures the applicability of a large number of analytical tools from linear algebra,
algebraic graph theory, probability theory discussed in the literature of the control
community.

When running a distributed algorithm on the network the main consensus result
(i.e. agreement of all agents’ states) suggests that an assumption of strong connec-
tivity in principle ensures convergence to a common value through a repeated convex
averaging of states. The uniform bound of weights implies a geometric time rate of
convergence [12].

In this paper, we revisit the classical consensus problem with k agents in Rn

zi(t+ 1)− zi(t) =

k∑
j=1

aij(t)
(
zj(t)− zi(t)

)
i = 1, . . . , k

where aij(t) : Z+ → R+ are C0 functions defined in the following. We study the time
asymptotic behaviour of zi ∈ Rn.

At first, we discuss the elementary complete connectivity static case from which
we built up to more interesting variations of the problem such as switching signals as
well as random failures, where we study and establish results for global convergence.
In fact, the results suggest that the rate at which weights can vanish should not be
faster than a critical value which depends on the topology of the graph. We outline
the motivation of this paper with the following example

Example. Consider the 2-D system(
x(t+ 1)

y(t+ 1)

)
=

(
1−f(t) f(t)

g(t) 1− g(t)

)(
x(t)

y(t)

)
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where f(t) = Kf/t
2 and g(t) = Kg/t

2. t ≥ 1. Then for |x(0)− y(0)| = δ 6= 0

|x(t+ 1)− y(t+ 1)| = |1− f(t)− g(t)||x(t)− y(t)| = δ

t∏
i=0

(1− f(i)− g(i))

→ C sin(π
√
Kf +Kg) as t→∞

for some C > 0 according to the Euler-Wallis formula. So for
√
Kf +Kg /∈ Z+

consensus is not achieved.
The paper is organized as follows. In section 2, we present the necessary notations

and definitions as well as the main analytical tools we will use. In section 3, we prove
the main results of this work and discuss important generalizations of the discrete time
problem. In section 4, we discuss two variants of the same problem. The stochastic
verstion of the problem as well as an application in flocking dynamics where the
connection with the Cucker-Smale model is discussed. Finally in section 5, we revise
the results and make some concluding remarks.

2. Notations and Definitions. We consider the k agents in a Euclidean space.
As usual Z,R are the sets of integers and reals respectively. By || · ||p we denote the
p-vector norm and | · |∞ the infinity norm in Rk, k ∈ N. All the vectors are considered
column. By 1 we understand the k− dimensional vector with all entries equal to 1.

By a weighted undirected graph G = (V, E ,W) where V is the set of vertices,
E = {(i, j) : i, j ∈ V} the set of edges and W = {wij : (i, j) ∈ E} the set of weights on
edges. The degree l = li of a node i is the number of adjacent edges to i. The graph
G is connected if for any two vertices i, j there is a path of edges (lk, lk−1)|mk=0 such
that l0 = i and lm = j. The matrix representation of a graph G of k vertices is done
with the use of the k × k adjacency matrix A = [wij ], the diagonal matrix D = [dii]
where dii is the degree of node i, and the Laplacian matrix defined by L := D −A.

The agreement or consensus space C is defined as the subset of R such as

C = {xi ∈ R : x1 = x2 = · · · = xk}

A rank - 1 matrix, A = [aij ], is such that it has identical rows. It follows that
Ax ∈ C ∀x ∈ Rn.

A non-negative (positive) matrix A = [aij ] is such that aij ≥ 0(> 0). A stochastic
matrix is a non-negative matrix A = [aij ] such that

∑
j aij = 1 ∀i, so λ = 1 is

an eigenvalue and 1 is the corresponding left eigenvector. The Perron-Frobenius
theorem discusses the asymptotic behaviour of powers of non-negative matrices [12],
i.e. homogeneous products of matrices. In this paper, we will need notions from the
theory of non-homogeneous products of matrices [12, 3]. The main tool for studying
such products of matrices is the coefficient of ergodicity.

2.1. The Coefficient Of Ergodicity. A measure of measuring the contraction
rate of nonnegative matrices is the coefficient of ergodicity.

Definition 1. For a nonnegative matrix A = [aij ], the quantity

τ(A) := max
||z||1=1,z′1=0

||A′z|| = 1

2
max
i,j

∑
l

|ail − ajl| = 1−min
i,j

∑
l

min{ail, ajl} (2.1)

is called the coefficient of ergodicity of A.
One can think of τ either as a vector norm maximized over the disagreement

space Rn\C or as an eigenvalue bound expressed in terms of a deflated matrix, with
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the deflation approximating the dominant spectral projector. There are many dif-
ferent definitions and names for τ , all applicable for different spaces. The following
proposition introduces the basic properties of τ .

Proposition 1 ([12, 3]). For A and B stochastic matrices we have the following
properties:

1. 0 ≤ τ(A) ≤ 1. τ(A) < 1 if and only if every pair of rows α, β of A have a
common position k such that aαkaβk > 0. τ(A) = 0 if and only if A is a rank
- 1 matrix.

2. τ(AB) ≤ τ(A)τ(B) (Sub-multiplicativity property).
So τ is a norm that measures the amount of contraction of an operator matrix

over Rn\C and recognizes a matrix with identical rows. The family of matrices that
are generally “recognizable” by τ , (i.e. A stochastic such that τ(A) < 1) play an
important role.

Definition 2. The stochastic matrix, A, such that τ(A) < 1, is called scrambling.
Using the definition of τ we have the following important remark

Remark 1. A stochastic matrix, A, is scrambling if given two rows i, j there is
at least one column k such that aik > 0 and ajk > 0. Equivalently in such a matrix,
no two rows are orthogonal.

Proposition 2 ([12]). If the graph representation of A is strongly connected,
then there exists γ ≥ 1 such that Aγ is scrambling.

The following Theorem is useful when A is scrambling.
Theorem 1 ([12]). Let w be a non-negative vector and A a stochastic matrix. If

z = Aw then

max
i
zi −min

i
zi ≤ τ(A)

(
max
i
wi −min

i
wi
)

(2.2)

3. The discrete time problem. Consider k agents lying in a n-dimensional
Euclidean space. At each time each agent will update it’s status zi(t) ∈ Rn+ according
to

zi(t+ 1)− zi(t) =

k∑
j=1

aij(t)
(
zj(t)− zi(t)

)
i = 1, . . . , k (3.1)

Assumption 1. The connectivity functions as functions of time are defined as
follows aij(t) : Z+ → R+ such that

(i) aij(t) ≤ a <
1

k − 1

(ii) aij(t) ∈ ω(t−α)
(3.2)

where α ≥ 0, t is time and k the number of agents.
Definition 3. We say that a function f(t) is asymptotically dominant to g(t)

as t→ a and write f(t) ∈ ω(g(t)) if limt→a f(t)/g(t) =∞.
We understand that in our case, the limit implies that ∀ i, j ∈ V, ∃T : aij ≥

ct−α, ∀ t ≥ T , and in our case we also demand c = c(k) < T α/(k − 1), so that
Assumption 1(i) is satisfied. This in general implies that weights are free to vanish
asymptotically as t−α, but not faster.

For any i we rewrite (3.1) as

zi(t+ 1) =
(
1−

k∑
j=1

aij(t)
)
zi(t) +

k∑
j=1

aij(t)zj(t)
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or in the matrix form

z(t+ 1) = (G(t)⊗ Id)z(t) (3.3)

where G(t) := Ik−Lx, Ik is the k-dimensional identity matrix and Lx is the Laplacian
Lx = Dx − Ax. Also, ⊗ is the Kronecker product. Since for A,B,C,D matrices
(A ⊗ B)(C ⊗ D) = AC ⊗ DB we conclude that we can simply work in the one-
dimensional Euclidean space, i.e. take n = 1. The following lemma is trivial and
helps justify the assumption zi ∈ R+.

Lemma 1. Given any vector w and a stochastic matrix A, Aw can be written as
the sum of a nonnegative vector and a nonpositive constant vector.

Proof. For any column vector w trivially write w = (w+mini{wi}1)−mini{wi}1 :=
u + z. Obviously u is nonnegative and since the effect of any such z is A-invariant
the result follows.

From (3.3) we end up with z(t+ 1) = G(t)z(t) where

G(t) :=


1−

∑
j 6=1 a1j a12 · · · a1k

a21 1−
∑
j 6=2 a2j · · · a2k

...
...

. . .
...

ak1 ak2 · · · 1−
∑
j 6=k akj

 (3.4)

Given the initial vector z(0), the general solution at time t is

z(t) = G(t− 1)G(t− 2) · · ·G(0)z(0)

Definition 4. We say that the system (3.3) converges to unconditional consensus
if for any initial vector z(0) we have that inf z̄∈C ||z(t)− z̄||p → 0 as t→∞.

The root to convergence passes through the dynamics of backward products of
non-homogeneous matrices with weights that are not uniformly bounded away from
zero. The handling of such products of matrices is a rather intricate subject. Seneta
in [12] discusses the different notions of ergodicity that appear depending on the
products, i.e. whether they are forward or backward. The weak ergodicity refers to
the case where in a product Tp,k = Tp+kTp+k−1 · · ·Tp+1 = [t(p,r)]i,j of matrices, we
have tp,ri,s − t

p,r
j,s → 0 as r → ∞ for any i, j, s, p. On the other hand, strong ergodicity

is such that limrt
(r,p)
i,j exists and is independent of i. In case of backward products,

the case here, the two notions of ergodicity coincide ([12]) and there is no restriction
to bounded weights, hence we are consistent with Definition 4.

3.1. Asymptotic upper bounds for τ(G(t)) . The definition of τ requires

to find the two rows i, j that minimize the sum S(i, j) =
∑k
n=1 min{ain, ajn}. The

structure of G(t) imposes that for every i, j the sum S(i, j) must have three forms
depending on the number of diagonal elements that will be included in the sum. In
case of one diagonal element τ(G(t)) < δ − ω(t−α) for some 0 < δ < 1. In case
of two diagonal elements inspection yields τ(G(t)) < 3

k−1 (the cases k = 2, k = 3
are pathological and do not violate generality). Finally, for no diagonal elements
τ(G(t)) < 1− ω(t−α). We informally proved the following technical lemma:

Lemma 2. ([6]) Assume k ≥ 2 agents, which update their speed according to
(3.3). Then the coefficient of ergodicity satisfies

τ(G(t)) ≤ 1− ω(t−α) as t >> 1. (3.5)
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3.2. Convergence.
Theorem 2. Under Assumption 1, the system (3.3) converges to unconditional

consensus ∀α ∈ [0, 1].
Proof. It is enough to show that the maximum coordinate of z(t) approaches the

minimum as t→∞. Set m(t) := maxi zi(t)−minj zj(t) and apply Theorem 1 to get

m(t+ 1) ≤ τ(G(t))m(t) ≤
t∏

s=0

τ(G(s))m(0),

as well as that since m(t) ≥ 0, limt→∞m(t) exists. In view of Lemma 1 we calculate:

lim
t→∞

m(t) ≤ lim
t→∞

t∏
s=0

τ(G(s))m(0) ≤ C lim
t→∞

t∏
s=T

(1− ω(s−α))m(0)

≤ C lim
t→∞

t∏
s=T

e−ω(s−α)m(0) ≤ C lim
t→∞

e−
∑t
s=T ω(s−α)m(0) = 0

for 0 ≤ α ≤ 1 and T goes according to the definition of the ω notation and is
independent of t.

3.3. Static and Switching Topologies. The complete connectivity case is
rather trivial. In fact, from the definition of τ we can relax this assumption to
cases where G(t) is scrambling. So from now on we drop the Assumption 1(ii) to
aij ∈ ω(t−α)∪ {0}. It can be easily shown that the graph with the minimum number
of edges such that G(t) is scrambling is a star graph topology [6]. The following
stronger result is derived.

Corollary 1. Under Assumption 1 with aij ∈ ω(t−α) ∪ {0} and some B such
that for all t {G(i)}ti=t+B−1 contains a scrambling matrix, the system (3.3) converges
to unconditional consensus ∀α ∈ [0, 1].

Proof. Use Theorem 1 and the fact that by assumption there is a strictly increasing
subsequence {ti}i with t1 > 0, limi ti → ∞ and |ti − ti+1| ≤ B. Then of course
ti ≤ (i− 1)B + t1 for i ≥ 2 and∑

i

1

tαi
≥
∑
i

1

((i− 1)B + t1)α
=∞ ∀α ∈ [0, 1]

Corollary 1, exploits the idea of recurrent “scramblingness”, a sort of generaliza-
tion of recurrent connectivity in the standard literature [14, 7].

The assumption of sole strong connectivity puts the scrambling index into the
picture in view of the fact that the product matrix G(t+ γ− 1) · · ·G(t) is scrambling
for all t.

Corollary 2. Assume a static network with graph G = (V,E) that is strongly
connected, so that it has a scrambling index γ. Then (3.3) associated with G will
reach consensus under the assumptions of Corollary 1, for α ∈ [0, 1/γ].

Proof. At first note that for any t1, t2, G(t1)G(t2) is of the same form as (3.4).
From the proof of Lemma 4 it suffices to check the case where the minimum path of
elements contains no diagonal element. From this, one may use the observation that
aij(t1)alm(t2) ≥ ω(t2α2 ) for t1 < t2, to conclude by induction that,

τ(G(t)G(t+ 1) · · ·G(t+ γ − 1)) ≤ 1− ω
(
(t+ γ − 1)−γα

)
t >> 1. (3.6)
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Then the result follows as in Theorem 1.
In the case of uniform bounds of weights we have α = 0 so that γ has no effect. It

is an easy exercise to show that γ ≤ k−1
2 so that one can use the recurrent connectivity

assumption to obtain new bounds for the critical exponent α, which in general would
not have to depend on the recurrent connectivity bound, B.

4. Applications. In this section we will discuss two important variations of the
consensus algorithms discussed in the literature [4, 11, 8, 13, 1]

4.1. Random Graphs. Consider a probability space (Ω0,B,P0), where Ω0 is
the set of k × k (0 − 1) matrices with positive diagonals, B is the Borel σ− algebra
of Ω0 and P0 a probability measure on Ω0. Define the product probability space
(Ω,F ,P) =

∏
k(Ω0,B,P0) and by the Kolmogorov extension theorem there exists a

measure P that makes its coordinates stochastically independent while preserving the
marginal distributions. The elements of the product space have the following forms:
Ω = {(ω1, . . . , ωl, . . . ) : ωl ∈ Ω0}, F = B × B × · · · , P = P0 × P0 × · · · .

It follows that the mapping Wl : Ω→ Ω0 is the lth coordinate function, which for
all ω ∈ Ω is defined as Wl(ω) = ωl and guarantees that Wl(ω) l ≥ 1 are independent
random 0 − 1 matrices with positive diagonals and common distribution P. Define
now G(Wt, t) : Ω×Z+ → G1 to be the stochastic matrix G(t) with 0− 1 connectivity
between i and j and connectivity weight aij . In the following G(Wt, t) := G(t); we
take it as a random variable on the product space such that Gt, Gs are independent
for s 6= t. Then m(t) = maxi zi(t) − minj zj(t) is a random variable and we are
interested in the probability of the event

At := {lim sup
s

m(s) = 0 given m(t) = G(t− 1) · · ·G(0)m(0)}. (4.1)

Obviously, A1 ⊃ A2 ⊃ · · · and such events are events of the tail σ-field, F∞. By
Kolmogorov’s 0− 1 law we have that under the independence assumption if A ∈ F∞
then P(A) = 0 or P(A) = 1 [2]. This means that we can derive sufficient conditions
for almost sure consensus if we derive conditions for the convergence of m(t). The
following result is a trivial generalization in the probabilistic frame. Consequently, we
are interested in the behaviour of the first moment µ(t) = E[m(t)].

Theorem 3. The stochastic version of (3.3) exhibits unconditional consensus if
E[G(t)] is scrambling for all t.

Proof. We understand that
z(t+1) = G(t)z(t)⇒ E[z(t+1)] = E[G(t)z(t)] = E[G(t)]E[z(t)] by independence.

So µ(t + 1) ≤ τ(E[G(t)])µ(t) and the result follows as in the static case. Given any
filtration of m(k)|t0 we see that

E[m(t+ 1)|m(0), . . . ,m(t)] ≤ τ(E[G(t)])m(t) ≤ (1− ω(t−α))m(t)

since
∑
k ω(k−α) =∞ for 0 ≤ α ≤ 1 we have that m(t)→ 0 with probability 1, as a

direct application of the super-martingale convergence theorem [9].

4.2. Flocking Networks. Another interesting application is in flocking net-
works. Consider a population of k agents leaving a one-dimensional Euclidean space
Ed. At each time t ∈ Z+ every agent, i, has a vector of state xi(t) and a vector of
velocity vi(t).

Definition 5. We say that we have unconditional flocking if ∀ i, j ∈ {1, . . . , k}
and all initial positions and velocities, both of the following two conditions hold

(i) lim
t→∞

||vi(t)− vj(t)|| = 0, (ii) sup
0≤t<∞

||xi(t)− xj(t)|| <∞ uniformly in t
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Assume that every agent adjusts it’s velocity by adding to it a weighted average of
the differences according to (3.1). Assuming a natural change of position we obtain
the system

xi(t+ 1) = xi(t) + vi(t)

vi(t+ 1)− vi(t) =

k∑
j=1

aij(t)
(
vj(t)− vi(t)

) (4.2)

Flocking is about speed consensus Def.5 (i), with sufficiently fast rate so that the
flock is not destroyed Def.5 (ii). Combination of these two requirements yields that
for every pair of i, j agents

||xi(t)− xj(t)|| ≤ ||xi(0)− xj(0)||+
t−1∑
s=0

||vi(s)− vj(s)||.

So it suffices for the speed differences between any two agents to be uniformly summable.
The sub-linear growth of xi(t) implies the sub-linear growth of ||xi(t) − xj(t)|| with
time for all i, j. Applying Theorem 1 we obtain convergence of m(t) as defined in the
proof of Theorem 2, for α ∈ [0, 1]. It only remains to fulfil Def. 5 (ii). Note that for
any t > 0

t∑
s=0

m(s) <

∞∑
s=0

m(s) ≤
∞∑
s=0

τ(G(s))m(0) ≤ B(T ,m(0)) +m(0)

∞∑
s=T

exp{−
s∑

j=T
ω(j−α)}.

The double sum converges as follows:

∞∑
s=T

exp{−
s∑

j=T
ω(j−α)} ≤

∞∑
s=T

exp{−ω(s1−α) + (T − 1)ω(s−α)}

≤ exp{(T − 1)ω(T −α)}
∞∑
s=T

exp{−ω(s1−α)} ≤ D(T )

∞∑
s=T

(e−c)s
1−α

.

∞∑
s=T

(e−c)s
1−α
≤
∞∑
s=0

(e−c)s
1−α
≤
∫ ∞

0

e−cs
1−α

ds = c
α

1−αΓ

(
1

1− α

)
<∞, 0 ≤ α < 1

(4.3)

where Γ is the Gamma function. It follows that the range of the speed of the flock
is summable uniformly in time since it just depends on the initial velocities and the
constant T . So we proved the following result.

Theorem 4. Given the system (4.2) with weight functions according to Assump-
tion 1, we have unconditional flocking for all 0 ≤ α < 1.

4.2.1. The Cucker-Smale flocking. An important remark is the similarity
with the Cucker-Smale model for flocking [1]. The main version of this model considers
(4.2) with the explicit non-linear relation between the agents i, j,

aij(t) = η(xi(t)− xj(t)) =
K

(σ2 + ||xi(t)− xj(t)||2)β



8 C. SOMARAKIS & J. S. BARAS

The authors establish flocking results for any K > 0, σ > 0, β ≥ 0. The main result
is that unconditional flocking can be achieved for 0 ≤ β < 1/2 which is similar to
our result. For β > 1/2 however the flocking is not unconditional and additional
assumptions on the initial conditions must be made. The analysis critically exploits
the form and properties of aij .

5. Discussion. In this paper, we studied the consensus problem as a linear
process on graphs. Literature suggests [12] that in case of uniform bounds there
is a geometric rate of asymptotic convergence in the consensus subspace. Here, we
approached the problem for the case that the edge weights are not uniformly bounded
away from zero. We showed by a simple example that there are cases where, consensus
is not guaranteed. We considered special vanishing weight functions with a rate
exponent, α, which the weights of the graph eventually dominate. The main result
suggests that if α is within the interval [0, 1], convergence results can be established,
with rate slower than geometric.

Furthermore, we passed from the static and complete connectivity case to more
general topologies, such as switching and random graphs, establishing relevant con-
vergence results too. Towards this direction, the notion of the scrambling coefficient,
γ came up suppressing the interval of convergence to [0, 1/γ].

Due to space limitations the continuous time case was omitted. Although the
mathematical techniques differ, equivalent results are obtained. The full version of
this work can be found in [6].
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