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ABSTRACT
The pervasiveness of wireless devices and the architectural
organization of wireless networks in distributed communi-
ties, where no notion of trust can be assumed, are the main
reasons for the growing interest in the issue of compliance
to protocol rules. Reliable and timely detection of deviation
from legitimate protocol operation is recognized as a prereq-
uisite for ensuring efficient and fair use of network resources
and minimizing performance losses. Nevertheless, the ran-
dom nature of protocol operation together with the inherent
difficulty of monitoring in the open and highly volatile wire-
less medium poses significant challenges. In this paper, we
consider the fundamental problem of detection of node mis-
behavior at the MAC layer. Starting from a model where
the behavior of a node is observable, we cast the problem
within a minimax robust detection framework, with the ob-
jective to provide a detection rule of optimum performance
for the worst-case attack. The performance is measured in
terms of required number of observations in order to derive
a decision. This framework is meaningful for studying mis-
behavior because it captures the presence of uncertainty of
attacks and concentrates on the attacks that are most signif-
icant in terms of incurred performance losses. It also refers
to the case of an intelligent attacker that can adapt its policy
to avoid being detected. Although the basic model does not
include interference, we show that our ideas can be extended
to the case where observations are hindered by interference
due to concurrent transmissions. We also present some hints
for the problem of notifying the rest of the network about
a misbehavior event. Our work provides interesting insights
and performance bounds and serves as a prelude to a future
study that would capture more composite instances of the
problem.
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1. INTRODUCTION
Deviation from legitimate protocol operation in wireless

networks has received considerable attention from the re-
search community in recent years. The pervasive nature of
wireless networks with devices that are gradually becom-
ing essential components in our life-style justifies the rising
interest on that issue. In addition, the architectural orga-
nization of wireless networks in distributed secluded user
communities raises issues of compliance with protocol rules.
More often than not, users are clustered in communities that
are defined on the basis of proximity, common service or
some other common interest. Since such communities are
bound to operate without a central supervising entity, no
notion of trust can be presupposed.

Furthermore, the increased level of sophistication in the
design of protocol components, together with the require-
ment for flexible and readily reconfigurable protocols has
led to the extreme where wireless network devices have be-
come easily programmable. As a result, it is feasible for a
network peer to tamper with software and firmware, modify
its wireless interface and network parameters and ultimately
abuse the protocol. This situation is referred to as protocol
misbehavior. The goals of a misbehaving peer range from
exploitation of available network resources for its own ben-
efit up to network disruption. The solution to the problem
is the timely and reliable detection of such misbehavior in-
stances, which would eventually lead to network defense and
response mechanisms and isolation of the misbehaving peer.
However, two difficulties arise: the random nature of some
protocols (such as the IEEE 802.11 medium access control
one) and the nature of the wireless medium with its inherent
volatility. Therefore, it is not easy to distinguish between
a peer misbehavior and an occasional protocol malfunction
due to a wireless link impairment.
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Protocol misbehavior has been studied in various scenar-
ios in different communication layers and under several math-
ematical frameworks. The authors in [13] focus on MAC
layer misbehavior in wireless hot-spot communities. They
propose a sequence of conditions on some available observa-
tions for testing the extent to which MAC protocol param-
eters have been manipulated. The advantage of the scheme
is its simplicity and easiness of implementation, although in
some cases the method can be deceived by cheating peers, as
the authors point out. A different line of thought is followed
by the authors in [11], where a modification to the IEEE
802.11 MAC protocol is proposed to facilitate the detection
of selfish and misbehaving nodes. The approach presupposes
a trustworthy receiver, since the latter assigns to the sender
the back-off value to be used. The receiver can readily detect
potential misbehavior of the sender and accordingly penal-
ize it by providing less favorable access conditions through
higher back-off values for subsequent transmissions. A de-
cision about protocol deviation is reached if the observed
number of idle slots of the sender is smaller than a pre-
specified fraction of the allocated back-off. The sender is
labeled as misbehaving if it turns out to deviate continu-
ously based on a cumulative metric over a sliding window.
This work also presents techniques for handling potential
false positives due to the hidden terminal problem and the
different channel quality perceived by the sender and the
receiver. The work in [5] attempts to prevent scenarios of
colluding sender-receiver pairs by ensuring randomness in
the course of MAC protocol.

A game-theoretic framework for the same problem at the
MAC layer is provided in [4]. Using a dynamic game model,
the authors derive the strategy that each node should follow
in terms of controlling channel access probability by adjust-
ment of contention window, so that the network reaches its
equilibrium. They also provide conditions under which the
Nash equilibrium of the network with several misbehaving
nodes is Pareto optimal for each node as well. The under-
lying assumption is that all nodes are within wireless range
of each other so as to avoid the hidden terminal problem.

Misbehavior detection has been studied at the network
layer for routing protocols as well. The work in [12] presents
the watchdog mechanism, which detects nodes that do not
forward packets destined for other nodes. The pathrater
mechanism evaluates the paths in terms of trustworthiness
and helps in avoiding paths with untrusted nodes. The tech-
nique presented in [3] aims at detecting malicious nodes by
means of neighborhood behavior monitoring and reporting
from other nodes. A trust manager, a reputation manager
and a path manager aid in information circulation throught
the network, evaluation of appropriateness of paths and es-
tablishment of routes that avoid misbehaving nodes. De-
tection, isolation and penalization of misbehaving nodes are
also attained by the technique above.

Node misbehavior can be viewed as a special case of denial-
of-service (DoS) attack or equivalently a DoS attack can be
considered as an extreme instance of misbehavior. DoS at-
tacks at the MAC layer are a significant threat to availability
of network services. This threat is intensified in the presence
of the open wireless medium. In [7], the authors study sim-
ple DoS attacks at the MAC layer, show their dependence
on attacker traffic patterns and deduce that the use of MAC
layer fairness can mitigate the effect of such attacks. In [1]
the focus is also on DoS attacks against the 802.11 MAC

protocol. They describe vulnerabilities of 802.11 and show
ways of exploiting them by tampering with normal operation
of device firmware.

The nature of wireless networks operation dictates that
decisions about the occurrence or not of misbehavior should
be taken on-line as observations are revealed and not in a
fixed observation interval. This gives rise to the sequen-
tial detection problem. A sequential decision rule consists
of a stopping time which indicates when to stop observing
and a final decision rule that indicates which hypothesis (i.e,
occurrence or not of misbehavior) should be selected. A se-
quential decision rule is efficient if it can provide reliable
decision as fast as possible. It has been shown by Wald [15]
that the decision rule that minimizes the expected number of
required observations to reach a decision over all sequential
and non-sequential decision rules is the sequential probabil-
ity ratio test (SPRT).

The basic feature of attack and misbehavior strategies is
that they are entirely unpredictable. In the presence of such
uncertainty, it is meaningful to seek models and decision
rules that are robust, namely they perform well for a wide
range of uncertainty conditions. One useful design philos-
ophy is to apply a minimax formulation and identify the
rule that optimizes worst-case performance over the class of
allowed uncertainty conditions. The minimax design prin-
ciple has been successfully applied in signal processing and
control systems, where the goal is to design receiver filters
of optimal performance with respect to a certain measure
(e.g. signal-to-noise-ratio) in the presence of system model-
ing uncertainties and background noise [10, 14].

In a wireless network, information about the behavior of
nodes can become readily available to immediate neighbors
through direct observation measurements. If these measure-
ments are compared with their counterparts for normal pro-
tocol operation, it is then contingent upon the detection
rule to decide whether the protocol is normally executed or
not. A minimax formulation translates to finding the detec-
tion rule with the minimum required number of observations
to reach a decision for the worst instance of misbehavior.
Clearly, such a scheme would guarantee a minimum level of
performance which is the best minimum level possible over
all classes of attacks. In this work, we address the problem of
MAC protocol misbehavior detection at a fundamental level
and cast it as a minimax robust detection problem. Our
work contributes to the current literature by: (i) formulat-
ing the misbehavior problem at hand as a minimax robust
sequential detection problem that essentially encompasses
the case of a sophisticated attacker, (ii) quantifying perfor-
mance losses incurred by an attack and defining an uncer-
tainty class such that the focus is only on attacks that incur
“large enough” performance losses, (iii) obtaining an analyt-
ical expression for the worst-case attack and the number of
required observations, (iv) establishing an upper bound on
number of required samples for detection of any of the at-
tacks of interest, (v) extending the basic model to scenarios
with interference due to concurrent transmissions. Our work
constitutes a first step towards understanding the structure
of the problem, obtaining bounds on achievable performance
and characterizing the impact of different system parame-
ters on it.

The rest of the paper is organized as follows. In section
II, we discuss the issue of misbehavior in IEEE 802.11 MAC
protocol. In section III we present the minimax robust de-
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Figure 1: Observer nodes and effect of interference
due to concurrent transmissions.

tection model and basic assumptions and demonstrate our
approach. In section IV, we discuss some further issues and
in section V we show some numerical results. Finally, section
VI concludes our study. In subsequent sections, the terms
”misbehavior” and ”attack”, ”misbehaving node” and ”at-
tacker” will be used interchangeably with the same meaning.

2. MISBEHAVIOR IN THE IEEE 802.11 MAC
PROTOCOL

In the distributed coordinating function (DCF) of the
IEEE 802.11 MAC protocol, coordination of channel access
for contending nodes is achieved with carrier sense multi-
ple access with collision avoidance (CSMA/CA) [9]. A node
with a packet to transmit selects a random back-off value
b uniformly from the set {0, 1, . . . , W − 1}, where W is the
(fixed) size of the contention window. The back-off counter
decreases by one at each time slot that is sensed to be idle
and the node transmits after b idle slots. In case the chan-
nel is perceived to be busy in one slot, the back-off counter
stops momentarily. After the back-off counter is decreased
to zero, the transmitter can reserve the channel for the dura-
tion of data transfer. First, it sends a request-to-send (RTS)
packet to the receiver, which responds with a clear-to-send
(CTS) packet. Thus, the channel is reserved for the trans-
mission. Both RTS and CTS messages contain the intended
duration of data transmission in the duration field. Other
hosts overhearing either the RTS or the CTS are required to
adjust their network allocation vector (NAV) that indicates
the duration for which they will defer transmission. This
duration includes the SIFS intervals, data packets and ac-
knowledgment frame following the transmitted data frame.
An unsuccessful transmission instance due to collision or in-
terference is denoted by lack of CTS or ACK for the data
sent and causes the value of contention window to double. If
the transmission is successful, the host resets its contention
window to the minimum value W .

IEEE 802.11 DCF favors the node that selects the smallest
back-off value among a set of contending nodes. Therefore, a
malicious or selfish node may choose not to comply to proto-
col rules by selecting small back-off intervals, thereby gain-
ing significant advantage in channel sharing over regularly
behaving, honest nodes. Moreover, due to the exponential
increase of the contention window after each unsuccessful
transmission, non-malicious nodes are forced to select their
future back-offs from larger intervals after every access fail-
ure. Therefore the chance of their accessing the channel
becomes even smaller. Apart from intentional selection of
small back-off values, a node can deviate from the MAC

protocol in other ways as well. He can choose a smaller size
of contention window or he may wait for shorter interval
than DIFS, or reserve the channel for larger interval than
the maximum allowed network allocation vector (NAV) du-
ration. In this work, we will adhere to protocol deviations
that occur due to manipulation of the back-off value.

The nodes that are instructed by the protocol to defer
transmission are able to overhear transmissions from nodes
whose transmission range they reside in. Therefore, silenced
nodes can observe the behavior of transmitting nodes. The
question that arises is whether there exists a way to take
advantage of this observation capability and use it to iden-
tify potential misbehavior instances. If observations indicate
a misbehavior event, the observer nodes should notify the
rest of the network about this situation or could launch a re-
sponse action in order to isolate the misbehaving nodes. De-
tecting misbehavior is not straightforward even in the sim-
plest case, namely that of unobstructed observations. The
difficulty stems primarily from the non-deterministic nature
of the access protocol that does not lead to a straightfor-
ward way of distinguishing between a legitimate sender, that
happens to select small back-offs, and a misbehaving node
that maliciously selects small back-offs. The open wireless
medium and the different perceived channel conditions at
different locations add to the difficulty of the problem. Ad-
ditional challenges arise in the presence of interference due
to ongoing concurrent transmissions.

Fig. 1 depicts a scenario where node A or B is malicious.
At this stage, we assume that A is the only misbehaving
node and that no other node in its vicinity transmits. We
defer discussion about the collusion between nodes A and B
for a subsequent section. We assume that nodes have clocks
that are synchronized through the use of GPS devices. Ad-
ditional issues arising from errors in clock synchronization
will be investigated elsewhere. Node A accesses the chan-
nel by using a randomly selected back-off value within its
contention window. When the back-off counter decreases to
zero, A sends an RTS to B, which replies with a CTS. Node
A’s RTS message silences nodes 1 to 7, which are in A’s
transmission radius. Similarly, node B’s CTS silences nodes
4 to 10. Following the RTS-CTS handshake, A sends a data
segment to B. After the transmission is over, A attempts to
access the channel anew by selecting a back-off value again
and the procedure repeats. Nodes 1-10 can hear the trans-
missions of nodes A or B, or of both, depending on whose
transmission radius they reside in. Consider the i-th trans-
mission of node A. A node in its transmission range finds
time point ti of RTS packet reception from

ti = Ti−1 + TDIFS + bi, i > 1, (1)

where Ti−1 denotes the end time point of reception of the
previous data segment and bi is the random back-off value.
Thus, the back-off values can be easily derived. Note that
the back-off value before transmission of the first data seg-
ment cannot be found since there does not exist any previous
reference point to compare it to. A node within transmission
range of B can also compute the back-off used by A by using
as a reference the time point of reception of the overheard
ACK from node B for the previous data segment. Then, a
node can measure time point t′i of CTS packet reception and
compute the back-off of node A by using

t′i = TACK,i−1
+ TDIFS + bi + TRTS + TSIFS, i > 1. (2)
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Similarly with the RTS, the first back-off value cannot be
found. Clearly, the entire sequence of back-offs of node A
is observable in this fashion. It should also be noted that
the identity of the node who uses those back-offs (which
could be potentially a misbehaving one) is revealed in the
corresponding fields of RTS or CTS messages.

We now proceed to describe two scenarios in which ob-
servations of nodes 1-3 and 8-9 are hindered by interference
and hence correctness of observations is influenced.

1. Interference due to concurrent transmissions. Assume
that node C has obtained access to the channel and
therefore node 2 is silenced. Node C is in the process of
transmitting data packets to node D. If observer node
2 is within transmission range of C, C’s transmission
is overheard by node 2. Clearly, the ongoing transmis-
sion of C is experienced as interference at node 2 and
obstructs node 2’s observations. In case of significant
interference level, node 2 may not be able to obtain
the timing of received RTS of node A and find the
back-off value. Additional ongoing transmissions in-
crease the perceived interference level. Evidently, ob-
structed measurements due to interference create ad-
ditional problems in detecting misbehavior, as will be
seen in the sequel. The extent to which observations of
node 2 are influenced by interference depends on the
relative proximity of 2 to nodes A and to the inter-
fering nodes, since the received signal strength of the
RTS packet and the interference is a function of signal
strength decay with distance.

2. Interference due to simultaneous channel access. Node
2 that is silenced by A’s RTS observes the sequence of
back-offs of node A. If node 2 is in the interference
range of node C and C is out of the interference range
of A, C may attempt to access the channel at the same
time. If the RTS packets from nodes A and C over-
lap in time when received at node 2, node 2 receives
a garbled packet and cannot distinguish neither the
transmitter identity nor the packet reception time.

Interference from concurrent data transmissions and simul-
taneous channel access also affects measurements of nodes
within the transmission range of node B. Both types of im-
pairments lead to difficulties in misbehavior detection be-
cause they cause corruption of measurements. The proba-
bility of the second type of impairment is admittedly much
lower than that of the first type, since it requires that nodes
A and C access the channel almost at the same time. Al-
though this problem is different from the first one, we will
elaborate on obstruction of observations owing only to the
first scenario.

A comment about the effect of misbehavior in a network-
wide scale is in place here. Each node within transmission
range of a malicious node increases its contention window
exponentially after each unsuccessful transmission attempt.
The same holds for nodes which are located out of the trans-
mitter’s range but are able to transmit to nodes that are
silenced by the transmitter (in our case, nodes C and E).
They may constantly attempt to communicate with silenced
nodes and consequently increase their contention windows.
In that respect, the effect of a malicious node spreads in
an area much larger than their transmission range and may
affect channel access of nodes throughout that area.

Another arising issue is the notification of the rest of the
network about the misbehavior. Although all nodes within
transmission range of nodes A and B above can deduce po-
tential misbehavior, the nature of IEEE 802.11 MAC pro-
tocol prohibits them from obtaining access to the channel
and transmitting notification information. In a subsequent
section, we present a practical method to achieve this goal.

3. MINIMAX ROBUST MISBEHAVIOR
DETECTION

In this section we present our approach for misbehavior
detection when observations are not obstructed by interfer-
ence. In section IV, analyze the scenario in the presence of
interference due to ongoing concurrent transmissions.

3.1 Problem motivation and sequential
detection

We focus on monitoring the behavior of node A for the
single-hop communication with node B in Fig. 1. We as-
sume that any node within the transmission range of A or
B observes the same sequence of measurements of back-off
values used by A. Since the sequence of observations is the
same, the procedure that will be described in the sequel can
take place in any of these observer nodes. Since the back-off
measurements are enhanced by an additional sample each
time A attempts to access the channel, an on-line sequential
scheme is suitable for the nature of the problem. The basis
of such a scheme is a sequential detection test that is imple-
mented at an observer node. The objective of the detection
test is to derive a decision as to whether or not a misbehav-
ior occurs as fast as possible, namely with the least possible
number of observation samples. Since the observation sam-
ples are random variables, the number of required samples
for taking a decision is a random variable as well.

The probability of false alarm PF A and the probability of
missed detection PM constitute inherent tradeoffs in a detec-
tion scheme, in the sense that a faster decision unavoidably
leads to higher values of these probabilities while lower val-
ues are attained with the expense of detection delay. For
given values of PF A and PM , the detection test that mini-
mizes average number of required observations (and thus the
average delay) to reach a decision among all sequential and
non-sequential tests for which PF A and PM do not exceed
the predefined values above is Wald’s Sequential Probability
Ratio Test (SPRT) [15]. When SPRT is used for sequential
testing between two hypotheses concerning two probability
distributions SPRT is optimal in that sense as well [6].

SPRT collects observations until significant evidence in
favor of one of the two hypotheses is accumulated. After
each observation at the k-th stage, we choose between the
following options: accept one or the other hypothesis and
stop collecting observations, or defer decision for the mo-
ment and obtain observation k + 1. In SPRT, there exist
two thresholds a and b of SPRT that aid the decision. The
figure of merit at each step is the logarithm of the likelihood
ratio of the accumulated sample vector until that stage. For
the case of testing between hypotheses H0 and H1 that in-
volve continuous probability density functions f0 and f1, the
logarithm of likelihood ratio at stage k with accumulated
samples x1, . . . , xk is

Sk = ln
f1(x1, . . . , xk)

f0(x1, . . . , xk)
, (3)
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where fi(x1, . . . , xk) is the joint probability density function
of data (x1, . . . , xk) based on hypothesis Hi, i = 0, 1. If the
observation samples are statistically independent

Sk =
k∑

j=1

Λj =
k∑

j=1

ln
f1(xj)

f0(xj)
, (4)

with fi(·) the probability density function of hypothesis Hi,
i = 0, 1. The decision is taken based on the criteria:

Sk ≥ a ⇒ accept H1,

Sk < b ⇒ accept H0, (5)

b ≤ Sk < a ⇒ take another observation.

Thresholds a and b depend on the specified values of PF A

and PM , as will be explained in the sequel.
Our approach is based on sequential detection. However,

the main idea is that it places emphasis on the class of at-
tacks that incur larger gain for the attacker (they result in
higher chances of channel access). An attack in that class
would have most devastating effects for the network, in the
sense that it would deny channel access to the other nodes
and would lead to unfair sharing of the channel. Besides,
if we assume that the detection of an attack is followed by
communication of the attack event further in the network
so as to launch a network response, it would be rather in-
efficient for the algorithm to consider less significant (and
potentially more frequent) attacks and initiate responses for
them. Instead, it is meaningful for the detection system to
focus on encountering the most significant attacks and at
the same time not to consume resources of any kind (pro-
cessor power, energy, time or bandwidth) for dealing with
attacks whose effect on performance is rather marginal.

3.2 Minimax robust detection approach :
Definition of uncertainty class

Previously, we stressed the sequential nature of our ap-
proach and the implicit need to consider most significant at-
tacks. The approach should also cope with the encountered
(statistically) uncertain operational environment of a wire-
less network, namely the random nature of protocols and the
unpredictable misbehavior or attack instances. Hence, it is
desirable to rely on robust detection rules that would per-
form well regardless of uncertain conditions. In this work,
we adopt the minimax robust detection approach where the
goal is to optimize performance for the worst-case instance
of uncertainty. More specifically, the goal is to identify the
least favorable operating point of a system in the presence of
uncertainty and subsequently find the strategy the optimizes
system performance when operating in that point. In our
case, the least favorable operating point corresponds to the
worst-case instance of an attack and the optimal strategy
amounts to the optimal detection rule. System performance
is measured in terms of number of required observation sam-
ples to derive a decision.

A basic notion in minimax approaches is that of a saddle
point. A strategy (detection rule) d∗ and an operating point
(attack) f∗ in the uncertainty class form a saddle point if:

1. For the attack f∗, any detection rule d other than d∗

has worse performance. Namely d∗ is the optimal de-
tection rule for attack f∗ in terms of number of mini-
mum number of required observations.

2. For the detection rule d∗, any attack f other than f∗

gives better performance. Namely, detection rule d∗

has its worst performance for attack f∗.

Implicit in the minimax approach is the assumption that
the attacker has full knowledge of the employed detection
rule. Thus, it can create a misbehavior strategy that maxi-
mizes the number of required samples for misbehavior detec-
tion delaying the detection as much as possible. Therefore,
our approach refers to the case of an intelligent attacker
that can adapt its misbehavior policy so as to avoid detec-
tion. One issue that needs to be clarified is the structure
of this attack strategy. Subsequently, by deriving the detec-
tion rule and the performance for that case, we can obtain
an upper bound on performance over all possible attacks.

According to the IEEE 802.11 MAC standard, the back-
off for each legitimate node is selected from a set of values
in a contention window interval based on a uniform distri-
bution. The length of contention window is 2iW for the
ith retransmission attempt, where W is the minimum con-
tention window. In general, some back-off values will be
selected uniformly from [0, W ] and others will be selected
uniformly from intervals [0, 2iW ], for i = 1, . . . , Imax where
Imax is the maximum number of re-transmission attempts.
Without loss of generality, we can scale down a back-off
value that is selected uniformly in [0, 2iW ] by a factor of
2i, so that all back-offs can be considered to be uniformly
selected from [0, W ]. This scaling property emerges from
the linear cumulative distribution function of the uniform
distribution. An attack strategy is mapped to a probabil-
ity density function based on which the attacker selects the
back-off value. Although the possible back-off values are
discrete, without loss of generality we use continuous dis-
tributions to represent attacks in order to facilitate math-
ematical treatment and to demonstrate better the problem
intuition. We consider continuously back-logged nodes that
always have packets to send. Thus, the gain of the attacker
is signified by the percentage of time in which it obtains ac-
cess to the medium. This in turn depends directly on the
relative values of back-offs used by the attacker and by the
legitimate nodes. In particular, the attacker competes with
the node that has selected the smallest back-off value out of
all nodes.

Assume that a misbehaving and legitimate node intend to
access the channel. In order to have a fair basis for compari-
son, assume that they start their back-off timers at the same
time and that none of the counters freezes due to a perceived
busy channel. Let the random variable Y stand for the back-
off value of legitimate user, hence it is uniformly distributed
in [0, W ]. Also, let the random variable X stand for the mis-
behaving node (attacker), so that it has unknown pdf f(x)
with support [0, W ]. The relative advantage of the attacker
is quantified as the probability of accessing the channel, or
equivalently the probability that its back-off is smaller than
that of the legitimate node, Pr(X < Y ). Starting from

Pr(X < Y ) =

∫ W

0

P (Y > X|X = x)f(x) dx (6)

and using elementary probability, we obtain

Pr(X < Y ) = 1 − E[X]

W
, (7)

where E[ · ] denotes expectation of a random variable.
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Suppose that both nodes were legitimate. If p is the access
probability of each node, then the probability of successful
channel access is p(1 − p). This is maximized for p∗ = 1/2
for each node. Now, if one node is the attacker, it receives
gain from its attack if Pr(X < Y ) > 1/2 or equivalently
E[X] < W/2. This implies a shift of X to smaller back-offs
compared to the uniform Y for which E[Y ] = W/2. The
attack strategies of interest are the ones with large enough
incurred benefit. In order to quantify this, let ε be a positive
number and define the class of attacks

Fε =

{
f(x) :

∫ W

0

xf(x) dx ≤ W

2
− ε

}
. (8)

This class includes attacks for which the incurred relative
gain compared to legitimate operation exceeds a certain
amount. The criterion above is equivalent to Pr(X < Y ) >
(1/2) + ε/W . The class Fε is the uncertainty class of the
robust approach and the parameter ε is a tunable parame-
ter. By defining the class Fε, we imply that the detection
scheme should focus on attacks with larger impact to system
performance and not on small-scale or short-term attacks.

3.3 Minimax robust detection approach:
Derivation of the worst-case attack

Hypothesis H0 concerns legitimate operation and thus the
corresponding pdf f0 is the uniform one. Hypothesis H1

corresponds to misbehavior with unknown pdf f(·).
The objective of a detection rule is to minimize the num-

ber of the required observation samples N so as to derive
a decision regarding the existence or not of misbehavior.
The performance of a detection scheme is quantified by the
average number of samples E[N ] needed until a decision is
reached, where the average is taken with respect to the dis-
tribution of the observations. This number is a function of
the adopted decision rule d and the attack p.d.f f , that is

E[N ] = φ(d, f). (9)

Let D denote the class of all (sequential and non-sequential)
statistical hypothesis tests for which the false alarm and
missed detection probabilities do not exceed some specified
levels PF A and PM respectively. Generally, a hypothesis
test consists of a decision function g(·) that acts on a set
of k observations and takes values in the set of hypotheses,
i.e, g : Ωk → {H0,H1}. Let G be the space of all deci-
sion functions. A sequential test is a pair (gT (·), T ) where
T is the stopping time and gT (·) is the decision function
that acts on observation samples collected up to time T .
Thus, D = G ⋃

(G × [0,∞]). In the context of the minimax
robust detection framework, the problem is to optimize per-
formance in the presence of worst-case attack, that is find

E[N ]∗ = min
d∈D

max
f∈Fε

φ(d, f) , (10)

assuming that finite number of samples are needed (other-
wise the “min-max” notation should change to “inf-sup”).
We proceed to a formal definition of a saddle point.

Definition 1. A pair (d∗, f∗) is called a saddle point of
the function φ if

φ(d∗, f) ≤ φ(d∗, f∗) ≤ φ(d, f∗) ∀d ∈ D, ∀f ∈ Fε. (11)

A saddle point (d∗, f∗) of φ consists of a detection test
d∗ and an attack distribution f∗. Equation (11) is a formal
statement of properties 1 and 2 that were mentioned in Sect.

III-B. In order to facilitate solution of problem (10), we find
the saddle point of φ. First, recall that the optimal detection
test in the sense of minimizing expected number of samples
needed for detection is SPRT. This means that SPRT is the
test d∗ ∈ D, such that for a fixed (but unknown) attack f
we have φ(d∗, f) ≤ φ(d, f) for all other tests d ∈ D. The
inequality above also holds for f = f∗, and hence the second
inequality in (11) has been established.

We now prove the first inequality. Assuming that SPRT is
used, we seek an attack distribution f∗ such that φ(d∗, f∗) ≥
φ(d∗, f) for all other attacks f ∈ Fε. In order to find f∗, we
need an expression for the required average sample number
(ASN) E[SN ] of SPRT. From Wald’s identity [15]

E[SN ] = E[N ] × E[Λ], (12)

where E[Λ] is the expected value of the logarithm of the
likelihood ratio. By using a similar derivation as the one in
[8, pp.339-340], we derive the following inequalities

1 − PM ≥ eaPF A and PM ≤ eb(1 − PF A), (13)

where a and b are the thresholds of SPRT. When the aver-
age number of required observations is very large, the incre-
ments Λj in the logarithm of likelihood ratio are also small.
Therefore, when the test terminates with selection of hy-
pothesis H1, SN will be slightly larger than a, while when
it terminates with selection of H0, SN will be very close to
b. Therefore, the above inequalities hold to a good approx-
imation as equalities. Under this assumption, the decision
levels a and b that are required for attaining performance
(PF A, PM ) are given by,

a = ln
1 − PM

PF A
and b = ln

PM

1 − PF A
. (14)

Following the derivations of [15, 8],

E[SN ] = aPD + b(1 − PD) (15)

where PD = 1−PM is the probability of detection of SPRT.
Hence, the average number of samples is

E[N ] =
E[SN ]

E[Λ]
=

C

E

[
ln f(X)

f0(X)

] (16)

where f0(x) = 1/W denoting uniform distribution of nor-
mal operation and the expectation of denominator is with
respect to the unknown attack distribution f . Since C is a
constant, the problem of finding the attack that maximizes
the required number of observations reduces to the problem:

min
f

∫ W

0

f(x) ln
f(x)

f0(x)
dx (17)

subject to the constraints,∫ W

0

f(x)dx = 1 and

∫ W

0

xf(x)dx ≤ W

2
− ε. (18)

The first constraint exists since f is a pdf and the second one
is because f ∈ Fε. By applying the Karush-Kuhn-Tucker
(KKT) conditions, we find that the function f∗ has the form

f∗(x) = e−λ−1e−μx, μ > 0, (19)

where λ and μ are the Lagrange multipliers that correspond
to the constraints and are functions of W and ε only. These
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can be obtained by the system of equations:

e−λ−1

μ

(
1 − e−μW

μ
− We−μW

)
=

W

2
− ε (20)

e−μW = 1 − μeλ+1

Interestingly, the result above shows that the worst-case
attack distribution f∗ in terms of maximizing number of re-
quired samples has exponential density. Since φ(d∗, f∗) ≥
φ(d∗, f) for all f ∈ Fε, we proved the left inequality in
(11). We have now shown that the pair (d∗, f∗), where d∗

is SPRT and f∗(x) is the exponential density constitute a
saddle point of φ. This means that the so-called minimax
equality holds and we can interchange the order of min and
sup in the optimization problem above [2]. Then, the prob-
lem

max
f∈Fε

min
d∈D

φ(d, f) (21)

has the same solution with (10). As a side remark, note
that the derived exponential pdf has maximum differential
entropy over all pdf’s in the class Fε.

As was mentioned above, the minimax robust detection
approach captures the case of an intelligent adaptive at-
tacker. The SPRT algorithm is part of the intrusion detec-
tion system module that resides at an observer node. With
the method outlined in Sect. II, an observer node monitors
the behavior of another node with the objective to derive
a decision as fast as possible. In other words the observer
(and hence the system) attempts to minimize the number
of required samples so as to improve its payoff in terms of
improved chances for channel access. On the other hand,
an intelligent attacker that knows the detection algorithm
attempts to delay this decision as much as possible so as
to increase his own benefit in terms of chances for channel
access. The attacker aims at a strategy that causes perfor-
mance degradation for other nodes by remaining undetected.

4. FURTHER ISSUES

4.1 Network notification
In the previous sections we discussed the issue of misbe-

havior detection of node A with the help of observer nodes
that reside within transmission range of A or the receiver B
(Fig. 1). During the misbehavior, the observer nodes are
silenced due to exchange of RTS and CTS messages and are
prevented from accessing the channel. A natural question
that arises after misbehavior is detected concerns notify-
ing the network about the attack. This is an essential step
that needs to be accomplished so that the network learns
about the attack and can initiate a response or isolate the
attacker. It will also prevent further propagation of misbe-
havior in the network. The challenge lies in the fact that the
nature of 802.11 MAC does not provide the observer nodes
in transmission range of A or B an opportunity to commu-
nicate their messages unless a separate control channel is
maintained, in which case the notification message can be
transmitted in that channel.

In the absence of this control channel, an observer node
that detects protocol deviations should get an opportunity
to transmit a notification message as fast as possible. A
practical solution to this problem would be for receiver B to
adjust the transmit power level of the CTS message. Based
on the received signal strength of received RTS packets and

data from the attacker A, node B can estimate the distance
of A. Subsequently, it can reduce the transmit power of the
CTS to the minimum necessary level such that A remains
in transmission range of B. Recall that the 802.11 MAC
protocol has the capability of controlling transmit power.

The reduction of transmit power level releases some ob-
server nodes that were previously silenced. These are now
out of transmission range of CTS and can obtain access to
the channel. Therefore, they can communicate information
about the identity of the misbehaving node to their peers.
We note that the released observer nodes also need to adjust
their power levels so as not to cause interference to unre-
leased observers. Also, different released observers will have
different observations since the latter are location-dependent
(see subsection 4.3 below). This mechanism could be imple-
mented as part of the IDS algorithm and works when node
B and each of the observer nodes within B’s range obtain
the same (unobstructed) back-off observation samples. Fur-
ther study is needed for the case where observations differ
among different observer nodes in B’s range due to different
local perceived interference conditions.

This mechanism provides a paradigm of cross-layer coordi-
nation and information exchange. The physical-layer based
transmit power adaptation can offer an additional degree
of freedom to the MAC layer-based detection system and
can enable network notification. Without the help from the
physical layer, this task would be extremely difficult.

4.2 Colluding nodes
The problem treatment above assumed the existence of a

single attacker and did not include the scenario of colluding
nodes. In the communication scenario of Fig. 1, nodes A
and B may collude if node B receives the RTS messages from
attacker A and it intentionally delays the CTS message by
some amount of time. This scenario exploits the nature of
exponential backoff by choosing small backoff values and ad-
ditionally breaks the protocol rules by waiting longer than
SIFS between RTS and CTS signals. In this case, the ob-
server nodes within transmission range of B perceive erro-
neous, higher back-off values from node A. As a result, they
cannot detect potential misbehavior of A. They also cannot
determine the maliciousness of receiver B. However, the re-
maining observes that can overhear both A and B can detect
misbehavior with higher probability since it is not allowed
to wait for periods that are longer than SIFS between RTS
and CTS control signals.

In this fashion, a colluding node B decreases the number
of observer nodes that can provide correct measurements.
Misbehavior of node A can thus be observed only by nodes
within transmission range of A. On the other hand, only
observers residing within range of both A and B can moni-
tor both A and B and therefore detect collusion of A and B
by using a detection scheme similar to the one outlined in
previous sections. The detection method can have two sep-
arate tests: one acting on the observed back-offs of A and
one for measuring timing delays from the receiver in issuing
CTS messages. The latter test should be a threshold rule,
since normally the delay before issuing a CTS is determin-
istic. The decision about collusion is taken after combining
results from both tests. However, note that in the event of
collusion the mechanism of the previous subsection cannot
help in network notification.
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Figure 2: Average number of samples needed for
misbehavior detection versus PD in absence of in-
terference for the worst-case attack.

4.3 Inaccurate measurements due to
interference

The underlying assumption of our approach was that the
back-off value observations were collected in the absence of
interference from ongoing concurrent transmissions. How-
ever, observations are affected by interference due to trans-
mission of nodes that are located out of range of the at-
tacker, but within range of an observer. For example, in
Fig.1, transmission of node C obstructs observations of 2.
The presence of interference may corrupt some measure-
ments and thus it is anticipated to increase the number of
observation samples needed to derive a decision.

Since interference is caused due to ongoing data trans-
missions that are of much longer duration than that of an
observed RTS or CTS packet, we can assume that the level of
interference due to one such transmission remains constant
for the duration of an observed RTS or CTS packet. Recall
that RTS and CTS packets are sent with the lowest modula-
tion level and coding rate. To enable analytical tractability,
we consider an uncoded transmission and assume the use of
BPSK (which is the lowest modulation level in 802.11a) in
RTS/CTS transmission. The interference conditions during
an RTS or CTS observed packet are captured by the signal-
to-interference and noise ratio (SINR) γ. For fixed transmit
power levels and certain variance of Gaussian noise at the
receiver, this ratio depends on the relative proximity of the
observer node to the transmitter of RTS or CTS message as
well as to the interferers. The packet start point can be dis-
tinguished if the packet is received correctly. The bit error
rate (BER) in the received RTS or CTS packet is given by
BER = Q(

√
2γ) for BPSK modulation, where Q(·) denotes

the Q-function. The probability of RTS or CTS packet error
is the RTS-CTS packet error rate (PER) as

PER = 1 − (1 − BER)8m (22)

where m is the number of bytes of the RTS and CTS pack-
ets and is 20 and 14 respectively. Since PER gives the per-
centage of observed packets received in error, the number of
required observations to derive a decision is PER% higher
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Figure 3: Average number of samples needed for
misbehavior detection as a function of ε in absence
of interference for the worst-case attack.

than the corresponding number without interference. This
PER value holds for uncoded transmission and thus it is an
upper bound on PER when a coding scheme is used.

5. NUMERICAL RESULTS
The goal of the simulations is to assess the performance

of our approach and identify the relative impact of different
system parameters on it. The performance is measured in
terms of the average required number of observation sam-
ples, E[N ] in order to derive a decision, which essentially
denotes the delay in detecting a misbehavior instance. In
particular, we evaluate the performance with respect to the
following parameters:

• Specified values of PF A and PM (or probability of de-
tection, PD = 1 − PM ).

• Perceived interference conditions, reflected in SINR γ.

• The tunable system parameter ε.

The parameter ε defines the class of attacks of interest since
it specifies the incurred relative gain of the attacker in terms
of the probability of channel access. In that sense, ε can
be interpreted as a sensitivity parameter of the detection
scheme with respect to attacks, which is determined accord-
ing to the IDS requirements. IEEE 802.11 MAC is imple-
mented and MATLAB is used to evaluate the performance
of our scheme, taking into account the sequence of observed
backoffs.

In order to obtain some intuition from the results, we con-
sider the case of one attacker and the competing legitimate
node (in this case 0 ≤ ε ≤ 16). First, we study the case with
no interference from ongoing transmissions. In Fig. 2, we
depict the average required number of observation samples
as a function of probability of detection PD for different val-
ues of PF A and a fixed low value of ε, ε = 2. This is the
result of solving problem (10). It can be seen that for typical
values of PD and PF A the average required number of sam-
ples for detecting the worst-case attack is 150 to 180. For
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Figure 4: Average number of samples needed for
misbehavior detection for PF A=0.01 and different
interference conditions. The observer node collects
RTS packets.

more stringent specifications, namely larger PD and lower
PF A, more samples are needed. In that sense, high values of
PD and PF A may turn out to be beneficial for the attacker,
since the latter intends increase the detection delay.

Fig. 3 illustrates the performance of the detection scheme
as a function of the parameter ε for fixed PF A = 0.03 and
different values of PD. The graph shows that low values of
ε (e.g. up to 3) prolong the detection procedure, since in
that case the attacker does not deviate significantly from
the protocol. On the other hand, a large ε signifies a class
of increasingly aggressive attacks for which the detection is
achieved with very small delay. The results above provide
useful insights about the response of the system with respect
to the attack. For example, a value ε = 4 denotes an attacker
that obtains channel access 25% more times compared to the
legitimate operation. In that case, 40 samples would suffice
so as to detect the attack with PD = 90%. Therefore, a
more aggressive attack policy (within the class Fε for large ε)
brings significant benefits each time the attacker accesses the
channel, but it allows limited number of channel uses before
it is detected. On the other hand, a milder attack incurs
lower benefit for each channel use but it enables the attacker
to access the channel more times before it is detected.

Inspired by this observation, we can view DoS attacks as
an extreme case of misbehavior. To illustrate this, we define
the class of uniform pdf’s {fδ(x) : fδ(x) = 1/δ for 0 ≤ x ≤
δ and 0 else}. A DoS attack is described by pdf fδ(x) with
δ � W and δ → 0, since it chooses back-offs from a very
small interval. By substituting fδ(x) in (16), we obtain the
expression for the expected number of samples needed for
detection of DoS attacks as C(ln W − ln δ)−1.

We now proceed to quantifying the impact of interference
on performance. Depending on interference conditions, a
percentage of the back-off samples collected by the observer
nodes are corrupted. In that case, the RTS or CTS PER
indicates the amount of additional measurements required
for reaching a decision, depending on whether the observer
node resides within range of the attacker or the receiver of
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Figure 5: Average number of samples needed for
misbehavior detection for PF A=0.01 and different
interference conditions. The observer node collects
CTS packets.

the attack. Fig. 4 shows the average required number of
samples for achieving PF A = 0.01 and PD given by the x-
axis for different intensity of interference, with ε = 2. For
large values of PD it can be observed that intense interfer-
ence conditions (reflected in the SINR values of 3-4 dB) can
increase the number of required samples by 85% − 120%
compared to the case of no interference. In addition, for
SINR> 8dB, the performance is not affected significantly
by interference. Hence, interference can be viewed as pro-
viding additional benefit to the attacker in the sense that
it prolongs detection. Similarly, for PF A = 0.04, the corre-
sponding percentage of additional samples is approximately
80 − 100%.

In Fig. 5, we show the case of obstructed observations
based on received CTS packets for ε = 2. It turns out
that CTS observations are preferable to RTS ones in the
sense that they result in fewer required number of samples
to detect misbehavior. For example, for SINR values of 3-
4 dB, PF A = 0.01 and large PD, we observe an increase
of 85 − 100% in the number of required samples compared
to that with no interference. CTS observers become more
efficient compared to RTS ones for more intense interfer-
ence conditions. Therefore, when assigning observer roles
to nodes, emphasis should be given to those nodes that are
located within range of the receiver.

6. DISCUSSION
In this work, we presented a framework for studying the

problem of MAC misbehavior detection. Our approach en-
compasses the case of an intelligent attacker that adapts
its misbehavior strategy with the objective to remain un-
detected as long as possible. We cast the problem within a
minimax robust detection framework, characterize the worst-
case misbehavior strategy showing that the optimal detec-
tion rule is SPRT. Clearly, if the attacker is ignorant of the
detection mechanism, the number of required observations
to detect it under the same values of PF A and PD is lower
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than the corresponding value for the adaptive attacker. Our
results can thus shed light in the characterization of fun-
damental performance limits in terms of accuracy or detec-
tion delay for misbehavior detection. They can also serve
as benchmarks for performance evaluation of other detec-
tion policies and can provide useful insights about the effect
of interference on performance. Finally, we provided an in-
stance of a case when cross-layer interaction offers a solution
to the issue of notifying the network about the misbehavior.

Our work constitutes the first step towards building a the-
oretical framework for studying the structure of such misbe-
havior problems. The model can be extended to include ob-
struction of observations due to simultaneous channel access
attempts. We now mention some issues for further study.
A first issue concerns the exploitation of observations from
several observers in order to improve performance. This
amounts to the scenario where observers pass their mea-
surements to a fusion center which then combines them ap-
propriately and derives a decision as to the occurrence or
not of an attack. Due to different perceived channel con-
ditions at different locations of observer nodes, the amount
of interference at their receivers differs. If observers obtain
the same sequence of measurements, different samples of
the sequence are corrupted due to interference. The task of
the fusion center is then simply to combine the received se-
quences of measurements in a fashion very similar to that of
diversity combining. Given that there exists a certain cost
(e.g. consumed energy) in passing measurements to a fusion
center, an interesting issue pertains to the minimum number
of observers that are necessary to achieve a certain level of
performance in terms of detection delay or accuracy.

A far more challenging problem arises if each observer
does not measure back-offs accurately but it obtains a se-
quence of distorted values. This situation may arise in case
of occasional loss of synchronization between nodes or due
to hardware (e.g. counter) malfunction. Another instance
in which observers may have distorted back-off sequences is
the following. At the i > 1 transmission, node A selects
a back-off b and starts decrementing his counter. If the
medium is sensed busy, the counter freezes (suppose for du-
ration d) and restarts again when the medium is idle. When
the counter reaches zero, the RTS message is sent. In that
case, the observers perceive a back-off b̂ = b + d.

In our approach, we assumed continuously backlogged
nodes and have channel access probability as a means of
measuring the benefit of the attacker and corresponding per-
formance loss of legitimate nodes. Implicitly, we assumed
that fair sharing of the medium is reflected by this measure.
However, fair sharing also involves the intention of a node to
send a packet and therefore it is affected by packet arrivals
from higher layers and backlogs at different nodes. This
introduces the issue of throughput fairness and throughput
benefit. The attacker causes more damage to the system if it
prevents legitimate nodes from transmitting their payload.

The treatment of more than one attacker in the network
is definitely worth investigating. It would be interesting to
model and compare the case of attackers that act indepen-
dently and that of attackers that co-operate. In the first
case, the objectives of attackers may be conflicting in the
sense that each of them attempts to maximize its own bene-
fit. In the latter case, the optimal attack strategy, if it exists,
can aid in quantifying the benefits of co-operation and its
effects on performance degradation of legitimate nodes.

Finally, it would be very interesting to extend our ap-
proach and obtain results in the context of more sophisti-
cated MAC protocols such as 802.11e with the special fea-
tures regarding back-off control and differentiation in chan-
nel access opportunities that are incorporated in its en-
hanced DCF (EDCF) operation mode.
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