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Abstract— This paper addresses the causal sampling of
observations of a diffusion process that results in a good
quality continuous estimator based upon these samples. The
optimal sampling scheme with a fixed number of samples is
found by solving an optimal (multiple) stopping problem. This
is solved explicitly in a special case. A class of threshold
approximations is also described.

1. ESTIMATION AND CONTROL WITH DATA-RATE
CONSTRAINTS

In this paper, we focus our attention on packetization
(sampling) and on estimation based on the generated pack-
ets in a special Networked Control/Estimation System. We
have a sensor that makes continuous observations (y;) of a
diffusion state process (x,). On [0,7],

dx, = flx)dt+g(x)dW,, M
dy! = h(x;)dt+d‘/t. (2)

With xg ~ my(x)dx, yo =0, x; c R", y, € R", W, € R,
V; e R™ W and V being standard Wiener processes, with
g being positive definite: g(x)g(x)T >0 Vx € R", and with
f.&h and 7wy being such that the conditional probability
density of x; given {y;|0 <s <t} exists. The sensor has
to transmit to a supervisor, at times it chooses in (0,77,
data packets that contain condensed information that will be
useful for the supervisor to estimate the state at current and
future times. At all times in [0, T, the supervisor computes
an estimate (filter) of the current state given the record
of packets (contents of the packets including the sampling
times) received thus far from the sensor. The strategy used
by the sensor to choose the times at which to sample
the the observation process is known to the supervisor
as well, The real-ime estimate at the supervisor could
be used to compute a certainty-equivalence continuous
feedback control signal that can be relayed to the plant
without communication constraints. The only constraint on
communication rates in this setup is a limit on the rate of
packets sent from the sensor to the supervisor. This limit
apart, the data packet link from the sensor to the supervisor
is to be considered a lossless, zero-delay packet pipeline.
In this paper, we will study the optimal causal packe-
tization of the sensor observation stream for minimizing
the distortion between the continuous time filters at the
supetvisor and at the sensor. This is a problem that can
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be found in many systems control design charts today. In

these situations, frequently, there are basic limitations on the
information exchange pipelines such as costs on the usage
of bandwidth, energy and power, or a limited ability to
process all the information that can be gathered. There could
also be a task-induced need to minimize communication in
this distributed setting because of reasons like ‘keeping the
voices low” when using a distribuied sensor bed for sensing.
Here is a list of practical scenarios where this estimaticn
problem with limited communication appears: a) Allocation
of average packet rates to individual nodes on an automobile
CAN [5], [6], b) Sampling individual sensors in a MEMS
array [1], ¢} Scheduling packets in a wireless sensor network
[2], and d) Multi-agent collaborative tracking and sensing
with communication rate constraints [4].

A. Packetization of measurements

The digital representation of observations for communi-
cation or other purposes introduces a loss of information
that diminishes estimation and control performance. In
recursive estimation and control problems, the signal to
noise ratio of the received information as well as the
timeliness of the information are vital for efficient use.
Digitization affects both. The sampling introduces periods
of virtual information black-out! and a coarse quantization
introduces more noise than a fine quantization. The effect
of digitization on estimation, detection and control perfor-
mance has been studied by some researchers basically as
the effect of measurements made piece-wise constant with
the jumps made at sampling times [8], [9], [10], [i1]. In
this framework, we can describe what the optimal sampling
rate and quantization scheme is, or what the minimal rates
should be to guarantee stabilization or boundedness of
estimation error measures, especially for linear systems.

The transmission of measurements using a packet com-
munication scheme has some features that simplify the
analysis. In most scenarios, the packets are of uniform size
and even when of variable size, have at least a few bytes
of header and trailer files. These segments of the packet
carry source and destination node addresses, a time stamp
at origin, some error contro! coding, some higher layer (link
and transport layers in the terminology of data networks)
data blocks and any other bits/bytes that are essential for
the functioning of the packet exchange scheme but which
nevertheless constitute what is clearly an overhead. The
payload or actual measurement information in the packet
should then be at least of the same size as these ‘bells

'In packetizing schemes that are adapted to the measurements, there
could actually be some useful information even in the non-arrival of
packets (resulting in a Timing channel).
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and whistles’. It costs only negligibly more in terms of
petwork resources, time, or energy to send a payload of
five or ten bytes instead of two bits or one byte when the
overhead part of the packet is already 5 bytes. In other
words, in essentially all packet communication schemes, the
right unit of communication cost is the cost of transmitting
a single packet whether or not the payload is longer by a
few bytes. This means that the samples being packetized
can be quantized with very fine detail, say with 4 bytes,
a rate at which the quantization noise can be ignored for
low dimensional variables. The actual effect of this fine
quantization could be investigated perhaps along the lines
of [12). For Markov state processes, dealt with in this paper,
this will actually mean that all of these bytes of payload can
be used to specify the latest state estimate. An example of an
information-constrained problem where this argument fails
is the TCP-RED congestion contrel problem where the state
information is carried by a single bit in the whele packet in
which the real payload is irrelevant to the congestion state.

In these packetized schemes, the other design variable
left then is the sampling scheme,

B. Sampling strategy: predetermined or adapted ?

The question of when to sample and packetize is quite
important for the resulting performance, Periodic sampling,
or, more generally sampling at times determined indepen-
dently of the actual observation process brings an efement of
simplicity to the sampling scheme. But an adapted scheme,
that chooses the sampling instants causally based on past
measurements at the sensor (and any other information
granted to it by the supervisor), is better. The adapted
schemes include the predetermined ones trivially,

A special situation of such a sampling scheme (or rather
a control invocation scheme), called Lebesgue sampling,
is studied in [13]. A deterministic problem is treated in
[14]. The goal of this report is to study the use of adapted
sampling schemes in a basic estimation problem. Consider
a particular adapted scheme: sampling at some hitting times
of the measurement process. There is information transfer
through the packets as well as an additional information
transmitted when there is no packet transmitted: the fact that
the hitting time hasn’t arrived yet, For a practical set-up to
take advantage of this, packets should be transmitted reli-
ably and with negligible delay (transmission delays are fine
! our packets travel at the speed of light 1) and the clocks
at the various nodes should be reasonably synchronized.
The synchronization condition is required for ali sampling
schemes to work well in real-time applications. We also
require that all nodes work reliably and that they do not die
out during operation. This condition can be relaxed if we are
presented with a probabilistic model for node failore. Note
that in an non-adpated sampling scheme, at least when the
sampling instants are deterministic, non-arrival of a packet
at a designated time would automatically signal failure.
So, an efficient and robust scheme, especially for networks
made up of a horde of cheap sensors, is a combination of

open-loop and closed-loop policies: that of predetermined
and adapled policies. For example, some engineers are
introducing TDMA-style packetizing in CANs (goes by the
name of Time-triggered CAN) to guarantee access {0 some
sensors in the midst of packet-collisions/reliability-issues
ete.

An altogether separate aspect of the multi-sensor case
arises when the sensor network has a ‘star’ topology. Here,
all nodes are able to listen to the packets their peers
send to the decision-maker because they use a common
medium. They can coordinate their message transmissions.
The trick then is to come up with decentralized schemes
which provide each node with a packetizing policy which
takes into account the information fed to the decision maker
by peers. This model of information exchange with full
listening applies to wireless or Ethernet networks operating
under something like CSMA-CD. We should add that, at
this stage, we will disregard collisions or multiuser detec-
tion possibilities and other issues to do with multi access
communication. The same model works when the nodes are
communicating with the decision-maker in a way inaudible
to their peers but have access to a continuous broadcast
of estimates and viewpoints of the resource-rich decision
maker. The controlled version of this model is the multi-
agent co-ordinated control problem with the information-
rate constraints built into it. For problems where the control
enters the dynamics in an affine way, the optimal controller,
we hope, will turn out to be the certainty-equivalence
controller [15], [16].

II. RESULTS USING ADAPTED SAMPLING
A. Sampling a single sensor

We will describe in general terms, the problem of optimal
adapted sampling that minimizes a filtering distoriion. The
state process x; is a controlled partially observed diffusion
process. Any unnormalized version (0,) of the conditional
density of the state given the observations so far {x;), will
obey the Duncan-Mortensen-Zakai SPDE:

dp(x) = 2" () +h@pdy )
where &* is the Fokker-Planck (FP) operator given by:

o I(fit) 1&g Plaigi$)
Lo = — —_— - —_— 4
¢ Z ;2 22 ax;0x; @
for ¢ € C>(R"). We will assume that a finite dimensional
sufficient statistic (8;) exists for m, so that

do, (D(B: )df + \p(@r)dy’ (3)
nt(x) = K(I,x, ef) (6)

with 6, € RY. We will further assume that the sensor is able
to compute with high accuracy, a numerical approxXimation
of 6 resulting in a high accuracy computation of ;.

The causal sampling problem with a fixed number of
samples is to pick an increasing sequence Ty ({y:;[0 < s <
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TH: {30 <s< T} — {0, TV of N stopping times.

In({ys0<s<TH ={n,...w}, ¢
O0<n<p<.. <ty1 <WWKT, (8)
o € F Vie{l,2,... N} 9)

At these stopping times, the supervisor receives instanta-
neously, the current values of 8, (equivalently, the current
values of 7). Notice that we have basically neglected the
noise introduced through ¢uantization of 6, and through the
actual numerical computation of {8, } itself.

At all times, the supervisor computes the conditional
density of the state (¢;) given the packet record thus far

{(rla Mg ): i 5(Ti(3) 1 T‘l(r))}v

where, {(r) is the last sampling time and i(¢) the corre-
sponding packet index. Note that ¢, could be discontinuous
at sampling times. If i{t) < N,

oy (x)dx
= Prob [x, € dxl{(’r],rrrl), . ,(1’;(,),7![(,))},‘1’,-(,)+1 > I} .
(10)
If ir) =N,

o, (x)dx = Prob [xr € dx|{(1.'1,7r¢l),.. . ,(TN,JrW)}] . an

Right at the sampling instants, the conditional densities at
the supervisor is the same as that at the sensor.

Oir) = Mz}

E
Feedback control F¥
signal
Lossless, zero-dela;
Certainty-equivalence Data Network
ontroller §
L ue = K(:) Nonlinear Filter
oi(z)de = Problz; € de|{(m,mn)s - (Tes7r) b Tea1 > 8| Conditioned - g
oy is a degraded version of m, FExtrapolator
>
<

Schematic of a general Networked control and monitoring system with a single sensor.

m is a density-valued Markov process. o, is the best
extrapolation of =, available at the supervisor,

Prob|m € dn|{m:|0 <5 <I{t}}.1 < Tpyp]
= Prob[m € d?l’lfl’;(,),t < Ti(t)+1] (12)

This justifies our decision to packetize 7, (or actually, its
finite dimensional statistic ;). When there is no known
finite dimensional sufficient statistic for =, it is not clear
whether it is optimal to packetize y; or E[x,|#]] or some
finite dimensional approximation of a sufficient statistic.

Filtering distortion: Let A(-,-) be a distance operator
(positive and semi-definite binary function) in the space of
densities. Examples of a suitable distance function would
be the Kuilback Liebler divergence (we will first have to
show that o, < m,), the L, distance, and the square of
the Euclidean distance between the means of o; and 7.
Corresponding to a chosen distance function, we can set-up
a filtering distortion measure at the supervisor end:

E [/OT A(crs,ns)dsJ .

The communication cost is the total number of packets
sent: N. The Optimal sampling problem for Filtering with a
fixed sample count is to choose a sequence Fy ({0 <5<
T1) of stopping times that minimizes the filtering distortion
and to provide a recipe for computing o,.

(13)

In({y0<s<T})= argmin

T
E [[ Ao, ns)ds} .
Tal{ys|05s<TH 0

(14)
The discussion above can be summarized as follows: A
causal sampling policy is a multiple stopping policy. Given
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such a policy Fn({ys|0 <5< T}), the optimal filter at the
supervisor is derived from it as the conditional density given
by (10,11). We seek the optimal Zy ({v;]0 <5 <T}) as one
that minimizes (13). It would save a lot of computational
effort if for this optimal sampling strategy, the conditional
density can be computed in the fashion of (6) or least as a
numerical approximation to something like (3).

This optimization problem can be also posed as a joint
optimization over causal sampling policies and causal esti-
mators, We will have occasion to do that in the special case
of sampling an ideal sensor once.

Variable number of samples: We can easily extend the
solution of the fixed packet count problem to a slightly
better performing Variable packet count problem. This can
be done when the sensor has a lot of computing power at
its disposal.

A solution to this joint multiple stopping and filtering
problem seems difficult because of the complicated relation-
ship between a stopping policy and the corresponding filter
at the supervisor. However, the problem formulation itself
is a step forward because it can be solved in special cases
and because a natural approximation (which is used in [13]
for an infinite time interval problem) still outperforms the
periodic sampling strategy. It is & proper generalization of
the sampling problem for linear systems studied by Kushner
[171.

In what follows, we will (almost) solve this problem for
a very special case in which there is a decoupling between
the optimal stopping policy and the matching least squares
estimate at the supervisor.

B. Scheduling a single packet from an ideal sensor

We describe here the optimal schedule of a single sample
on [0, T] for the special case of a perfectly observed scalar
state process with odd drift and either even or odd diffusion
coefficient functions and an even initial probability density
function.

dx, =
dyr =

f(x,)dt+ g(x,)dB,
x,dt

(15)
(16)

With, xg = 0dx, vo =0, x; € R, f being odd, and g either
odd or even.

The sampling problem is to choose a single & -stopping
time 7 on [0,T).

‘%({xsloéssT}):{T}s an
0<7<T, (18)
1{r>:} S g;x' (19

Since x; is fully observed at the sensor, the relevant distor-
tion at the supervisor is now:

J=E [ fo d (J?s—xs)zds]

where £ is the conditional mean of the state computed by
the supervisor based on the initial density, the knowledge of

(20)

the sampling strategy and either the received single sample
or the fact that the sampling has not happened yet.

. {E[x,|x0:0,1>t] if 1>t

if <t

=\ Elulxd @D

T =

On [0,7), % is determined entirely by ¢. On [1,T)], %
is determined by the sample received : x;. The filtering
distortion splits into two parts.

E [ fo "5, -—xs)za's] VE [ f: " —x,)zds] @

The second part is entirely determined by x; and T — 7. On
[7,T], the variance E[(% --x)?] = P, obeys the ODE:
dPF,
= =E[20f () + & x)lxc]

with zero as the initial condition : P; =0. Let C(t,1,x;) be
the solution to this ODE on [7,T}. Then, the supervisor’s
distortion becomes:

E Uat(f,—xs)zds] VE [E U;T (% —xs)zds|*r,x1-”
_E [ /; ' (fs—x,)zds] VE [ _L TC(‘r,s,xf)ds]

Now, let the cost to go from T be

(23}

T
j C(1,5,x;)ds = €(1,T,x1).

T

29

Then, the overall optimization problem is to choose a
stopping policy 7 ({x;|0 < s < T}) such that the cost
T

J=E U) (& —x5)ds + (7, T,x,)] (25
is minimized. For an optimal sampling strategy, if we can
somehow know the dependence of £, on ¢ for ¢ € [0,7), we
can use the Snell envelope (S,) (see [19] Appendix D) to
determine the optimal stopping rule.

7
S; = essup E[.[o (%5 —x5)°ds + €1, T, x;)

>t

J

Then, the smallest time T* when the cost of stopping at that
time hits the Snell envelope is an optimal stopping time (see
[19] Appendix D ).

t 2
- /0 (ks —x;)2ds

T
+essup E [f (& —x;)2ds+ € (7, T, x¢)
t

=t

T*
f (% — x5 ds + €(7*, T, xee) = Spr. (26)
0
Or equivalently, -
T
#(1*,Tyxe ) =essup  E [ f (& — x;)ds +€(1, T, %) x,] ,
Pl *
T (27)

Since the Snell envelope depends orly on the current value
of the state and the current time, we get a simple threshold
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solution for our problem. We can compute the condition to
be satisfied by x;, r for stopping at 7 by relating this problem
to a variational inequality that gives us continuation and
stopping regions. In any case, for numerical computation
of the solution, we will have to take that route [20]. Now,
we will use some properties of the state process that result
from our earlier assumptions.

The unobserved x; is a process with an even density
function at all times if the initial density function is even.
Basically, the FP operator (4) is linear and so, if we split
p: into its even and odd parts

p:+ (x) = %p‘(_x)s
pi(x) — pr(—x)
2 ?

the separate parts obey the P equation which, with our
assumptions, preserves their even and odd properties re-
spectively. Since the initial density function is even, p; is
even at afl times, ¥°(T,x,T) is also an even function of x.

The joint optimization problem of filtering and sampling
has been cast so far as a stopping problem with the
optimal filter (f;) determined by the stopping rule. Now,
we will look at this optimization (25) as one over different
estimators &

pr (x)=

&:0,T|—R

for each of which, a stopping rule is devised to minimize
the filtering distortion for that estimator. Remember that the
estimate before the stopping time i3 based entirely on 7o, 2.
There is no ambiguity about the estimator after the packet
has arrived. The cost of (25) can be re-interpreted as;

romau(& R) = B [ [&—sr +%”(r,r,xf)] e

Given an estimator &, let F*({&}) be an optimal
stopping rule that minimizes Jrorar i.e.

Fromw (&) = Fromas (&1 %1 ({&) ) = minrorac (&, ).
(29
Let £ be an estimator that minimizes Jrograr, i.e.

JrotaL(&) = HgnfTorAL(ﬁr)- (30)

this means that the pair

(&7 (&)

minimizes (in sequence) the nested optimization problem:

rrg'n (n;%‘n {E [ [0 ! (& —x,)ds+ % (x, T,xT)] }) (31

It turns out that combining the estimator —&,* with the best
stopping rule for & does not increase the cost ! This is
because the process —x; has the same statistics as x;. If
Jro1aL has a unique minimizer, then, &* = —&* a.s. This
means that

& =0

This is indeed the conditional mean for the corresponding
optimal stopping problem because its Snell’s envelope S,
depends only on |x;| and ¢. In essence, there is no Timing
channel between the optimal filter and the optimal stopping
policy.

C. A sub-optimal strategy better than any predetermined

We will now describe a rather complicated sampling
method adapted to the fully observed state x; for the general
multiple sampling problem. For simplicity, we will assume
X to be scalar. The resulting sampling policy has some
thresholds that are parameters which can be optimized
to perform better than the best predetermined sampling
strategy. Given any predetermined strategy, we combine it
with a distortion threshold strategy that results in a hybrid,
variable packet count sampler that can be optimized for
performance in several ways. The hybrid sampler waits for
predetermined sampling times unless the supervisor’s esti-
mate corresponding o the predetermined sampler deviates
from the actual state process by more than a threshold.
Whatever triggers the sampling, the same wait and watch
game is carried on again for the next sample and so on. Note
that the supervisor can actually compute a better estimate
based on the fact that, until the sample arrives, the estimate
for predetermined sampling alone has not deviated too much
away from the true state. We are unable to ‘close the
Ioop’ and use a single estimate corresponding to the hybrid
stopping policy. But, we expect to better the predetermined
one because, when all the deviation thresholds are very high,
the hybrid is simply the same as the predetermined policy.
We will fix these ideas in what follows.

Let PD-S be a good predetermined sampler, which, given
[71,T2] and the initial state x7,, prescribes the number
of sampling points N(Tl,Tz,xrt) and the actual sampling
peoints

PIXT:, Tz,xrl) =
(Pdl(Tl,Tz,xrlL-~-:PdN(Tl,Tz,le)(Tl,Tz,xr,)) (32

that are either deterministic or if random, independent of
the state process x;. A non-imaginative PD-S could just
prescribe

(T1+6, Ti426,....Ti + {ngTle.)

Let Th-S be the distortion threshold sampler dependent
on PD-5. At any time Tj, given a schedule PD(Tl,Tg,xrl)
from PD-S, the threshold sampler prescribes a threshold
n(Tl,Tz,le) (the dependence on PD(TI,Tz,le) is sup-
pressed) for the distortion of a simple estimate ¥, that can
be computed at the supervisor from the true state x,:

3
Jrp(Th,t) = L (% — xs)%ds
1

where, #; is the estimate on [T},¢] that would be optimal at
the supervisor end unti] the first packet is received under
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the purely predetermined sampling strategy PD-S. It is the
mean of the density evolving under the FP operator (4).

-_J E [x,[xn] if 71 is a previous sampling time,
Elxlng) if T1=0.
(33)

What Th-5 does is to offer an adapted modification of
PD-8. It recommends that the first sample after 7; be made
at the earliest 7, for which

Tn
Jrp(A, Ty) = j}: (% —xs)zds = T](T],Tz,x.rl ).
1

Th-S could for simplicity, repeat the same 7 for all initial
conditions and time-interval. Or it could do a little computa-
tion and produce an 7] that is inversely dependenton 7, — T
and on the largest Lyapunov exponents of the variance ODE
(23) and directly proportional to N(Tl,Tz,le ).

At time zero or at any sampling time, we seek
PD(‘L';,Tg,x,i) and Tf(T,‘,Tz,x,i) from the two samplers. The
next sampling instant 7;y; is the random time which is the
earlier of the two:

Tigl = ’tn /\pdl(‘l-'i,Tz:xr,-)-

If Th-8 always sets 17 = ==, it will be agreeing with PD-
S on when to sample and PD(T;,T3,x;, ) is the sampling
strategy implemented over [T, T3]

Having resolved this scheduling policy that performs (by
a judicious choice of the ns) as good as and possibly better
than any predesigned scheduler?, we will describe a least-
squares estimate £, that is better than %, in fact the best one
at the supervisor.

Given the hybrid sampling strategy, the least-squares
estimate at the supervisor at anty time ¢ between two samples
(G <t < 1yy) is:

f, =E [x;

x‘tppdl (TI,T,J:T]) > t,Tn > It]

=F [x,

x-;“fn > t]

g
=FE [x, xf,,L (%5 —x5)ds < n(%,7,x, )]
1

To compute this, look at the 2-dimensional diffusion pro-
cess:

Xt _ Xt

4 f‘:'. (% _xS)ZdS '

( Zz ) - ( 2(f,—x,){EU({cf;IrJ)fri]“f(xr)}‘*‘l )dt
(o gy )M 69

Then £ is the first component of the n-long subvector of the
cenditional mean of this vector process given that it started

This obeys

2We do need a good family of predesigned strategies that work on (7,7
to be fed o Th-S at sampling times.

from the point (x;,0) at time 7; and is until now, within
the open set

A= {(x,2)|(x,Z) eR?,—n(7,T,ay ) <z < n('rr,T,xn)}-

This can be computed using the Feynman-Kac formula [18].

It seems very much possible that in the partially observed
case, with a finite dimensional sufficient statistic 8; for the
statistics of x, given &}, 8 which fully determines the
information state plays the role of x, for a fully observed
Sensor.
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