
Convergence Results for Ant Routing Algorithms via
Stochastic Approximation ∗

Punyaslok Purkayastha
Institute for Systems Research and ECE

Department
University of Maryland
College Park, MD, USA
punya@umd.edu

John S. Baras
Institute for Systems Research and ECE

Department
University of Maryland
College Park, MD, USA

baras@umd.edu

ABSTRACT
In this paper, we provide convergence results for an Ant
Routing (ARA) Algorithm for wireline, packet switched com-
munication networks, that are acyclic. Such algorithms are
inspired by the foraging behavior of ants in nature. We con-
sider an ARA algorithm proposed by Bean and Costa [2].
The algorithm has the virtues of being adaptive and dis-
tributed, and can provide a multipath routing solution. We
consider a scenario where there are multiple incoming data
traffic streams that are to be routed to their destinations
via the network. Ant packets, which are nothing but probe
packets, are used to estimate the path delays in the network.
The node routing tables, which consist of routing probabili-
ties for the outgoing links, are updated based on these delay
estimates. In contrast to the available analytical studies in
the literature, the link delays in our model are stochastic,
time-varying, and dependent on the link traffic. The evo-
lution of the delay estimates and the routing probabilities
are described by a set of stochastic iterative equations. In
doing so, we take into account the distributed and asyn-
chronous nature of the algorithm operation. Using methods
from the theory of stochastic approximations, we show that
the evolution of the delay estimates can be closely tracked
by a deterministic ODE (Ordinary Differential Equation)
system, when the step-size of the delay estimation scheme
is small. We study the equilibrium behavior of the ODE in
order to obtain the equilibrium behavior of the algorithm.
We also provide illustrative simulation results.
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1. INTRODUCTION
In this paper we study the convergence and properties of

a routing algorithm proposed for communication networks,
that belongs to the class of Ant Routing (ARA) Algorithms.
It was observed in an experiment conducted by biologists
Deneubourg et. al. [9], called the double bridge experi-
ment, that under certain conditions, a group of ants when
presented with two paths to a source of food, is able to collec-
tively converge to the shorter path. It was found that every
ant lays a trail of a chemical substance called pheromone as
it walks along a path. Subsequent ants follow paths with
stronger pheromone trails, and in their turn reinforce the
trails. Because ants take lesser time to traverse the shorter
path, pheromone concentration increases more rapidly along
this path. These “positive reinforcement” effects culminate
in all ants following, and thus discovering, the shorter path.

Most of the ARA algorithms proposed in the literature are
inspired by the basic idea of creation and reinforcement of
a pheromone trail on a path that serves as a measure of the
quality of the path. These algorithms employ probe pack-
ets called ant packets (analogues of ants) that help create
analogues of pheromone trails on paths. In the context of
routing, these trails are based on path delay measurements
made by the ant packets. Routing tables at the nodes are
updated based on the path pheromone trails. The update
algorithms help direct data packets along outgoing links that
lie on paths with lower delays.

We consider a wireline, packet-switched network, and pro-
vide convergence results for an ARA algorithm proposed by
Bean and Costa [2]. In an earlier paper [17], we had studied
convergence for a simple N parallel links network. In this
paper, we provide convergence results for a general, acyclic
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network1. The Bean, Costa algorithm has many attractive
features. It is distributed, adaptive, and can provide a mul-
tipath routing solution — that is, the incoming traffic at a
source is split between the multiple paths available to the
destination. This enables efficient utilization of network re-
sources. We now briefly dwell on the literature on ARA
algorithms.

Literature. ARA algorithms have been proposed for all
kinds of networks — circuit- and packet-switched wireline,
as well as packet-switched wireless networks. We briefly dis-
cuss the algorithms for packet-switched networks, because
they are more relevant; for a more comprehensive survey
see Dorigo, Stutzle [10] and Bonabeau, Dorigo, and Ther-
aulaz [5]. Most of the algorithms proposed and studied for
such networks — for example, Gabber, Smith [11], Di Caro,
Dorigo [7], Subramanian, Druschel, and Chen [19] (all the
above are for wireline networks), and Baras, Mehta [1] (for
wireless networks) — are variants of the Linear Reinforce-
ment (LR) scheme considered in studies of stochastic learn-
ing automata (see Kaelbling, Littman, and Moore [13] and
Thathachar and Sastry [20]). In these works, variants of
the LR scheme are used to adjust routing probabilities at
the nodes based on path pheromone trails. Yoo, La, and
Makowski [21] consider the scheme of [19] for a network con-
sisting of two nodes connected by L parallel links. The link
delays are deterministic. Ant packets are either routed uni-
formly at the nodes — called “uniform routing” — or are
routed based on the node routing tables — called “regular
routing”. A rigorous analysis shows that the routing proba-
bilities converge in distribution for the uniform routing case,
and almost surely to a shortest path solution for the regular
routing case. The LR scheme however, is not designed for
applications where the delays are stochastic, time-varying,
which is the case of main interest to us. ARA algorithms
different from the LR scheme are considered in [5], [2].

Though a large number of ARA algorithms have been pro-
posed, fewer analytical studies are available in the literature.
Algorithms similar to those that aim to explain the observa-
tions in the double bridge experiment, have been rigorously
studied in Makowski [15], Das and Borkar [8]. Makowski
considers the case where there are two paths of equal length
to a food source, and a model where each ant chooses a
path with a probability proportional to a power ν ≥ 0, of
the number of ants that have previously traversed the path.
Using stochastic approximation and martingale techniques
the paper provides convergence results, and shows that the
asymptotic behavior can be quite complex (in particular,
only when ν > 1, all ants eventually choose one path). Das
and Borkar consider a scenario with multiple disjoint paths
between a source and a destination. There are three al-
gorithms — a pheromone update algorithm that builds a
pheromone trail based on the number of ants traversing the
path and path length, a utility estimate algorithm based on
the path pheromone trail, and a routing probability update
algorithm that uses the utility estimates. Using stochastic
approximation methods, they show convergence to a short-
est path solution if there is an ‘initial bias’, i.e., if initially
there is a higher probability of choosing the shortest path.
Gutjahr [12] considers a problem where ant-like agents help
solve the combinatorial optimization problem of finding an
optimal cycle on a graph, with no nodes being repeated ex-

1For a definition of such networks see Section 3.

cept for the start node. Arc costs are deterministic. Agents
sample walks based on routing probabilities, and reinforce
pheromone trails on arcs, which in turn, influence the rout-
ing probabilities. The paper shows that asymptotically, with
probability arbitrarily close to one, an optimal cycle can be
found. Another analytical study is the paper [21] discussed
above.

Contributions and Related Work. The above set
of analytical studies have mostly concentrated on networks
with deterministic link delays. In contrast, we provide con-
vergence results when the link delays are stochastic, time-
varying, and are dependent on the link traffic. This is a
more relevant and interesting case.

Bean and Costa [2] study their scheme using a combina-
tion of simulation and analysis. They employ a ‘time-scale
separation approximation’ whereby average network delays
are computed ‘before’ the routing probabilities are updated.
Numerical iterations of an analytical model based on this ap-
proximation and simulations are shown to agree well. How-
ever, the time-scale separation is not justified 2, nor is any
formal study of convergence provided.

We consider a stochastic model for the arrival processes
and packet lengths of both the ant and the incoming data
streams. The ARA scheme consists of a delay estimation
algorithm and a routing probability update algorithm, that
utilizes the delay estimates. These algorithms run at every
node of the network. The delay estimates are formed based
on measurements of path delays (these delays are caused
by queuing delays on the links). We describe the evolution
of these algorithms by a set of discrete stochastic iterations.
Our formulation considers the distributed and asynchronous
nature of algorithm operation. We show, using methods
from the theory of stochastic approximations, that the evo-
lution of the delay estimates can be closely tracked by a de-
terministic ODE (Ordinary Differential Equation) system,
when the step size of the delay estimation scheme is small.
We study the equilibrium behavior of the ODE system in
order to obtain the equilibrium behavior of the routing al-
gorithm. We provide illustrative simulation results.

Our approach is most closely related to Borkar and Kumar
[6], which studies an adaptive algorithm that converges to
a Wardrop equilibrium routing solution. Our framework is
similar to theirs — there is a delay estimation algorithm and
a routing probability update algorithm which utilizes the
delay estimates. Their routing probability update scheme
moves on a slower “time scale” than the delay estimation
scheme. In our case however, the routing probability update
scheme is on the same “time scale” as the delay estimation
scheme, and our method of analysis is consequently differ-
ent. This could also be desirable in practice, because the
algorithm convergence will be much faster.

The paper is organized as follows. In this paper we sepa-
rately consider the two cases where ant packets are routed
according to uniform and regular routing. There is a parallel
development of the discussion related to these two forms of
routing. In Section 2 we outline in detail the mechanism of
operation of ARA algorithms, and discuss the Bean, Costa
algorithm. Section 3 provides a formal discussion of our
acyclic network model and assumptions, and a formulation
of the routing problem. We analyse the routing algorithm
in Section 4, discuss our ODE approximation results and

2We shall see, in Section 4, that it holds only when the
step-size ε in the delay estimation algorithm is small (ε ↓ 0).
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related computations, and the equilibrium behavior of the
algorithm. In Section 5, we consider an example acyclic net-
work. Related simulation results are provided and discussed.
Section 6 provides concluding remarks and discusses a few
directions for future research.

2. ANT ROUTING ALGORITHMS:
MECHANISM OF OPERATION

We provide in this section a brief description of the mech-
anism of operation of ant routing for a wireline communi-
cation network. Such a network can be represented by a
directed graph G = (N ,L), with a set of nodes N , and a set
of directed links L. Our formal description follows the gen-
eral framework of Di Caro and Dorigo [7], [10]. Alongside,
we describe the Bean, Costa [2] scheme.

Every node i in the network maintains two key data struc-
tures — a matrix of routing probabilities, the routing table
R(i), and a matrix of various kinds of statistics used by the
routing algorithm, called the network information table I(i).
For a particular node i, let N(i, k) denote the set of neigh-
bors of i (corresponding to the outgoing links (i, j) from
i) through which node i routes packets towards destination
node k. For the network consisting of |N | nodes, the ma-
trix R(i) has |N |− 1 columns, corresponding to the |N |− 1
destinations towards which node i could route data packets,
and |N | − 1 rows, corresponding to the maximum number
of neighbor nodes of node i. The entries of R(i) are the
probabilities φk

ij . φ
k
ij denotes the probability of routing an

incoming data packet at node i and bound for destination k
via the neighbor j ∈ N(i, k). The matrix I(i) has the same
dimensions as R(i), and its (j, k)-th entry contains various
statistics pertaining to the route from i to k that goes via
j (denoted henceforth by i → j → · · · → k). Examples of
such statistics could be mean delay and delay variance esti-
mates of the route i → j → · · · → k. These statistics are
updated based on the information the ant packets collect
about the route. I(i) thus represents the characteristics of
the network that are learned by the nodes through the ant
packets. Based on the information collected in I(i), “local
decision-making” — the update of the routing table R(i) —
is done. The iterative algorithms that are used to update
I(i) and R(i) will be referred to as the learning algorithms.

We now describe the mechanism of operation of ARA al-
gorithms. For ease of exposition, we restrict attention to
a particular fixed destination, and consider the problem of
routing from every other node to this node, which we la-
bel as D. The network information tables I(i) at the nodes
contain only estimates of mean delays.

Forward ant generation and routing. At certain in-
tervals, forward ant (FA) packets are launched from a node i
towards the destination D to discover low delay paths to it.
The FA packets sample walks on the graph G based either on
the current routing probabilities at the nodes as in regular
ant routing (regular ARA), or uniformly 3 as in uniform ant
routing (uniform ARA). Uniform ant routing might be pre-
ferred in certain cases; for instance, when we want the ant
packets to explore the network in a completely “unbiased”
manner. FA packets share the same queues as data packets
and so experience similar delay characteristics as data pack-
ets. Every FA packet maintains a stack of data structures
containing the IDs of nodes in its path and the per hop de-

3routed with equal probability on each outgoing link

lays encountered. The per hop delay measurements can be
obtained through time stamping of the FA packets as they
pass through the various nodes.

Backward ant generation and routing. Upon arrival
of an FA at D, a backward ant (BA) packet is generated.
The FA packet transfers its stack to the BA. The BA packet
then retraces back to the source i the path traversed by the
FA packet. BA packets travel back in high priority queues,
so as to quickly get back to the nodes and minimize the
effects of outdated or stale measurements. At each node
that the BA packet traverses through, it transfers the delay
information that was gathered by the FA packet. This infor-
mation is used to update matrices I and R at the respective
nodes. Thus the arrivals of BA packets at the nodes trigger
the iterative learning algorithms.

We now describe the Bean, Costa [2] learning algorithm.
Suppose that an FA packet measures the delay ΔD

ij associ-
ated with a walk from i to D via the outgoing link (i, j).

This delay is more precisely the following. Let eJD
j denote a

sample sum of the delays in the links, experienced by an FA
packet moving from node j to node D (it is thus a sample
of the expected ‘cost-to-go’ from j to D). Let ewij denote a
sample of the delay experienced by an FA packet traversing

the link (i, j). Then ΔD
ij = ewij + eJD

j . When the correspond-
ing BA packet comes back at node i the delay information
is used to update the estimate XD

ij of the mean delay using
the simple exponential estimator

XD
ij := XD

ij + ε(ΔD
ij −XD

ij ), (1)

where ε > 0 is a small constant. We refer to XD
ij as the mean

delay estimate for the route i → j → · · · → D. Estimates
XD

ik corresponding to other neighbors k ∈ N(i, D) are left
unchanged.

Simultaneously, the routing probabilities at i are updated
using the relation

φD
ij =

(XD
ij )

−β

P
k∈N(i,D) (XD

ik)
−β
, ∀j ∈ N(i,D), (2)

where β is a constant positive integer. φD
ij is thus inversely

proportional to XD
ij . β influences the extent to which out-

going links with lower delay estimates are favored compared
to the ones with higher delay estimates.

We can interpret the quantity (XD
ij )−1 as analogous to a

“pheromone trail or deposit” on outgoing link (i, j). This
trail gets dynamically updated by the ant packets. It influ-
ences the routing tables through relation (2). Equation (2)
shows that the outgoing link (i, j) is more desirable when
XD

ij , the delay through j, is smaller; in other words, when
the pheromone trail is stronger, relative to the other routes.

3. FORMULATION OF THE PROBLEM.
THE ACYCLIC NETWORK MODEL

We consider the problem of routing from the various nodes
i of the network to a single destination D. At every node i
there exist queues (buffers) Qij associated with the outgoing
links (i, j); we assume these to be FIFO queues of infinite
size. The network can be thought of equivalently as a system
of inter-connected queues (a queuing network). Every link
(i, j) has capacity Cij . We assume that the queuing delays
dominate the processing and propagation delays in the links.
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We consider acyclic networks and define them following
Bertsekas, Gallager [3]. A queue Qij is said to be down-
stream with respect to a queue Qkl if some portion of the
traffic through the latter queue flows through the former.
An acyclic network is one for which it is not possible that
simultaneously Qij is downstream of Qkl and Qkl is down-
stream of Qij . The set N(i) = {j : (i, j) ∈ L} denotes
the set of downstream neighbors of i. An example of an
acyclic network is given in Figure 2, pp. 8. We shall denote
the routing probability entries of R(i) by φij (i.e., without
explicitly mentioning the destination). The mean delay es-
timate entries of I(i) are denoted by Xij .

The general algorithm, as described in Section 2, is asyn-
chronous (and distributed). This is because the nodes launch
the FA packets towards the destination in an unco-ordinated
way. Moreover, there is a random delay as each FA-BA pair
travels through the network. The learning algorithms at the
nodes for updating R and I are thus triggered at random
points of time (when BA packets come back). We consider
a more simplified view of the algorithm operation, which is
still asynchronous and distributed, retains the main char-
acteristics and the essence of the algorithm, but is more
convenient to analyze.

We assume that FA packets are generated according to
a Poisson process of rate λa

i > 0 at node i (λa
D = 0). We

consider a model with the following assumptions on the al-
gorithm operation.

(M1) We assume that the BA packets take negligible time
to travel back to the source nodes (from which the corre-
sponding FA packets were launched) from destination D.
Because BA packets are expected to travel back through
high priority queues, the delays might not be significant,
except for large-sized networks with significant propagation
delays. On the other hand, incorporating the effects of such
delays into our model introduces additional complications
related to asynchrony.

(M2) In the general algorithm operation, a BA packet up-
dates the delay estimates at every node that it traverses on
its way back to the source, besides the source itself. In what
follows, we shall consider the more simplified algorithm op-
eration, whereby only at the source node the delay estimates
and the routing probabilities are updated.

We assume that data packets are generated according to
a Poisson process of rate λd

i ≥ 0 at node i; for some nodes it
is possible that no data packets are generated, i.e., the rate
is zero (for the destination, λd

D = 0).
Let {α(m)}∞m=1 denote the sequence of times at which FA

packets are launched from the various nodes of the network.
Let {δ(n)}∞n=1 denote the sequence of times at which FA
packets arrive at the destination node D (we set α(0) =
0, δ(0) = 0). Because we have assumed that BA packets
take negligible time to travel back to the sources, these are
also the sequence of times at which BA packets come back
to the source nodes. Consequently, these are the sequence
of times at which algorithm updates are triggered at the
various nodes. At time δ(n), let X(n) and φ(n) denote, re-
spectively, the vector of mean delay estimates and the vector
of outgoing routing probabilities at the network nodes. The
components of X(n) and φ(n) are Xij(n), (i, j) ∈ L, and
φij(n), (i, j) ∈ L, respectively.

Thus, by time δ(n), overall n BA packets will have come
back to the network nodes. (At this point it is useful to
recall assumption (M2)). Let T (n) be the N -valued random

variable that indicates which node the n-th BA packet comes
back to. Then ξi(n) =

Pn
k=1 I{T (k)=i} gives the number of

BA packets that have come back at node i by time δ(n)4.
Let Ri(.) denote the routing decision variable for FA packets
originating from node i. We say that the event {Ri(k) =
j} has occurred if the k-th FA packet that arrives at D
and that has been launched from i, has been routed via the

outgoing link (i, j). Let ψij(n) =
Pξi(n)

k=1 I{Ri(k)=j}; ψij(n)
gives the number of FA packets that arrive at nodeD by time
δ(n), having been launched from node i and routed via (i, j).
By the zero delay assumption on the travel time of the BA
packets and the assumption (M2) on algorithm operation,
ψij(n) is also the number of BA packets that come back to
i via j, by time δ(n). Let {Δij(m)} denote the sequence of
delay measurements made by successive FA packets arriving
at D, that have been launched from node i and routed via
the outgoing link (i, j). This is also the sequence of delay
measurements about the route i → j → · · · → D made
available to the source i by the BA packets.

Let’s suppose that at time δ(n) a BA packet comes back
to node i. Furthermore, suppose that the corresponding FA
packet was routed via the outgoing link (i, j). When this
BA packet comes back to node i, the delay estimate Xij is
updated using an exponential estimator

Xij(n) = Xij(n− 1) + ε
“
Δij(ψij(n)) −Xij(n− 1)

”
, (3)

ε ∈ (0, 1) being a small positive constant. Estimates Xik for
the other routes i→ k → · · · → D (k ∈ N(i), k �= j) are left
unchanged

Xik(n) = Xik(n− 1). (4)

Also, the estimates at the other nodes do not change

Xlp(n) = Xlp(n− 1), ∀p ∈ N(l), ∀l �= i. (5)

Also, as soon as the delay estimates are updated at node
i, the outgoing routing probabilities are also updated

φij(n) =
(Xij(n))−βP

k∈N(i) (Xik(n))−β
, ∀j ∈ N(i). (6)

The routing probabilities at the other nodes do not change.
In general thus the evolution of the delay estimates at

the network nodes can be described by the following set of
stochastic iterative equations

Xε
ij(n) = Xε

ij(n− 1) + ε I{T ε(n)=i,Rε
i (ξε

i (n))=j} ×“
Δε

ij(ψ
ε
ij(n)) −Xε

ij(n− 1)
”
,∀(i, j) ∈ L, n ≥ 1,

(7)

starting with the initial conditions Xε
ij(0) = xij ,∀(i, j) ∈ L.

The routing probabilities are updated in the usual way

φε
ij(n) =

(Xε
ij(n))−β

P
k∈N(i) (Xε

ik(n))−β
, ∀(i, j) ∈ L, n ≥ 1, (8)

with initial conditions φε
ij(0) =

(xij)−β

P
k∈N(i) (xik)−β , ∀(i, j) ∈ L.

Though not explicitly mentioned, it is understood that there
are no algorithm updates being made at D.

The ε’s in the superscript in equations (7) and (8) above,
recognize the dependence of the evolution of the quantities

4IA denotes the indicator random variable for the event A.
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involved (for example, the delay estimates Xij) on ε. How-
ever, for most of the paper5, we shall not use this notation;
this enables the discussion to be less cumbersome. Also, we
note that equations (7) and (8) describe the evolution of the
delay estimates and the routing probabilities for the regular
ARA as well as for the uniform ARA case.

We also introduce the following continuous time processes,
{x(t), t ≥ 0} and {f(t), t ≥ 0}, defined by the equations

x(t) = X(n), for δ(n) ≤ t < δ(n+ 1), n = 0, 1, 2, . . . ,

f(t) = φ(n), for δ(n) ≤ t < δ(n+ 1), n = 0, 1, 2, . . . .

The components of x(t) and f(t) are denoted by xij(t) and
fij(t), respectively.

In the case of regular ARA, an FA packet as well as a
data packet are routed at an intermediate node based on
the current routing probabilities at the node. Thus, in view
of the discussion in this section, a packet that arrives at node
i at time t, is routed according to the routing probabilities
fij(t), j ∈ N(i), and joins the corresponding queues. In the
case of uniform ARA, a data packet arriving at i at time t,
is routed according to the probabilities fij(t), j ∈ N(i); an
FA packet arriving at t is routed uniformly (see Figure 1).

time 
δ δ δ δ(n)(n−1) (n+1) (n+2)

X(n)
φ (n)

t

Regular: Ant/data packet arriving
at node i is routed based on current
routing probabilities φ

is routed based on φ
Uniform: Data packet arriving at i

uniformly
Ant packet arriving at i routed 

ij
(n)

ij (n)

Figure 1: Routing of packet arrivals at a node at time t.
Sequence {δ(n)} are the times at which algorithm updates
are taking place.

4. ANALYSIS OF THE
ROUTING ALGORITHM

We view the routing algorithm, consisting of equations (7)
and (8), as a set of discrete stochastic iterations of the type
usually considered in the literature on stochastic approxi-
mations [14]. We provide below the main convergence result
which states that, when ε is small enough, the evolution of
the vector of delay estimates is closely tracked by an ODE
system.

4.1 The ODE approximation
The key observation, which simplifies the analysis, is that

there is a time-scale decomposition when ε is small enough
— the delay estimates Xij then evolve much more slowly
compared to the delay processes Δij . The probabilities φij

also evolve at the same “time-scale” as the delay estimates
(φij are continuous functions of the delay estimates Xij).
Consequently, when ε is small enough, with the vector of
delay estimates X considered fixed at z (equivalently the
vector of routing probabilities fixed at φ, the components of

φ being φij =
(zij)−β

P
k∈N(i) (zik)−β ), the delay processes {Δij(.)}

5except when we are required to be more clear and precise

converge to a stationary distribution, which is dependent on
z. Given the φij , (i, j) ∈ L, and a knowledge of the rates
of incoming traffic streams into the queuing network, enable
us to determine the total incoming arrival rates into each of
the queues Qij . This can be done by simply solving the flow
balance equations; see Bertsekas, Gallager [3], Mitrani [16].
We assume that the total arrival rate is smaller than the
service rate of packets in each queue. This assumption (a
queue stability assumption) then ensures that, when vector
X is considered fixed at z, delay processes {Δij(.)} converge
to a stationary distribution, which depends on z. We denote
the means under stationarity, for each (i, j) ∈ L, by Dij(z)
(DU

ij(z) for the uniform ant case), which is a finite quantity.
Also, with delay estimate vector X considered fixed at z,

let ζi(z), i ∈ N , (ζU
i (z) for the uniform ants case) denote,

under stationarity, the long-term fraction of FA packets ar-
riving at D that have been launched from i. ζi(z) belongs
to the set (0, 1) (ζD(z) = 0, ζU

D(z) = 0).
Furthermore, when ε is small, the evolution of the vec-

tor of delay estimates is tracked by an ODE system (an
ODE approximation result). This result is not proved in
this paper for lack of space, but is available in the tech-
nical report [18]. We now introduce some additional no-
tation and state the assumptions under which this result
holds. For any fixed ε ∈ (0, 1), and for each (i, j), con-
sider the piecewise constant interpolation of Xε

ij(n) given
by: zε

ij(t) = Xε
ij(n), nε ≤ t < (n + 1)ε, n = 0, 1, 2, . . .,

with the initial value zε
ij(0) = Xε

ij(0). Consider also the
vector-valued piecewise constant process zε(t), for all t ≥ 0,
with components zε

ij(t), (i, j) ∈ L. Let us consider the
increasing sequence of σ-fields {Fε(n)}, where Fε(n) en-
capsulates the entire history of the algorithm for all time
t ≤ δ(n). In particular, it contains the σ-field generated by
r.v.’s Xε(0),Xε(1), . . . , Xε(n). It also contains information
regarding the arrival times and packet service times, and in-
formation regarding the actual routing of packets. The ODE
approximation result holds under the following assumptions.

Assumptions:
(A1) For every (i, j) ∈ L, and for every ε ∈ (0, 1), the

sequence {Δε
ij(m)} is uniformly integrable; that is,

sup
m≥1

E[Δε
ij(m)I{Δε

ij(m)≥K}] → 0, as K → ∞.

Regular Ant case.
(A2) If X(n) is held fixed at z (the sequence φ(n) is then

fixed at a value φ; φ has components φij =
(zij)−β

P
k∈N(i) (zik)−β )

then, for every l ≥ 0, and for every (i, j) ∈ L, we have

lim
r→∞

l+rX
m=l+1

E[I{T (m)=i,Ri(ξi(m))=j}Δij(ψij(m))|F(m− 1)]

r

= ζi(z)φijDij(z), (9)

lim
r→∞

l+rX
m=l+1

E[I{T (m)=i,Ri(ξi(m))=j}|F(m− 1)]

r
= ζi(z)φij ,

(10)
the relations above holding almost surely. The quantities
T (n), Ri(n),Δij(n), as well as the sequence {F(n)} that ap-
pear in the equations above are defined in a similar way as for
the case when the delay estimate vector X is time-varying.

(A3) We assume that the quantities ζi(z)φijDij(z) and
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ζi(z)φij are continuous functions of z.
Uniform Ant case.
(A2′) We assume that, if X(n) is held fixed at a value z

then, for every l ≥ 0, and for every (i, j) ∈ L, we have

lim
r→∞

l+rX
m=l+1

E[I{T (m)=i,Ri(ξi(m))=j}Δij(ψij(m))|F(m− 1)]

r

=
ζU

i (z)DU
ij(z)

|N(i)| , (11)

lim
r→∞

l+rX
m=l+1

E[I{T (m)=i,Ri(ξi(m))=j}|F(m− 1)]

r
=
ζU

i (z)

|N(i)| .
(12)

(A3′) We assume that the quantities ζU
i (z)DU

ij(z) and

ζU
i (z) are continuous functions of z.
We have the following convergence theorem which is a

central result of this paper. The proof is available in the
technical report [18], and follows the approach of Kushner
and Yin [14], Chapter 8, Sections 8.1, 8.2.1. We state the
result for the regular ARA case. The corresponding result
for the uniform ARA case can be similarly stated.

Theorem 4.1. Under assumptions (A1), (A2), and (A3),
we have the following: there exists a subsequence {ε(k)},
with ε(k) ↓ 0 as k → ∞, such that the process {zε(k)(t)}
converges weakly (as k → ∞) to a solution {z(t)} of the
ODE system (13).

For the regular ARA case, z(t), with components zij(t),
(i, j) ∈ L, is a solution of the ODE system

dzij(t)

dt
=

ζi(z(t))(zij(t))
−β

“
Dij(z(t)) − zij(t)

”
P

k∈N(i) (zik(t))−β
,

∀(i, j) ∈ L, t > 0, (13)

with initial conditions zij(0) = xij , ∀(i, j) ∈ L.
For the uniform ARA case, z(t), with components zij(t),

(i, j) ∈ L, is a solution of the ODE system

dzij(t)

dt
=

ζU
i (z(t))

“
DU

ij(z(t)) − zij(t)
”

|N(i)| ,

∀(i, j) ∈ L, t > 0, (14)

with initial conditions zij(0) = xij , ∀(i, j) ∈ L.
We now briefly discuss the assumptions. A sufficient con-

dition under which (A1) holds is sup
n≥1

E
ˆ`

Δε
ij(n)

´γ+1˜
< ∞,

for some γ > 0. That is, some moment of the delay higher
than the first moment is finite, which we assume. Assump-
tions (A2) and (A3) can be expected to hold, because they
are forms of the strong law of large numbers (they are some-
what weaker because the terms involve conditional expecta-
tions). Similar remarks apply for (A2′) and (A3′).

The dynamic behavior of the algorithm can be studied via
the ODE approximation. Numerical solution of the ODE,
starting from given initial conditions, requires the compu-
tation of the means Dij(z) and the fractions ζi(z) (respec-
tively, DU

ij(z) and ζU
i (z) for the uniform ants case), for given

z. In the next subsection, we discuss how to compute these
quantities.

4.2 Computations related to the ODE
approximation

We assume that, in every queue Qij the successive service
times of both ant (FA) and data packets are i.i.d. exponen-
tial with the same mean 1

Cij

6. Furthermore, the service

times at each queue are independent of service times at all
other queues, and also independent of arrival processes at
the nodes. These assumptions are the usual assumptions
made for open Jackson networks, and enable us to remain
within the domain of solvable models; see, for example, Bert-
sekas, Gallager [3] and Mitrani [16].

Regular Ant case. In this case, because the ant and
data packets are being routed in an identical fashion, we
have a single class open Jackson network. Given z, we can
compute the routing probabilities φij , (i, j) ∈ L. The rout-
ing probabilities combined with a knowledge of the rates of
the incoming streams (ant, data) into the network, enable
us to determine the total arrival rate Aij(z) into each queue
Qij . This can be done by simply solving the flow balance
equations in the network. For each (i, j) ∈ L, we assume
that Aij(z) < Cij — the arrival rate is smaller than the
service rate. Then, under our statistical assumptions, there
is a unique joint stationary distribution of the random vari-
ables denoting the total number of packets in the queues
Qij , (i, j) ∈ L. Moreover, this stationary distribution is of
a product form. Also, we can compute various quantities of
interest to us, like average stationary delays in the queues
[3], [16]. Let wij(z) denote the average stationary delay (so-
journ time) in queue Qij , and let Jj(z) denote the average
stationary delay (expected ‘cost-to-go’) from node j to the
destination D, both experienced by an FA packet. wij(z) is
given by the formula, wij(z) = 1

Cij−Aij (z)
. The quantities

Ji(z), i ∈ N , satisfy the following equations

Ji(z) =
X

j∈N(i)

φij

“
wij(z) + Jj(z)

”
, ∀i ∈ N , i �= D,

JD(z) = 0. (15)

Once these equations are solved for Ji(z), i ∈ N , we can
compute the quantities Dij(z), (i, j) ∈ L, using the relations

Dij(z) = wij(z) + Jj(z). (16)

Because FAs are generated as a Poisson process with rates
λa

i at each node i, and because of Assumption (M2), the

fraction ζi(z) =
λa

iP
j∈N λa

j
(see Section 7 for a detailed argu-

ment).
Uniform Ant case. In this case, the FA packets and

the data packets are routed differently. We have an open
Jackson network with two classes of traffic, the first class
consisting of the FA traffic and the second class consisting of
the data traffic. Separate flow balance equations are set up
for the two classes of traffic. These flow balance equations
enable us to solve for the arrival rates Aa

ij(z) and Ad
ij(z)

of the FA and the data packets into each queue Qij . The
total arrival rate Aij(z) into Qij is then simply given by the
sum Aa

ij(z) + Ad
ij(z). The average stationary delay wU

ij(z)

in queue Qij is then given by wU
ij(z) = 1

Cij−Aij(z)
. The rest

6This amounts to assuming that the average length of a
packet (ant or data) is one unit. This is not a restriction,
and we can consider the general case by simply multiplying
by the average length. However, both ant and data packets
must have the same average length.
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of the computations which lead to the determination of the
quantities DU

ij(z), (i, j) ∈ L, can be done in a similar manner
(with straightforward modifications) as for the regular ants
case. Again, because ant packets are generated as a Poisson
process at all nodes, and because of Assumption (M2), the

fraction ζU
i (z) =

λa
iP

j∈N λa
j
.

With the knowledge of the quantities Dij(z), (i, j) ∈ L,
and ζi(z), i ∈ N (respectively, DU

ij(z) and ζU
i (z) for the uni-

form ant case), we can numerically solve the ODE (13) ((14)
for the uniform ant case), starting from initial condition:
zij(0), (i, j) ∈ L.

4.3 Equilibrium Behavior of the Routing
Algorithm

We now study the equilibrium behavior of the routing
algorithm. We denote the equilibrium values of the various
quantities by attaching a ∗ to the superscript.

Regular Ant case. Consider the equilibrium points z∗

of the ODE system (13). Because the ζi(z
∗) are all positive,

the points z∗ with components z∗ij satisfy the equations

(z∗ij)
−β

P
k∈N(i) (z∗ik)−β

.
“
Dij(z

∗) − z∗ij
”

= 0, ∀(i, j) ∈ L. (17)

The interpolated delay estimate vector zε(t) approaches the
set of equilibrium points z∗ asymptotically as ε → 0. More
precisely, if E denotes the set of equilibrium points and
Nδ(E) denotes a small enough, δ-neighborhood of E, then
asymptotically (as t→ ∞), the fraction of time zε(t) spends
in Nδ(E) goes to one in probability, as ε→ 0 (see Kushner,
Yin [14], Section 8.2.1, Theorem 2.1). The vector of rout-
ing probabilities φε(n), being a continuous function of the
delay estimate, asymptotically approaches the set of points

φ∗ whose components are given by φ∗
ij =

(z∗
ij)−β

P
k∈N(i) (z∗

ik
)−β ,

(i, j) ∈ L. In what follows, we shall refer to z∗ij as an
equilibrium delay estimate, and φ∗

ij as an equilibrium rout-
ing probability, it being understood that the delay estimate
zε

ij(t) and the routing probability φε
ij(n) are asymptotically

very close to these quantities with probability close to one,
for small enough ε.

Because the total arrival rate into every queue is smaller
than the packet service rate, the equilibrium delay estimates
are finite, and so the equilibrium routing probabilities must
be all positive. Consequently, equations (17) reduce to:
Dij(z

∗) = z∗ij ,∀(i, j) ∈ L. Now, denoting the functional
dependence of the mean stationary delays on the routing
probabilities also by Dij(φ) (a slight abuse of notation), and

noting that φ∗
ij =

(z∗
ij)−β

P
k∈N(i) (z∗

ik
)−β , ∀(i, j) ∈ L, we find that

φ∗
ij , (i, j) ∈ L, must satisfy the following fixed-point system

of equations

φ∗
ij =

(Dij(φ
∗))−βP

k∈N(i) (Dij(φ∗))−β
, ∀(i, j) ∈ L. (18)

We check that, for a vector φ∗, there is a unique vector
with components Dij(φ

∗), (i, j) ∈ L. To that end, we first
notice that, for every (i, j) ∈ L,

Dij(φ
∗) = wij(φ

∗) + Jj(φ
∗), (19)

where Jj(φ
∗) is the expected delay (expected ‘cost-to-go’)

from node j to the destination D experienced by an FA

packet when the routing probability vector is φ∗; JD(φ∗) =
0. wij(φ

∗) is the expected delay along the link (i, j) experi-
enced by an FA packet when the routing probability vector
is φ∗; we assume that for a given φ∗, wij(φ

∗) is unique 7.
Ji(φ

∗), i ∈ N , satisfy the following set of equations

Ji(φ
∗) =

X
j∈N(i)

φ∗
ij

“
wij(φ

∗) + Jj(φ
∗)

”
, ∀i ∈ N , i �= D,

JD(φ∗) = 0. (20)

Because our equilibrium probabilities φ∗
ij are all positive,

there exists a path from every node i to node D consisting
of a sequence of links (i, k1), . . ., (kn,D) for which φ∗

ik1 > 0,
. . ., φ∗

knD > 0. Then, the equations (20) have a unique
solution (vector) J(φ∗), which has components Ji(φ

∗), i ∈ N
(see Bertsekas and Tsitsiklis [4], Section 4.2, pp. 311-312).
Taking note of this and relation (19), we see that for every
vector φ∗, there is a unique vector of delays Dij(φ

∗), (i, j) ∈
L.

Also, for any (i, j) ∈ L, Dij(φ
∗) is a continuous function

of the probabilities. (Furthermore, being at least equal to
the average service time experienced by an FA packet in
the queue Qij , it is lower bounded by a positive quantity.)
Then, by an application of Brouwer’s fixed-point theorem,
there exists a vector of equilibrium routing probabilities φ∗

satisfying the fixed-point system (18) (the right-hand side
of the fixed-point system maps a compact, convex set — a
Cartesian product of probability simplices — to itself).

Uniform Ant case. For the uniform ant case, at equi-
librium, the components z∗ij satisfy the following equations“

DU
ij(z

∗) − z∗ij
”

|N(i)| = 0, ∀(i, j) ∈ L. (21)

We can show in a manner similar to the regular ant case, that
the equilibrium routing probabilities must be all positive and
must satisfy the fixed-point system of equations

φ∗
ij =

(DU
ij(φ

∗))
−β

P
k∈N(i) (DU

ij(φ
∗))−β

, ∀(i, j) ∈ L. (22)

Also, we can show that, for a vector of equilibrium rout-
ing probabilities φ∗ there is a unique vector with compo-
nents DU

ij(φ
∗), (i, j) ∈ L. Also there exists a solution to the

set of fixed-point equations (22), by a similar application of
Brouwer’s fixed-point theorem.

5. EXAMPLE: AN ACYCLIC NETWORK
In this section we consider the acyclic network of Figure

2. The numbers beside the links indicate the link capacities
(Cij units for link (i, j)). Data packets arrive at nodes 1, 2
and 3 as Poisson processes with rates λd

1, λ
d
2, and λd

3. Ant
packets come in as a Poisson process at node i with rate λa

i

(i = 1, . . . , 7).
We carried out a discrete event simulation of the network

and present results for the regular ARA case. The arrival
rates of the streams are as follows: λa

i = 2, i = 1, . . . , 7, and

7We have a similar abuse of notation for wij and Jj as we
had for Dij . In Section 4.2, we had denoted by wij(z) and
Jj(z) the average stationary delay in queue Qij , and the
average stationary delay (expected ‘cost-to-go’) from node
j to D, both experienced by an FA packet, with the delay
estimate vector considered fixed at z.
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Figure 2: An Acyclic Network

λd
1 = 6, λd

2 = 8, and λd
3 = 6. The parameter β = 1, and the

step size ε = 0.002.
The approximating ODE system is given by (13). The

ant arrival rates λa
i being all equal, ζi(z) = 1

7
, i = 1, . . . , 7.

Delay estimate for route 1 → 4 → · · · → 8 is approximated
by the component z14(t) which follows the equation

dz14(t)

dt
=

(z14(t))
−1

“
D14(z(t)) − z14(t)

”

7
“
(z14(t))

−1 + (z15(t))
−1

” , t > 0.

Delay estimates for route 1 → 5 → · · · → 8, and for other
routes 2 → j → · · · → 8, j = 4, 5, 3 → j → · · · → 8, j =
4, 5, are approximated by corresponding components, which
follow similar equations. The delay estimate for route 4 →
6 → 8 is approximated by z46(t) which follows the equation

dz46(t)

dt
=

(z46(t))
−1

“
D46(z(t)) − z46(t)

”

7
“
(z46(t))

−1 + (z47(t))
−1

” , t > 0.

Delay estimates for route 4 → 7 → 8, and for routes 5 →
j → 8, j = 6, 7, are approximated by components that follow
similar equations. Finally, the delay estimate for link 6 → 8
is approximated by z68(t) which follows the equation

dz68(t)

dt
=
D68(z(t)) − z68(t)

7
, t > 0.

Delay estimate for link 7 → 8 is approximated by z78(t),
which follows a similar equation. For each z, computation
of the means Dij(z), that appear in the ODE expressions
above, can be accomplished following Section 4.2. We solve
the above ODE system numerically, starting from certain
initial conditions zij(0) = xij , (i, j) ∈ L.

Figures 3a, 3c provide plots of the interpolated delay esti-
mates zε

14(t), z
ε
46(t), and alongside plots of the corresponding

components of the ODE system. The ODE approximation
tracks the interpolated delay estimates well. Figures 3b and
3d provides plots of the routing probabilities φε

14(n) and
φε

46(n), respectively. We note that though we initially start
with a routing probability φε

14(0) < 0.5, the routing proba-
bility φε

14(n) converges to a value which is greater than 0.5.
This is to be expected of a routing algorithm; the (equilib-
rium) routing probability on outgoing links that lie on paths
with higher capacity links should be higher.

6. CONCLUDING REMARKS
Extensions. We can extend our results to the case when

we have an acyclic network, with multiple destinations for
the incoming data traffic. As usual, at every node, ant (FA)
packets are sent out to explore the delays in the paths to-
wards each destination. The ant packets can be routed using
either the regular or the uniform ARA algorithm. Suppose
that there are M destinations overall. With assumptions
(M1) and (M2) regarding the operation of the algorithm in
force, we can write down the stochastic iterative equations,
describing the evolution of the delay estimates and the rout-
ing probabilities, in a form similar to equations (7) and (8).
Let us now consider first the case when the queue Qij asso-
ciated with link (i, j), is shared by all ant and data packets
that are bound for various destinations. The scheduling dis-
cipline is FIFO. In this case it can be checked that, we would
again have an ODE approximation similar in form to (13)
for the regular ARA case ((14) for the uniform ARA case).
There is a set of equations for each of the M destinations,
and the equations considered together constitute a system
of coupled ODEs. In order to compute the stationary means
of the delays — Dij(z), for a given z — related to the ODE
approximation, we can employ the same procedure as in Sec-
tion 4.2, with appropriate modifications. In this regard we
note that we again have an open Jackson network, with M
classes for the regular ARA case, and with M +1 classes for
the uniform ARA case (data packets are routed according
to the node routing probabilities and ant packets are routed
uniformly). Also, the equilibrium behavior of the routing
algorithm can be described as in Section 4.3.

The second more general case is a per-destination queu-
ing arrangement, which is more appropriate in a routing
context. In this case, for a link (i, j), M separate outgoing
queues Qk

ij , k = 1, . . . ,M , are maintained. Qk
ij holds FA and

data packets that are bound for destination k. The transmis-
sion capacity of link (i, j) is then shared between the queues;
the manner in which the sharing takes place is known as the
link scheduling discipline. In this case, the form of the up-
date algorithms does not change, and we can arrive at an
ODE approximation for the system as described above for
the first case. However, in this case, it may not be always
possible to compute analytically the stationary mean delays.
Only for certain symmetric link scheduling disciplines like
Processor-Sharing, which are analytically tractable (that is,
have joint stationary product form distributions for the num-
ber of packets in the queues; see [16]), can we compute the
stationary mean delays.

Also, in our framework, we can consider a slightly more
general dependence of outgoing routing probabilities on the

delay estimates: φij =
g(Xij)

P
k∈N(i) g(Xik)

, where g is a contin-

uous function, that is positive real-valued, and nonincreas-
ing. The analysis remains the same. An example of g is
g(x) = e−βx, x ≥ 0, where β is a positive integer.

Conclusions and Future Directions. In summary, in
this paper we have studied the convergence and the equilib-
rium behavior of an ARA algorithm for wireline, packet-
switched networks. We have considered acyclic network
models, where there are multiple sources of incoming data
traffic whose packets are bound for specified destinations.
We have considered stochastic models for the arrival pro-
cesses and packet lengths for the ant and data streams. We
have shown that the evolution of the vector of delay esti-
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Figure 3: ODE approximations and plots of routing probabilities

mates can be tracked by an ODE system when the step-size
of the estimation scheme is small. We then study the equi-
librium routing behavior. We observe that, at equilibrium,
the routing probabilities are higher for outgoing links that
lie on paths with higher capacity links.

There are certain advantages of ARA algorithms that are
worth pointing out. ARA algorithms do not require explicit
knowledge of the incoming traffic rates into the network, or a
knowledge of the link capacities. Instead, they rely directly
on online information of path delays in the network, that
are collected by ant packets. This enables the algorithm
to adapt to changes in the incoming traffic rates, and/or
changes in the network topology. On the other hand, be-
cause there is a learning process to ascertain the path delays
(based on which the routing probabilities are updated), the
convergence of the algorithm can be slow.

In our work we have considered models where are no cy-
cles in the network. It remains to study convergence and
equilibrium behavior of the algorithm when there are cy-
cles. There are two issues that arise. First, cycles in the
network affect adversely the process of estimation of path
delays by the ant packets. This is because the estimates
can grow unbounded if there is a positive probability of

an ant packet being routed in a cycle. Second, it might
happen that we converge to an equilibrium routing solution
which has loops. That is, for a given destination k, the
equilibrium routing probabilities might be such that, for a
sequence of links (i1, i2), . . . , (in−1, in), (in, i1) that forms a
cycle, φk

i1i2 > 0, . . . , φk
in−1in

> 0, φk
ini1 > 0. There is no

reason to believe that the scheme that we analyse in this
paper can lead to a loop-free equilibrium solution. For the
case when the network has cycles, we might need to modify
the scheme so that it can converge to a loop-free routing
solution, which is desirable.

7. APPENDIX: EXPRESSION FOR ζI(Z)

We show here that ζi(z) =
λa

iP
j∈N λa

j
, for each i ∈ N , for

the regular ARA case. The same argument holds for the
uniform ARA case. As discussed in Section 4.2, with the
delay estimate vector X considered fixed at z, we have a
single class open Jackson network. For each queue Qij with
the arrival rate of packets Aij(z) < Cij , the queuing network
converges to stationarity. Let Tij , (i, j) ∈ L, denote the total
number of packets in the queues Qij under stationarity. Let
{Rn} denote the sequence of times when Tij , (i, j) ∈ L, re-
turns to the state consisting of all zeros. Thus, {Bn}, where
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Bn = Rn−Rn−1, constitutes the sequence of successive busy
periods for the queuing network. Under our assumptions on
the statistics of the arrival processes and the packet lengths
of the various streams, {Bn} is an i.i.d. sequence, with the
mean E[Bn] <∞. {Rn} is a sequence of stopping times for
the ant Poisson arrival processes at the nodes.

For each i ∈ N , let Di(t) = Number of FA packets that
arrive at destination D by time t. Then

ζi(z) = lim
t→∞

Di(t)P
j∈N Dj(t)

. (23)

Furthermore, we have

lim
t→∞

Di(t)P
j∈N Dj(t)

=
E[Di(Bn)]P

j∈N E[Dj(Bn)]
. (24)

This is intuitive, and can be established by using the Re-
newal Reward Theorem, with the inter-renewal times being
the sequence {Bn}.

Now, because Di(Bn) = Number of ant Poisson arrivals at
node i in the interval Bn, the mean E[Di(Bn)] = λa

iE[Bn],
and so

ζi(z) =
λa

iP
j∈N λa

j

. (25)
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