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Abstract

This paper presents a theoretical framework based on Bayesian
decision theory for analyzing recently reported results on
implicit coscheduling of parallel applications on clusters of
workstations. Using probabilistic modeling, we show that the
approach presented can be applied for processes with arbi-
trary communication mixes. We also note that our approach
can be used for deciding the additional spin times in the case
of spin-yield. Finally, we present arguments for the use of a
different notion of fairness than assumed by prior work.

1 Introduction

High performance computing using clusters has become a vi-
able and actively researched area for parallel computing. A
central tenet of much of this work is that clusters of com-
modity networks and machines can provide supercomputer
performance at a much lower cost. This paper focuses on the
problem of achieving good parallel application performance
in such environments, without sacrificing local scheduling
autonomy. Specifically, we present new theoretical results
on optimal decision-making for systems that use implicit
coscheduling [4].

There has been a wealth of recent research in this area [3, 4, 7,
5, 6]. We classify methods of scheduling processes in clusters
of workstations in the following three categories:

� Local Process Scheduling - Each workstation indepen-
dently schedules its processes based only on local con-
straints. This approach is the least complex because it
does not require any coordination between local sched-
ulers. However, it can lead to poor performance for
parallel applications that exhibit fine-grained commu-
nication behavior. Communicating processes are often
not scheduled at the same time, leading to the handling
of incoming requests being delayed until the destination
process is scheduled.

� Explicit Coscheduling - This approach requires local
schedulers to schedule all of the constituent processes
of a given parallel application at exactly the same time.
This may be accomplished statically by agreeing upon a
global schedule in advance, or dynamically by having
a “master” local scheduler direct other schedulers by
communicating with them at each context switch. In
general, the performance of explicit coscheduling can
be expected to degrade if jobs perform heavy I/O or are
interactive in nature.

� Implicit Coscheduling - This approach allows each of
the local schedulers to make decisions independently,
but relies on local schedulers to take the communi-
cation behavior of local processes into account when
making decisions. Local schedulers can converge on
coscheduling behavior since each sees similar or re-
lated communication behavior by local processes that
are part of parallel applications. There are two major
forms of implicit coscheduling in the literature. The
first is dynamic coscheduling [7], which is based on
message arrivals only. The second is two-phase spin-
blocking [3, 4], which makes use of several types of
information, such as response time, the nature of mes-
sage arrivals, and the amount of scheduling progress
made by each process.

This paper develops a theoretical framework for analyzing
the spin-blocking implicit coscheduling. Several reports have
shown that this approach performs as well as other implicit
coscheduling approaches, and their approach has been the
subject of the most previous analysis. Our results can be ex-
tended to the spin-yield approach [5] as well. However, we
will focus on spin-blocking in this paper since the experimen-
tal setup for two-phase spin-block has been well documented
in the literature.

Spin-blocking relies on the observation that a request will
likely receive a fast reply to a request if the destination process
is already scheduled when the request is sent. Conversely, a
slow reply probably means that the destination process is not
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Variables Description

W message wakeup cost
2L+ 4O round-trip time
SRBase baseline read spin = 2o + 4L+W

B barrier latency
SBBase baseline barrier spin = B

SBLocal local barrier spin = SBBase + 2W
V max barrier imbalance = 4W + 2B

TPair additional conditional pairwise spin

Table 1: Spin Variables

currently scheduled. This characteristic allows coscheduling
to be achieved by continuing to execute processes whose re-
mote requests complete quickly, and blocking those processes
whose remote requests take a long time.

The specific mechanism used is two-phase spin-blocking. The
sender of a remote request spins for some amount of time (also
referred to as threshold time) while waiting for the request to
complete. If a reply has not been received by the threshold
time, the sender blocks and another local process runs. It
is well understood that for a fixed distribution of waiting
times, spinning for a time W is competitive with the optimal
online algorithm with a factor of two, where W is the cost of
context switching. Despite the fact that this analysis is not
directly applicable to this context, extensive simulation and
performance results confirm [4] that spinningfor an additional
time proportional to W works well.

Spin-blocking is usually analyzed in the context of bulk-
synchronous applications whose processes interact through
remote reads and global barriers. The central contribution of
this paper is a general result showing how to arrive at optimal
spin times in this case. More specifically, we pose the problem
of identifying spin thresholds as a general optimization prob-
lem based on process mix information, and use a Bayesian
decision approach to find the optimal spin times. Second,
we present a decision method that takes into account the cost
of scheduling a competing, but wrong process. This method
extends prior results by allowing heterogeneous processes.
Finally, we argue for a different definition of the fairness met-
ric used to evaluate approaches to scheduling heterogeneous
processes.

The rest of the paper is organized as follows. Section 2 re-
views previous spin-blocking analysis and shows by example
that these formulations are applicable only in limited cases.
Section 3 motivates the use of Bayesian analysis. Section 3
shows how to derive previous results for the single process
case, and Section 4 presents the analysis for the multiple-
process case, and shows that prior analysis is inaccurate even
if the processes are identical. Finally, Section 5 discusses the
issue of fairness and Section 6 concludes.

2 Background and Motivation

This section reviews prior spin-time formulations that were
based on extensive simulations [4]. We show that these for-
mulations are not adequate to handle non-uniform distribu-
tions of message arrival rates, or to handle multiple processes
with similar or different characteristics. The spin thresholds
are summarized in Table 1. We will define these terms as they
occur in the text. There are two primary spinning thresholds
that need to be derived: the spinning time for a process to be
kept in coordination if they are already coscheduled, SBBase,
and the spinning time used by a remote process to wait till
all the processes reach the barrier, SLocal.The remote request
spin actually has two components: a baseline spin, and an
additional amount of spin to be given to processes that handle
incoming requests while spinning. This latter spin exists be-
cause processes that handle remote requests are contributing
to overall forward process, even while otherwise spinning.

2.1 Baseline Read Spin

The basic tenet of this work is that if a process is already
coscheduled with remote processes with which it commu-
nicates, it is cost effective to keep the processes cosched-
uled.The one exception to this rule is with regards to provid-
ing fairness to competing parallel applications. We discuss
fairness in Section 5. In order to keep communicating pro-
cesses coscheduled, we assume that the initiator of a remote
read must spin at least the minimal amount of time required
for a message to be handled and responded to. Using the LogP
model [2], this baseline read spin isSRBase = (2L+4O+W ),
where L is the network latency, O is the processing overhead,
and W is the cost of waking up a process. The wakeup cost W
is included to account for the fact that the remote scheduler
may elect to wake the destination process if it is not already
scheduled. Hence, SRBase is the minimum round trip time
when the destination is not already scheduled. A process that
sends a remote request and spins for this time should still be
spinningwhen the reply returns, assuming that the destination
process is immediately scheduled when the request arrives.

2.2 Incoming Messages

While a process spins waiting for a request to be handled, it
may receive and process incoming requests. Overall forward
progress can be made by letting processes that will be receiv-
ing incoming requests in the near future continue to spin until
the requests arrive. In the following, assume that the destina-
tion of the remote request is already spinning while waiting
for its own request to complete. We can derive the maximum
additional spin-wait time, TPair , by addressing the following
two cases:
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1. Assume the destination process is scheduled. If the
destination spent time TPair spin waiting when the
message arrives, it takes (2L + 4O) units of time for
the sender to get response back from destination. Hence
the total cost to the sender and destination is (TPair +
2L + 4O).

2. If the destination is not scheduled, the sender unsuc-
cessfully spins for (2L + 4O + 2W ) and blocks; the
destination is woken up at a cost of W , sends a reply,
and spins for another W ; and finally, the sender is wo-
ken at a cost of W . The total cost to the system is
(2L + 4O + 5W ).

Therefore the total cost to the system is less if (TPair + 2L+

4O) is less than (2L+4O+5W ). Therefore, the upper bound
of TPair for which additional spinning is useful is 5W .

2.3 Barrier Spin and Load-Imbalance

The other spin time needed for bulk-synchronous applica-
tions is the spin time at barriers. This spin time consists
of two components: the cost of a minimal barrier, SBBase,
plus the average amount of expected barrier imbalance. Ne-
glecting the latter component would usually prevent all but
the most late-arriving processes from remaining scheduled at
barriers, potentially adding to the imbalance seen at subse-
quent barriers. Given SBBase, the base spin time, SBLocal , is
defined to be (SBBase +W ) in order to provide competitive
behavior. If we assume that the coscheduled processes arrive
at the barrier with a uniform distribution, and denote the max-
imal load imbalance by v, then the average load imbalance is
given by v=2. Hence, the difference (v=2 � SBLocal) is the
average additional cost in waiting for barrier synchronization
compared to just spinning for baseline time. If this additional
cost is less than the time it takes to wake up a sleeping pro-
cess, then it is cost effective to let the process spin for the
load imbalance time. This leads to the decision to spin for the
entire load-imbalance if v=2 < (SBBase + 2W ). Otherwise,
a process spins only up to time of 2(SBBase+2W ), and then
blocks.

3 A Bayesian Approach to Local Cost-
Benefit Analysis

Non-uniform arrival probabilities can result in multiple pro-
cesses with the same average threshold values, but with dif-
ferent upper bounds for imbalance. This section shows how
to choose optimal thresholds that minimize the processor time
wasted on spinning and context switching among all compet-
ing jobs. We take a probabilistic view of the competing jobs

in deriving the necessary optimal (optimality in the sense of
selecting optimal expected total cost) threshold for each com-
peting job. Aside from the mathematical framework itself, our
approach also shows that even the optimal thresholds (which
is average value by our formulation to be presented below)
vary for each process.

Nagar [5] also argues that the results of [4] do not generalize
because the study in [4] assumed Split-C/Active Messages,
which has tightly coupled, communicating processes. Most
reply messages arrive with very little, if any, delay. However,
Nagar et al. do not give a probabilistic model to remedy
the problem. Instead they discuss additional variations of
deterministic models. We note that our approach may be
used to interpret some of the spin-blocking results reported
by Nagar [5] as well.

Omitting the algebra for the moment, we can summarize the
rest of the section as follows. If the competing process mix
is such that there are processes that have higher probabilities
of performing communication (higher communication rates),
they must, on average, have larger (upper bounds on addi-
tionalwaiting times) thresholds. Jobs with lower probabilities
of communication should have shorter spin-wait thresholds.

This result can be interpreted as follows. Processes with
higher probabilities of communication will not need to wait
longer to receive the message, on average, even if allowed
longer spin waits. Processes that communicate frequently
should be given a higher chance of being able of receiving a
message, and hence should be allowed to waste, if need be,
the amount of time they are alloted in spin-waiting in order to
make progress. The converse is also true: overall efficiency
will benefit if processes that communicate less frequently
spin-wait for shorter times, and block more frequently.

We also note that the use of the same thresholds as in [4] for
all jobs is equivalent to assuming that there is no penalty in
spinning a wrong job. We will elaborate on this in detail later.

3.1 Single Process

Deciding whether or not to let a process spin-wait is a binary
decision process. The possible outcomes are that either the
barrier closes within the allocated threshold time, or not. The
decision design space for load-imbalance spin-wait is there-
fore 2 x 2.The input to the local scheduler can therefore be
reduced to a binary event, with event H1 denoting the inputs
corresponding to the process of interest, and event H0 de-
noting the inputs corresponding to all other processes. Each
of the inputs from these two events has a range of possible
values, and is random in nature. We denote the observation
space corresponding to event H1 by Z1, and the space cor-
responding to event H0 by Z0. We denote the entire event
space byZ = Z0[Z1. We denote the incoming input random
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variable by Y , and the probability densities of Y under event
spaces Z0 and Z1 by f0 and f1. To be more precise, we say
that f0 = f(Y = yjH0), and f1 = f(Y = yjH1). Each
time that a local scheduler makes a binary decision based on
the expectation that an event, H1, will occur, there are four
possible outcomes:

1. H0 was decided and H0 occurred.

2. H0 was decided and H1 occurred.

3. H1 was decided and H0 occurred.

4. H1 was decided and H1 occurred.

The local scheduler makes correct decisions in cases (1) and
(4), and incorrect decisions in cases (2) and (3). Let H1 mean
that the barrier closes, and H0 mean that it does not. We can
then summarize the four decisions and outcomes as follows:

1. The process blocks but the barrier does not close.

2. The process blocks and the barrier does close.

3. The process spins but the barrier does not close.

4. The process spins and the barrier closes.

We note that the case (2) is related to a miss and the case (3) is
related to a false alarm in the context of decision theory [8, 1].
In using Bayesian criteria, we assume that the probabilities of
each outcome, P0 = P (H0) and P1 = P (H1), are known a
priori. We note that:

P0 + P1 = 1 (1)

Each of these decisions has an associated cost. For example,
if the local process was allowed to spin, but the barrier did
not close, then the time spent spinning could possibly have
been spent more profitably on another process. Similarly, if
the local process blocked and the barrier closed immediately
thereafter, unnecessary context switches occur.

We define Cij as the cost associated with making decision
in favor of event i given that the true hypothesis is Hj. In
particular, the costs for all possible outcomes can be denoted
as (a) C00 for case 1 , (b) C01 for case 2, (c) C10 for case 3,
and (d) C11 for case 4. Since there is no penalty in making
correct decision, C00 = C11 = 0. Letting P (i; j) denote the
probability that decision is i and the outcome is j, the average
cost/risk associated with the decision process can be written
as:

R = E[C] = C01P (0; 1) + C10P (1; 0) (2)

From this equation, after some algebra, we can derive a con-
dition

P1C01f(Y = yjH1) < P0C10f(Y = yjH0) (3)

In this case, all the values of Y for which P1C01f(Y =

yjH1) > P0C10f(Y = yjH0) are assigned to event space Z1.
If we let Λ1 =

f1
f0

, and �1 =
p1
p0

, the decision process reduces
to:

Decide
�

spin-wait if Λ1�1C01 > C10

block immediately else

It may be noted that our derivations depend on the ratios of
C01 or C10 only. We now interpret the results reported of
Dusseau [4] in terms of the binary decision formula given
above. The cost of False Alarm type spin-waiting was cho-
sen to be C10 = v=2. The cost of Miss type spinning par-
tially, blocking, and being woken up later was chosen to be
C01 = B + 2W . Using these values, the binary decision
process would decide to spin wait if Λ�(B + 2W ) > v=2,
and to block otherwise. In the case of Dusseau’s results,
the threshold implicitly assumed that all the processes have
identical distributions, and hence set �1Λ1 = 1. Then, a bi-
nary decision process would decide to spin-wait if (C01 =

B + 2W ) > (C10 = v=2), and to block otherwise. This
reduces to the condition stated in Section 2.3, i.e. it is cost
effective to spin-wait up until 2(B + 2W ). In general, how-
ever, the product Λ1�1 6= 1. From the threshold conditions,
we note that for different values of the product term Λ1�1,
the permissible optimal threshold value on load-imbalance v
will vary. For example, if Λ1�1 = 5, the optimal spin-wait
threshold value will be v < 10(B + 2W ).

3.2 Incoming Messages

The analysis for pair-wise cost-benefit is identical except for
the values of the cost functions. Section 2.2 showed that
overall performance will be improved if a spinning process
that handles incoming messages is granted extra spin time.
As before, a round trip time is assumed to cost 2L + 4O.
The decision-process costs, derived from various time re-
quirements in [4], are enumerated as follows: (1) C00 = 0
(i.e. if blocking was correct no penalty is payed), (2) C01 =

(2L+ 4O+ 5W ).i.e. the penalty for blocking is the flight la-
tency, processing time, “short spin” time and three more block
related penalties, (3)C10 = (2L+4O+T ). i.e. the penalty for
latency + processing + additional wait, (4)C11 = 0. i.e. pay
no penalty because the process spins until the barrier closes.
With these quantities, the binary decision process would de-
cide to spin wait if (C10 = 2L + 4O + T ) < Λ1�1(C01 =

2L + 4O + 5W ), or block otherwise. Again, the canonical
choice of threshold discussed in Section 2 can be obtained
by setting the product term Λ1�1 = 1, leading to a decision
to spin wait if T < 5W , and to block otherwise. As in the
case of local cost-benefit analysis, we note that the thresh-
old values can vary depending on the process densities and
probabilities that decide the value of Λ�. For example, if
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Λ� = 2, the optimal threshold spin-wait time can be as large
as T < 10W .

4 Multiple Processes

We now formulate the spin wait time decision problem for the
case of multiple processes. This is closely coupled with the
issues of fairness and scalability. When there are n processes
with process i having probability distribution f i and the prior
probability of conditional message arrival pi, the thresholds
are determined using a set of simultaneous equations

Λi�iC0i � Ci0 +

j=nX
j=1;j 6=i

Λj�j(Cij � C0j)i= 1; � � �n (4)

whereCij denotes the cost of predicting that the next message
arrival will be for i, when it is actually for j. Also, Λi =

fi
f0

,
and �i =

pi
p0

. We first show that for the multiple processes
case, Dusseau’s use of the threshold for multiple processes
seem to miss a constant term 5W in computing the costs Cij.

?

Values of the penalty terms areC0i = C0j = (2L+4O+5W );
f or i, j =1; � � � ; n;Ci0 = (2L + 4O + Ti), and the maximum
value of Cij = (Ti + 2L+ 4O + 5W ).

The last term is due to an incorrect decision to spin-wait
process i instead of the correct process j. The penalty is
the cost of blocking the current process and waking up the
destination process. Substituting these values, the spin-wait
threshold for process i reduces to:

Ti <
(Λi�i � 1)(2L + 4O) + Λi�i5W

1 +
Pj=n

j=1;j 6=i Λj�j
(5)

If we set Λj�j = 1, where j = 1; � � � ; n, this leads to a
threshold for process i of Ti < 5W=n when there are n

identical competing jobs. We note that the derivations in [4]
doesn’t account for the time 5W in the cost assignment ofCij.
For heterogeneous processes, however, we can show that the
required thresholds are different. This is along the lines of the
counter examples we gave earlier. For illustration, Table 2
summarizes a set of values of Λi�i’s and the corresponding
values of the thresholds, assuming three competing processes.

From the table, we note that it may be highly cost effective
to let processes with fine-grained communication behavior to
spin-wait for long period of times. Since they have higher
rates of communication, they usually do not need to wait
for longer time. However, the larger spin waits indicate the
bounds within which all their communication can be captured
with optimal overall spin-wait costs, as derived using the
Bayes decision method.

5 Interpretation for Fairness

Scheduling policies can not be discussed without at least al-
luding to the issue of fairness. Although we do not explore
the issue rigorously here, we do have comments. Specifically,
we take issue with the common assumption that a scheduling
policy is “fair” if all processes finish at approximately the
same time, given equal finishing times in isolation. The rea-
son is that a given process’s impact on the execution of other
processes is not governed by the amount of time it spends do-
ing useful work, but by the amount of time that it occupies the
CPU (and hence prevents other processes from doing useful
work). In this light, a “fair” scheduling policy is one that,
and any time, has executed a total number of cycles for each
process in proportion to desired ratios. For example, if three
processes have equal priorities and start at the same time, then
the running count of CPU cycles spent on each process should
be approximately equal at any given time during the life of the
processes. This is regardless of whether the cycles counted
for a process were actually spent doing useful work, or was
spent spin-waiting.

6 Conclusions

This paper has presented a mathematical framework for an-
alyzing, interpreting, and extending the extensive simulation
results for implicit coscheduling reported in the literature. We
showed that bounds on commonly cited spin thresholds are
the solution to a special case of a general probabilistic solu-
tion. In particular, previous results assumed uniform message
arrival distributions both within and between processes. Our
approach, by contrast, results in a general solution that can
accommodate arbitrary distributions.

We intend to extend the formulation to accommodate spin-
yielding, as well as spin-blocking, in future work.
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