
A Decision-Process Analysis of Implicit Coscheduling

R. Poovendran�, P. Kelehery, and J. S. Barasz

University of Maryland, College P ark

College Park, MD 20742

Contact author: keleher@cs.umd.e du

February 3, 2000

Abstract

This paper presents a theoretical framework based on
Bayesian decision theory for analyzing recently reported
results on implicit coscheduling of parallel applications
on clusters of workstations. Using probabilistic model-
ing, we show that the approach presented can be applied
for processes with arbitrary communication mixes. W e
also note that our approach can be used for deciding the
additional spin times in the case of spin-yield. Finally,
we present arguments for the use of a di�erent notion of
fairness than assumed by prior work.

1 Introduction

High performance computing using clusters has become
a viable and actively researched area for parallel comput-
ing. A central tenet of much of this work is that clusters
of commodity networks and machines can provide su-
percomputer performance at a m uch lower cost. This
paper focuses on the problem of achieving good paral-
lel application performance in such environments, with-
out sacri�cing local scheduling autonomy. Speci�cally,
we present new theoretical results on optimal decision-
making for systems that use implicit cosc heduling [4].

There has been a wealth of recent research in this area [3,
4, 7, 5, 6]. W e classify methods of scheduling processes in
clusters of workstations in the following three categories:

� Local Process Scheduling - Each workstation inde-
pendently schedules its processes based only on lo-
cal constraints. This approach is the least com-
plex because it does not require any coordination
between local schedulers. However, it can lead to
poor performance for parallel applications that ex-
hibit �ne-grained communication behavior. Com-
municating processes are often not scheduled at
the same time, leading to the handling of incoming

requests being delayed until the destination pro-
cess is scheduled.

� Explicit Coscheduling - This approach requires lo-
cal schedulers to schedule all of the constituent
processes of a given parallel application at exactly
the same time. This ma y be accomplished stat-
ically by agreeing upon a global schedule in ad-
vance, or dynamically by having a \master" local
scheduler direct other schedulers by communicat-
ing with them at each context switch. In general,
the performance of explicit coscheduling can be ex-
pected to degrade if jobs perform heavy I/O or are
interactive in nature.

� Implicit Coscheduling - This approach allows each
of the local schedulers to make decisions indepen-
dently, but relies on local schedulers to take the
communication behavior of local processes into ac-
count when making decisions. Local schedulers can
converge on coscheduling behavior since each sees
similar or related comm unication behavior by lo-
cal processes that are part of parallel applications.
There are two major forms of implicit cosc heduling
in the literature. The �rst is dynamic coschedul-

ing [7], which is based on message arrivals only.
The second is two-phase spin-blocking [3, 4], which
makes use of several types of information, such as
response time, the nature of message arrivals, and
the amount of scheduling progress made by each
process.

This paper develops a theoretical framework for ana-
lyzing the spin-blocking implicit coscheduling. Several
reports have shown that this approach performs as well
as other implicit coscheduling approaches, and their ap-
proach has been the subject of the most previous analy-
sis. Our results can be extended to the spin-yield ap-
proach [5] as well. However, we will focus on spin-
blocking in this paper since the experimental setup for
two-phase spin-block has been well documented in the

1

0-7695-0574-0/2000 $10.00 � 2000 IEEE

Variables Description

W message wakeup cost
2L+ 4O round-trip time
SRBase baseline read spin = 2o+ 4L+W

B barrier latency
SBBase baseline barrier spin = B
SBLocal local barrier spin = SBBase + 2W

V max barrier imbalance = 4W + 2B
TPair additional conditional pairwise spin

Table 1: Spin Variables

literature.

Spin-blocking relies on the observation that a request
will likely receive a fast reply to a request if the des-
tination process is already scheduled when the request
is sent. Conversely, a slow reply probably means that
the destination process is not currently scheduled. This
characteristic allows coscheduling to be achieved by con-
tinuing to execute processes whose remote requests com-
plete quickly, and blocking those processes whose remote
requests take a long time.

The speci�c mechanism used is two-phase spin-blocking.
The sender of a remote request spins for some amoun t
of time (also referred to as threshold time) while wait-
ing for the request to complete. If a reply has not been
received by the threshold time, the sender blocks and an-
other local process runs. It is well understood that for
a �xed distribution of waiting times, spinning for a time
W is competitive with the optimal online algorithmwith
a factor of two, where W is the cost of context switching.
Despite the fact that this analysis is not directly appli-
cable to this context, extensive simulation and perfor-
mance results con�rm [4] that spinning for an additional
time proportional to W works well.

Spin-blocking is usually analyzed in the context of bulk-
synchronous applications whose processes interact through
remote reads and global barriers. The central contribu-
tion of this paper is a general result showing how to ar-
rive at optimal spin times in this case. More speci�cally ,
we pose the problem of identifying spin thresholds as a
general optimization problem based on process mix in-
formation, and use a Bayesian decision approach to �nd
the optimal spin times. Second, we present a decision
method that takes into account the cost of scheduling
a competing, but wrong process. This method extends
prior results by allowing heterogeneous processes. Fi-
nally, we argue for a di�erent de�nition of the fairness
metric used to evaluate approaches to scheduling hetero-
geneous processes.

The rest of the paper is organized as follows. Section 2

reviews previous spin-blocking analysis and shows by ex-
ample that these formulations are applicable only in lim-
ited cases. Section 3 motivates the use of Bayesian anal-
ysis. Section 3 shows how to derive previous results for
the single process case, and Section 4 presents the anal-
ysis for the multiple-process case, and shows that prior
analysis is inaccurate even if the processes are identi-
cal. Finally, Section 5 discusses the issue of fairness and
Section 6 concludes.

2 Bac kground and Motivation

This section reviews prior spin-time formulations that
were based on extensive simulations [4]. W e show that
these formulations are not adequate to handle non-uniform
distributions of message arrival rates, or to handle mul-
tiple processes with similar or di�erent characteristics.
The spin thresholds are summarized in Table 1. W e will
de�ne these terms as they occur in the text. There are
two primary spinning thresholds that need to be derived:
the spinning time for a process to be kept in coordination
if they are already coscheduled, SBBase, and the spin-
ning time used by a remote process to wait till all the
processes reach the barrier, SLocal.The remote request
spin actually has two components: a baseline spin, and
an additional amount of spin to be given to processes
that handle incoming requests while spinning. This lat-
ter spin exists because processes that handle remote re-
quests are contributing to overall forward process, even
while otherwise spinning.

2.1 Baseline Read Spin

The basic tenet of this work is that if a process is al-
ready coscheduled with remote processes with which it
communicates, it is cost e�ective to keep the processes
coscheduled.The one exception to this rule is with re-
gards to providing fairness to competing parallel appli-
cations. W e discuss fairness in Section 5. In order to
keep communicating processes coscheduled, we assume
that the initiator of a remote read must spin at least the
minimal amount of time required for a message to be
handled and responded to. Using the LogP model [2],
this baseline read spin isSRBase = (2L+4O+W), where
L is the network latency, O is the processing overhead,
and W is the cost of w aking up a process. The wakeup
cost W is included to accoun t for the fact that the re-
mote scheduler may elect to wake the destination pro-
cess if it is not already scheduled. Hence, SRBase is the
minimumround trip time when the destination is not al-
ready scheduled. A process that sends a remote request

2

0-7695-0574-0/2000 $10.00 � 2000 IEEE

and spins for this time should still be spinning when the
reply returns, assuming that the destination process is
immediately scheduled when the request arrives.

2.2 Incoming Messages

While a process spins w aiting for a request to be handled,
it may receive and process incoming requests. Overall
forward progress can be made by letting processes that
will be receiving incoming requests in the near future
continue to spin until the requests arrive. In the follow-
ing, assume that the destination of the remote request
is already spinning while waiting for its own request to
complete. W e can derive the maximum additional spin-
wait time, TPair , by addressing the following two cases:

1. Assume the destination process is scheduled. If the
destination spent time TPair spin waiting when the
message arrives, it takes (2L+4O) units of time for
the sender to get response back from destination.
Hence the total cost to the sender and destination
is (TPair + 2L+ 4O).

2. If the destination is not scheduled, the sender un-
successfully spins for (2L+ 4O + 2W) and blocks;
the destination is woken up at a cost of W , sends
a reply, and spins for another W ; and �nally, the
sender is woken at a cost of W . The total cost to
the system is (2L + 4O + 5W).

Therefore the total cost to the system is less if (TPair +
2L + 4O) is less than (2L + 4O + 5W). Therefore, the
upper bound of TPair for which additional spinning is
useful is 5W .

2.3 Barrier Spin and Load-Im balance

The other spin time needed for bulk-synchronous ap-
plications is the spin time at barriers. This spin time
consists of two components: the cost of a minima l bar-
rier, SBBase, plus the average amount of expected bar-
rier imbalance. Neglecting the latter component would
usually prevent all but the most late-arriving processes
from remaining scheduled at barriers, potentially adding
to the imbalance seen at subsequent barriers. Given
SBBase, the base spin time, SBLocal , is de�ned to be
(SBBase + W) in order to provide competitive behav-
ior. If we assume that the coscheduled processes ar-
rive at the barrier with a uniform distribution, and de-
note the maxima l load imbalance byv, then the average
load imbalance is given by v=2. Hence, the di�erence
(v=2� SBLocal) is the average additional cost in waiting

for barrier synchronization compared to just spinning
for baseline time. If this additional cost is less than the
time it takes to wake up a sleeping process, then it is cost
e�ective to let the process spin for the load imbalance
time. This leads to the decision to spin for the entire
load-imbalance if v=2 < (SBBase + 2W). Otherwise, a
process spins only up to time of 2(SBBase + 2W), and
then blocks.

3 A Bayesian Approach to Local

Cost-Bene�t Analysis

Non-uniform arrival probabilities can result in multiple
processes with the same average threshold values, but
with di�erent upper bounds for imbalance. This sec-
tion shows how to choose optimal thresholds that min-
imize the processor time wasted on spinning and con-
text switching among all competing jobs. W e take a
probabilistic view of the competing jobs in deriving the
necessary optimal (optimality in the sense of selecting
optimal expected total cost) threshold for each compet-
ing job. Aside from the mathematical framew ork itself,
our approach also shows that even the optimal thresh-
olds (which is average value by our formulation to be
presented below) vary for each process.

Nagar [5] also argues that the results of [4] do not gen-
eralize because the study in [4] assumed Split-C/Active
Messages, which has tightly coupled, communicatingpro-
cesses. Most reply messages arriv e with very little, if any,
delay. However, Nagar et al. do not give a probabilis-
tic model to remedy the problem. Instead they discuss
additional variations of deterministic models. W e note
that our approach may be used to interpret some of the
spin-blocking results reported by Nagar [5] as well.

Omitting the algebra for the momen t, we can summarize
the rest of the section as follows. If the competing pro-
cess mix is such that there are processes that have higher
probabilities of performing comm unication (higher com-
munication rates), they must, on average, have larger
(upper bounds on additional waiting times) thresholds.
Jobs with lower probabilities of communication should
have shorter spin-wait thresholds.

This result can be interpreted as follows. Processes with
higher probabilities of communication will not need to
wait longer to receive the message, on average, even if
allowed longer spin waits. Processes that communicate
frequently should be given a higher chance of being able
of receiving a message, and hence should be allowed to
waste, if need be, the amount of time they are alloted in
spin-waiting in order to make progress. The converse is

3

0-7695-0574-0/2000 $10.00 � 2000 IEEE

also true: overall e�ciency will bene�t if processes that
communicate less frequently spin-wait for shorter times,
and block more frequently.

W e also note that the use of the same thresholds as in [4]
for all jobs is equivalent to assuming that there is no
penalty in spinning a wrong job. We will elaborate on
this in detail later.

3.1 Single Process

Deciding whether or not to let a process spin-wait is
a binary decision process. The possible outcomes are
that either the barrier closes within the allocated thresh-
old time, or not. The decision design space for load-
imbalance spin-wait is therefore 2 x 2.The input to the
local scheduler can therefore be reduced to a binary
event, with event H1 denoting the inputs correspond-
ing to the process of interest, and event H0 denoting
the inputs corresponding to all other processes. Each of
the inputs from these two events has a range of possible
values, and is random in nature. W e denote the obser-
vation space corresponding to event H1 by Z1, and the
space corresponding to event H0 by Z0. We denote the
entire event space by Z = Z0 [Z1. We denote the in-
coming input random variable byY , and the probability
densities of Y under event spaces Z0 and Z1 by f0 and
f1. To be more precise, we say that f0 = f(Y = yjH0),
and f1 = f(Y = yjH1). Each time that a local sched-
uler makes a binary decision based on the expectation
that an event, H1, will occur, there are four possible
outcomes:

1. H0 was decided and H0 occurred.

2. H0 was decided and H1 occurred.

3. H1 was decided and H0 occurred.

4. H1 was decided and H1 occurred.

The local scheduler makes correct decisions in cases (1)
and (4), and incorrect decisions in cases (2) and (3). Let
H1 mean that the barrier closes, and H0 mean that it
does not. W e can then summarize the four decisions and
outcomes as follows:

1. The process blocks but the barrier does not close.

2. The process blocks and the barrier does close.

3. The process spins but the barrier does not close.

4. The process spins and the barrier closes.

W e note that the case (2) is related to amiss and the case
(3) is related to a false alarm in the context of decision
theory [8, 1]. In using Bayesian criteria, we assume that
the probabilities of each outcome, P0 = P (H0) and P1 =
P (H1), are known a priori. W e note that:

P0 + P1 = 1 (1)

Each of these decisions has an associated cost. For ex-
ample, if the local process was allowed to spin, but the
barrier did not close, then the time spent spinning could
possibly have been spent more pro�tably on another pro-
cess. Similarly, if the local process blocked and the bar-
rier closed immedia tely thereafter, unnecessary context
switches occur.

W e de�neCij as the cost associated with making deci-
sion in favor of event i given that the true hypothesis
is Hj. In particular, the costs for all possible outcomes
can be denoted as (a) C00 for case 1 , (b) C01 for case 2,
(c) C10 for case 3, and (d) C11 for case 4. Since there is
no penalty in making correct decision, C00 = C11 = 0.
Letting P (i; j) denote the probability that decision is i
and the outcome is j, the average cost/risk associated
with the decision process can be written as:

R = E[C] = C01P (0; 1) + C10P (1; 0) (2)

From this equation, after some algebra, we can derive a
condition

P1C01f(Y = yjH1) < P0C10f(Y = yjH0) (3)

In this case, all the values of Y for which P1C01f(Y =
yjH1) > P0C10f(Y = yjH0) are assigned to event space
Z1. If we let �1 =

f1
f0
, and �1 =

p1
p0
, the decision process

reduces to:

Decide

�
spin-wait if �1�1C01 > C10

block immediately else

It may be noted that our derivations depend on the ra-
tios of C01 or C10 only. We now interpret the results
reported of Dusseau [4] in terms of the binary decision
formula given above. The cost of False Alarm type spin-
waiting was chosen to be C10 = v=2. The cost of Miss

type spinning partially, blocking, and being woken up
later was chosen to be C01 = B + 2W . Using these
values, the binary decision process would decide to spin
wait if ��(B + 2W) > v=2, and to block otherwise. In
the case of Dusseau's results, the threshold implicitly as-
sumed that all the processes have identical distributions,
and hence set �1�1 = 1. Then, a binary decision process
would decide to spin-wait if (C01 = B + 2W) > (C10 =

4

0-7695-0574-0/2000 $10.00 � 2000 IEEE

v=2), and to block otherwise. This reduces to the condi-
tion stated in Section 2.3, i.e. it is cost e�ective to spin-
wait up until 2(B+2W). In general, however, the prod-
uct �1�1 6= 1. From the threshold conditions, we note
that for di�erent values of the product term �1�1, the
permissible optimal threshold value on load-imbalancev
will vary. For example, if �1�1 = 5, the optimal spin-
wait threshold value will be v < 10(B + 2W).

3.2 Incoming Messages

The analysis for pair-wise cost-bene�t is identical except
for the values of the cost functions. Section 2.2 showed
that overall performance will be improved if a spinning
process that handles incoming messages is granted extra
spin time. As before, a round trip time is assumed to
cost 2L + 4O. The decision-process costs, derived from
various time requirements in [4], are enumerated as fol-
lows: (1) C00 = 0 (i.e. if blocking was correct no penalty
is payed), (2) C01 = (2L + 4O + 5W).i.e. the penalty
for blocking is the
ight latency, processing time, \short
spin" time and three more block related penalties, (3)
C10 = (2L + 4O + T). i.e. the penalty for latency +
processing + additional wait, (4)C11 = 0. i.e. pay no
penalty because the process spins until the barrier closes.
With these quan tities, the binary decision process would
decide to spin wait if (C10 = 2L+4O+T) < �1�1(C01 =
2L + 4O + 5W), or block otherwise. Again, the canon-
ical choice of threshold discussed in Section 2 can be
obtained by setting the product term �1�1 = 1, leading
to a decision to spin wait if T < 5W , and to block oth-
erwise. As in the case of local cost-bene�t analysis, we
note that the threshold values can vary depending on the
process densities and probabilities that decide the value
of ��. For example, if �� = 2, the optimal threshold
spin-wait time can be as large as T < 10W .

4 Multiple Processes

We now formulate the spin wait time decision problem
for the case of multiple processes. This is closely cou-
pled with the issues of fairness and scalability. When
there are n processes with process i having probability
distribution fi and the prior probability of conditional
message arrival pi, the thresholds are determined using
a set of simultaneous equations

�i�iC0i � Ci0 +

j=nX
j=1;j 6=i

�j�j(Cij � C0j)i= 1; � � �n (4)

where Cij denotes the cost of predicting that the next
message arrival will be for i, when it is actually for j.

Also, �i =
fi
f0
, and �i =

pi
p0
. We �rst show that for the

multiple processes case, Dusseau's use of the threshold
for multiple processes seem to miss a constant term 5W
in computing the costs Cij.

?

Values of the penalty terms are C0i = C0j = (2L+4O+
5W); f or i, j =1; � � � ; n;Ci0 = (2L + 4O + Ti), and the
maximum value ofCij = (Ti + 2L+ 4O + 5W).

The last term is due to an incorrect decision to spin-wait
process i instead of the correct process j. The penalty is
the cost of blocking the current process and waking up
the destination process. Substituting these values, the
spin-wait threshold for process i reduces to:

Ti <
(�i�i � 1)(2L + 4O) + �i�i5W

1 +
Pj=n

j=1;j 6=i�j�j
(5)

If we set �j�j = 1, where j = 1; � � � ; n, this leads to a
threshold for process i of Ti < 5W=n when there are n
identical competing jobs. W e note that the derivations
in [4] doesn't account for the time 5W in the cost assign-
ment of Cij. For heterogeneous processes, however, we
can show that the required thresholds are di�erent. This
is along the lines of the counter examples we gave ear-
lier. For illustration, Table 2 summarizes a set of values
of �i�i's and the corresponding values of the thresholds,
assuming three competing processes.

From the table, we note that it may be highly cost ef-
fective to let processes with �ne-grained communication
behavior to spin-wait for long period of times. Since they
have higher rates of communication, they usually do not
need to wait for longer time. However, the larger spin
waits indicate the bounds within which all their commu-
nication can be captured with optimal overall spin-wait
costs, as derived using the Bayes decision method.

5 Interpretation for F airness

Scheduling policies can not be discussed without at least
alluding to the issue of fairness. Although we do not ex-
plore the issue rigorously here, we do have comments.
Speci�cally, we take issue with the common assumption
that a scheduling policy is \fair" if all processes �nish at
approximately the same time, giv en equal �nishing times
in isolation. The reason is that a given process's impact
on the execution of other processes is not governed by
the amount of time it spends doing useful work, but by
the amount of time that it occupies the CPU (and hence
prevents other processes from doing useful work). In this
light, a \fair" scheduling policy is one that, and any time,
has executed a total number of cycles for each process in

5

0-7695-0574-0/2000 $10.00 � 2000 IEEE

Per-Process Thresholds
�1�1 �2�2 �3�3 T1 T2 T3

1 1 1 5W=3 5W=3 5W=3
1 1/2 1/2 5W=2 W � L=5� 2O=5 W � L=5� 2O=5
2 1 1 10W=3 + (2L+ 4O)=3 5W/4 5W/4
10 1 1 50W/3 + 3(2L + 4O) 5W=12 5W=12
100 1 1 � 500W/3 + 33(2L + 4) � 5W=102 � 5W=102

Table 2: Spin Thresholds

proportion to desired ratios. For example, if three pro-
cesses have equal priorities and start at the same time,
then the running count of CPU cycles spent on each pro-
cess should be approximately equal at any given time
during the life of the processes. This is regardless of
whether the cycles counted for a process were actually
spent doing useful work, or was spent spin-waiting.

6 Conclusions

This paper has presented a mathematical framew ork for
analyzing, interpreting, and extending the extensive sim-
ulation results for implicit coscheduling reported in the
literature. W e showed that bounds on commonly cited
spin thresholds are the solution to a special case of a
general probabilistic solution. In particular, previous
results assumed uniform message arriv al distributions
both within and between processes. Our approach, by
contrast, results in a general solution that can accom-
modate arbitrary distributions.

We intend to extend the formulation to accommodate
spin-yielding, as well as spin-blocking, in future work.

References

[1] M. Barkat. Signal Detection and Estimation. Artech
House, Boston, 1991.

[2] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sa-
hay, K. E. Schauser, E. Santos, R. Subromanian,
and T. von Eicken. Logp: Towards a realistic model
of parallel computation. In The Fourth ACM SIG-

PLAN Symposium on Principles and Practice of

Parallel Programming, pages 262{273, May 1993.

[3] A. C. Dusseau, R. H. Arpaci, and D. E. Culler. Ef-
fective distributed scheduling of parallel workloads.
In The 1996 ACM SIGMETRICS Confer ence on the

Measurement and Modeling of Computer Systems,
1996.

[4] A. C. Dusseau, D. E. Culler, and A. M. Main waring.
Scheduling with implicit information in distributed
systems. In The 1998 ACM SIGMETRICS Confer-

ence on the Measurement and Modeling of Computer

Systems, 1998.

[5] S. Nagar, A. Banerjee, A. Aivasubramaniam, and
C. Das. A closer look at scheduling strategies for a
network of workstations. Technical Report TR CSE-
98-009, Department of Computer Science and Engi-
neering, The Pennsylvania State University, October
1998.

[6] J.K. Ousterhout. Scheduling techniques for concur-
rent systems. In The 3rd International Conference

in Distributed Systems, pages 22{30, May 1982.

[7] Patrick G. Sobalvarro, Scott Pakin, William E.
Weihl, and Andrew A. Chien. Dynamic coschedul-
ing on workstation clusters. In Proceedings of the

Workshop on Job Sche duling Strategies for Parallel

Processing, 1998.

[8] H. L. Van Trees. Detection, Estimation, and Mod-

ulation Theory-Part I. John Wiley and Sons, New
York, New York, 1968.

6

0-7695-0574-0/2000 $10.00 � 2000 IEEE

