ATEMU: A Fine-grained Sensor Network
Simulator

Jonathan Polley, Dionysys Blazakis, Jonathan McGee, Dan Rusk, John S. Baras
Center for Satellite and Hybrid Communication Networks
Department of Electrical and Computer Engineering & Institute for Systems Engineering
University of Maryland, College Park, MD 20742, USA
{jpolley, dblaze, mcgee, ruskd, baras} @umd.edu

Manish Karir
Networking Research and Development
Merit Network Inc. Ann Arbor, MI 48105
mkarir@merit.edu

Abstract—In this paper we describe the design and implementa-
tion of ATEMU, a fine grained sensor network simulator. ATEMU
is intended to bridge the gap between actual sensor network de-
ployments and sensor network simulations. We adopt a hybrid
strategy, where the operation of individual sensor nodes is emu-
lated in an instruction by instruction manner, and their interac-
tions with each other via wireless transmissions are simulated in
a realistic manner. A unique feature of ATEMU is its ability to
simulate a heterogeneous sensor network. Using ATEMU it is pos-
sible to not only accurately simulate the operation of different ap-
plication on the MICA2 platform but also a complete sensor net-
work where the sensor nodes themselves maybe based on differ-
ent hardware platforms. In addition we also describe our imple-
mentation of XATDB, our front-end debugger/GUI for ATEMU.
XATDB provides an excellent educational tool for people to start
learning about the operation of sensor nodes and sensor networks,
without requiring the purchase of actual sensor node hardware.
The accuracy and emulation capabilities provided by ATEMU en-
sure that when and if actual hardware is used, the software will
already have undergone rigorous testing and debugging on an ac-
curate platform. This would provide the sensor network deploy-
ment community with a much more accurate estimate of the per-
formance of various algorithms and protocols in realistic scenarios
and platforms.

I. INTRODUCTION

One of primary challenges facing the research community in
the area of sensor networks is translating theoretical research
into actual deployable protocols and systems. Traditionally,
simulation has been the means of achieving this goal. Vari-
ous strategies have been proposed and implemented for simu-
lating sensor networks. However, no single tool has been able to
achieve the goal of providing accurate results that can be trans-
lated directly into guidelines of how an actual live sensor net-
work might operate. While some current approaches abstract
too many important details out of the simulation framework [1],
others are not flexible enough to allow for experiments with
heterogeneous nodes [2]. ATEMU (ATmel EMUlator) is our
attempt at providing a crucial missing piece in making sensor
networks a reality.

0-7803-8796-1/04/$20.00 (c) 2004 IEEE.

145

ATEMU provides low-level emulation of the operation of
each individual sensor node. It emulates the operation of the
various components on a sensor node, such as the processor,
timers, and the radio interface. These emulations of individ-
ual sensor nodes are then tied together via their interactions
with each other to form an emulation of an entire sensor net-
work. In order to achieve this goal ATEMU provides an exten-
sible model of the "air” to simulate operation of the wireless
medium. Although, in its current form ATEMU only contains
support for the MICA2 hardware platform, the architecture is
general enough to allow for other hardware platforms to be eas-
ily supported. The emulation approach towards simulating sen-
sor networks leads to results that are much more detailed as the
actual hardware platforms themselves are being modeled and
not simply some abstraction of the platforms.

Our primary goal is to provide the sensor network research
community with a scalable and extremely high fidelity plat-
form, that can be used as a pre-deployment tool for sensor net-
works. Even a small scale deployment is difficult to manage
unless the software has been extensively tested, as the logistics
of gathering, reprogramming and then re-deploying even a 30
node network are difficult and time consuming. With ATEMU,
the goal is to delay using the actual hardware platforms till the
last step, and still be able to maintain some level of confidence
regarding the operation of a live network.

A secondary goal of ATEMU is to provide an efficient front-
end that will make it easier to debug various sensor network-
ing applications, algorithms, as well as embedded operating
systems such as TinyOS. We have implemented XATDB as a
graphical front-end to ATEMU to provide exactly this func-
tionality. Using XATDB we can monitor the operation of an
individual sensor node instruction by instruction. We have the
ability to single step through either assembly instructions or at
the C instruction level. In addition, XATDB also provides the
ability to specify breakpoints and watchpoints to aid in the de-
bugging process.

However, we note that such high fidelity emulation comes
at the expense of high processing requirements. While we do

‘ XATDB

LED
Radio
AVR
Emulator\,/‘:>

Timers

SPI

I
()
O
uoneaysadg
uoijeinbiyuo NX

Device
Module Library

Fig. 1. ATEMU Components Architecture

attempt to optimize the emulation environment to extract the
best performance possible, we are limited by our design goal
of providing an extremely high level of detail which is required
in order to provide high-fidelity and accurate results. We ar-
gue that the higher quality of the results from our emulator and
the increased confidence users can have in them are worth the
extra computational costs. We are actively investigating meth-
ods to optimize the performance of the emulator even further on
highly parallel cluster computing systems which are becoming
increasing popular.

Finally, it should be noted that ATEMU is not simply a simu-
lator for TinyOS specific applications. ATEMU models the op-
eration of the hardware platform, and not simply the software,
it can even be used to develop alternate operating systems for
these sensor platforms. Currently it seamlessly runs TinyOS
and most applications built for the highly popular MICA2 sen-
sor nodes developed at UC Berkeley.

ATEMU has been publically released via our website [3] and
is actively being used by the sensor networking research com-
munity. We are engaging the sensor network research commu-
nity in the further development of ATEMU via a public mailing
list as well as a public bug reporting and tracking website. Al-
ready we have received valuable bug fixes and patches from the
community that have been incorporated into the newer releases.

The rest of this paper is organized as follows: Section 2 pro-
vides an overview of the software architecture of ATEMU, sec-
tion 3 provides a description of XATDB, our debugger front-
end to ATEMU, Section 4 provides a description of some of the
validation experiments and simulations we have run to verify
the correct operation of ATEMU, and finally section 5 provides
some conclusions and outlines our future development plans.

II. ATEMU

ATEMU at its core is a software emulator for AVR proces-
sor based systems such as the MICA2. Along with support for
the AVR processor, it also includes support for other periph-
eral devices on the MICA2 sensor node platform such as the
radio. ATEMU can be used to perform high fidelity large scale
sensor network emulation studies in a controlled environment.
In addition, the ATEMU package can also be used in an edu-
cational environment to facilitate experimentation with sensor
networks, without requiring the purchase of expensive sensor

node hardware. It offers a solution around the logistical diffi-
culties of conducting experiments with large numbers of physi-
cal devices. As ATEMU is binary compatible with the MICA2
hardware, it can be directly used by developers of TinyOS re-
lated software. Although the current version only includes sup-
port for MICA2 hardware, it can be easily extended to include
other sensor node platforms. It allows for the use of heteroge-
neous sensor nodes in the same sensor network. The ATEMU
distribution consists of two components: the ATEMU emula-
tor core, and the XATDB graphical debugger. The architecture
of the various software components of ATEMU are shown in
Figure 1.

The ATEMU emulator core can simulate arbitrary numbers
of nodes each of which may be configured to run a different
sensor networking application. It can model their execution and
the interactions between them, such as radio communications in
extremely fine detail. It offers nearly complete emulation of the
MICA?2 hardware platform and as a result provides results that
are closer to real life operation of a distributed sensor network.
Currently only d-squared propagation is modeled, however this
will be improved with future versions. ATEMU uses the same
binary that is loaded onto the MICA2 node and uses its AVR
processor emulation engine to model the execution of the code
on each sensor node in step with each other. As very few de-
tails of the actual operation of a sensor node are abstracted out,
it provides an excellent platform to perform unbiased compar-
isons of various sensor networking protocols and the results are
significantly more realistic than other simulators.

In the following sections we describe the software architec-
ture and design of ATEMU. This can help people understand
the underlying philosophy behind its operation. In particular
it is of use not only to people who wish to use it for their ex-
periments but is also useful for developers who wish to extend
ATEMU.

A. CPU Emulation

The most important part of ATEMU is its AVR CPU em-
ulation core. Each AVR instruction is decoded and executed
according to the specifications in Atmel’s instruction set docu-
mentation [4].

While the instruction set remains the same, different hard-
ware platforms might choose to use different versions of At-
mel’s CPU’s. We allow the user to specify such variables on
a per node basis via a config file. These include the sizes of
the SRAM and flash, size of the program counter, and the sym-
bolic names for all of the IO peripheral devices that have been
attached to the CPU on the hardware board. This allows us to
emulate sensor networks where different nodes have different
hardware platforms and peripheral devices.

B. Hardware Emulation

A sensor node hardware platform consists of not only the
CPU, but various other peripheral devices that are attached to
it. In keeping with this design, ATEMU provides various device
modules that can be attached to the CPU to completely specify
a particular sensor node platform. For example the MICA?2 sen-
sor node platform includes the the Atmel ATmega 128L CPU,

146

<?xml version="1.0" encoding="utf-8"3>
<configuration title="Common MICAZ features"
xmlns="http://wuw.cshen. und. edu/research/atemu/ ">
<!-— Include the AVR Atmel128L processor description —-»
<include href="atmell128">
<!-- Frequency of mwain system clock —->
<param name="oscillator” value="7.3728MHz" />
<!-- Frequency of TIMERO's asynchronous clock --»
<param names="asynccrystal” value="3zkHz" />
</ ineludesr

<1-- Include the LEDs -—>
<wessage text="LED: Red Green Yellow” />
<device id="Red" module="led">
<register nawe="direction" ref="DDRA" hits="0x04" />
<register name="port" ref="PORTA" bits="OxD4" />
<register name="pin" ref="PINA" bits="0x04" />
</device>
<device id="Green" module="led">
<register name="direction” ref="DDRA" hits="0x02" />
<register name="port" ref="PORTA" bits="Ox02" />
<register name="pin" ref="PINA" hits="Ox02" />
</devicer
<device id="Yellow” module="led">
<register name="direction” ref="DDRA" hits="0x01" />
<register nawe="port” ref="PORTA" hits="Ox01" />
<register nawe="pin" ref="PINA" hits="Ox01" />
</devicer

<1-- The Radio -->
<device id="radio” module="radio”s
<!-- Comneet the normal registers —-»
<register name="ddrd" ref="DDRD" bits="O0xDO" />
<register name="portd” ref="PORTD" hits="0xDO" />
<register name="pind" ref="PIND" bits="0xDO" />
<!-- Comnnect with the other devices —-»
<!-- NOTE: Consider this interface deprecated as it may change once
- ¥CONF is completed —-»
<connect name="spi" ref="spit />
<connect name="ade" ref=radc” />
<!-- Parameters, will be deprecated once XRUN is completed -—>
<!-- Standard deviation of the noise to add to the RSSI reading.
- Tiny0s will halt communications if it 1s not noisy. -->
<param name="rssinoise” value="0.1" />
<!-- Noise level for caloulating bit error rate in dbwm —-»
<paraw name="radionsise” valus="-117" />
<!-- Constant sttenuation to tack onto radio transimissions to correct
- range problems. In dBm. -—>
<param name="attenuate” value="-37" />
</devices

</configuration>

Fig. 2. MICA2 Hardware Specification

as well as a CC1000 radio chip, three LEDs, ADC, EEPROM,
SPI, Timers, and external sensor boards. In some cases the de-
vices might be physically present on the CPU or the radio chips
but as they are logically different, we have implemented them
separately. ATEMU provides implementations of all peripheral
devices needed for the emulation of the MICA?2 in the form of
plug-in libraries, and are loaded at run time by the emulator.

A MICA2 hardware node model is completely specified by
including a directive to link to the appropriate CPU definition
followed by a series of device definition sections. Each device
section contains all the register definitions that define how that
device communicates with the CPU. Figure 2 shows specific
details of how the MICA?2 device is specified using ATEMU.
One can easily see that it is trivial to emulate for example a
MICAZ2 that could have 4 LEDs. Though that is a trivial change
it demonstrates that power of using the emulation approach.
Given that the CPU we are attaching to can support it it is even
possible to build in software a MICA2 platform that can have 2
different radios, but attaching 2 different CC1000 chips to the
CPU. In this way ATEMU demonstrates its flexibility by en-
couraging experimentation with newer hardware platforms.

1) Radio Emulation: Aside from the CPU the radio device
is the most critical component on a sensor node platform. In
this section we describe some details of our current implemen-
tation of the radio interface. In ATEMU, the radio back-end
is composed of three primary components: an emulator of the
CC1000 chip, an interface between the Atmel processor and the
CC1000, and a radio propagation model for communications
between different motes. Dividing up the wireless interface in

147

this way allows us the flexibility in the future to implement
radio interfaces based on other radio chips. For example our
emulation of the CC1000 could be replaced with an emulation
model of the CC2420, while keeping the interface with the At-
mel CPU and the radio propagation models the same. However,
for the rest of this section we will focus on the radio interface
implemented by the MICA?2 architecture.

Each sensor node which has a CC1000 is responsible for tak-
ing a bit stream from the chip, FSK modulating it to a software-
controlled frequency, and sending it onto the air. Packet recep-
tion is the inverse of this process. The software control of this
chip may be a strength in hardware design and systems integra-
tion, but makes it difficult to effectively emulate. As the soft-
ware is free to utilize an near-infinite number of frequencies for
communication, simply modeling the air as a bit stream would
not allow the user to test software which uses these features
of the CC1000, such as algorithms that make use of multiple
bands. This flexibility of the CC1000 makes the task of emu-
lating its behavior that much more difficult.

In order to simplify this process we implement each mote as
a receiver/transmitter pair. The transmitter is modeled as hav-
ing a single fundamental frequency and associated power. The
receiver’s tuner has a band for each bit value (zero or one), and
when receiving, each band tallies the power from all transmit-
ters after being attenuated by distance in space and frequency
(-10dB/600kHz). The difference between the two powers is ap-
plied to the error function:

1 11P-Rl

P(Py,P)) = = 4 Noise

\S}

where Py and P; are the power of the zero and one bands
and the final resultant bit is given to the CC1000 emulator for
transfer to the CPU as the received bit value.

In the current implementation the ATEMU simulation of the
behavior of air is based on the standard d-squared radio propa-
gation model:

p P GrGr\?
B Tanra?

Where Py is the received power, Pr is the transmitted power,
Gg and Gr are the receive and transmit gains, and d is the dis-
tance between the receiver and the transmitter. For simplicity,
both transmit and receive antenna gains are assumed to be 1.0
and A is calculated as the wavelength in vacuum. We apply a
constant coefficient to the expression above to bring the maxi-
mum radio range in line with real-world observed values.

As each node can potentially be interfered with by all other
nodes in a network, keeping track of received power turns into
a highly inefficient n-squared algorithm. In the current version
of ATEMU we make the following attempts at optimizing these
calculations.

The first optimization is to cache the computed values of
transmitted power. Each time a change is made to a transmit-
ter object, a global timestamp is incremented. Each receiver
object, by comparing its cache timestamp to the global times-
tamp, can determine if any change has occurred in air commu-
nications. Each transmitter object also contains the time it was

last modified. By iterating through the cache, each receiver can
determine exactly which transmitters have changed and only re-
calculate them. So if a given transmitter hasn’t shifted to a new
frequency or power, the previously calculated value can be used
when determining the next bit to receive.

The second optimization we have implemented is to cache
the various attenuation coefficients. In a given transmission
during emulation, it is likely that only the frequency and trans-
mit power will change. For this, the power formula breaks down

into:
PTGRGTC2 GRGTC2 1
no= Tapere =0 (Gt ()

The second term has been turned into a constant, so it can be
cached and only needs to be recalculated if a node moves.

However, the optimizations described above do nothing to
change the inherent n-squared scaling of the power computa-
tion algorithm. This is not a problem with the approach taken
by ATEMU alone, ns-2 has also been shown to suffer from the
same problem [5]. In [5] a new method was proposed to im-
prove the scalability of modeling wireless communication be-
tween nodes by limiting how transmitters affect receivers by us-
ing the fact that in reality a transmission beyond a certain range
has attenuated so much that it can be ignored by receivers be-
yond that range. We are currently investigating incorporating
this modification into ATEMU.

C. XML Configuration Specification File

There is currently a lack of any common method of speci-
fying the various configuration parameters of a sensor network
for a simulation/emulation tool. One of the primary contribu-
tions of ATEMU is to provide a simulator agnostic method of
specifying the configuration specifications of a sensor network.
XML has emerged as a widely accepted method of specifying
common interfaces among different tools. Therefore, we use
XML to define a simulator agnostic configuration specification
of a sensor network. Using this basic specification, one can then
generate various other input formats required by other simula-
tion tools. This can provide a common base for researchers in
sensor networks who can define their network scenarios inde-
pendently of the choice of network simulator.

Though our work is still in its infancy we have already been
able to achieve significant benefits from this approach in terms
of its flexibility and logical structure. Figure 3 shows how XML
can be used to specify various parameters for a simple two-
node network in ATEMU. A unified input file specification for-
mat would be of great use in comparing and contrasting the
performance of various simulation platforms. In the following
description we focus on how the various XML tags are used to
specify some very basic attributes of a sensor network. ATEMU
directly uses the XML configuration specification to obtain the
values of various global and local parameters.

For small topologies the XML input file can be generated by
hand, but for larger topologies scripts or tools can be written to
automate the process. For ATEMU, a minimum configuration
specification input file would need to specify the hardware con-
figuration, software executable binary image, and the physical
location for each node.

148

=Tmml wersiom="1.0" encoding="uti-2" I=
=motelist
title="Minimal exsmple of ran file operation"
xmlns="krtp: /Ay cshen.und. edus/research /at ema /=
“mote id="rfmocoumter" model="mica?":>
“flash href="grps/CotTolin/main. exe" /=
“param hame="position" wvaluwe="0,0,0" /=
=S mot e>
“mote id="rfwblinker" model="wmicalf">
<flash href="gpps/PmToleds/main. exe" /=
“param nsme="position" walue="E& _0,0" f=
</ mot ex
< motelists

Fig.3. AnExample XML Configuration Specification File for a2 Node Sensor
Network

The syntax of a valid configuration file is relatively simple.
After the xml header line, the file must contain a motelist tag.
This element will contain the list of motes to be run. This is
used to describe some attributes that are global and apply to
the entire sensor network. Some of the important ones that are
currently defined are:

« title - a descriptive title of the runfile

o xmins - defines the xml namespace

This is followed by the motelist tag which contains a descrip-
tion of each individual sensor node in our sensor network. For
each node we can define several specific attributes. The ones
listed below are required for a valid config:

¢ id - a unique name for this node

o model - specifies the sensor node hardware, in ATEMU

this is used to specify the hardware specific emulation core
that is used to emulate the operation of this node, such as
the MICA2

Each sensor node element may take a few sub-elements.
Some important ones are:

e flash - contains an href to the program to load

e param - contains the name and value of a parameter to set

for the device. In our example in Figure 3, we use it to set
the position for the radio.

One of the more important valid tags that we are implement-
ing next is the event tag. This tag can be used to specify events
that occur as the emulation/simulation progresses. Using the
event tag we could associate an action with a time, for example
we would be able to specify that at time = 30 seconds, a spe-
cific sensor node should be powered off. This can also be used
to simulate other artificial conditions in a sensor network em-
ulator, such as at time = 50 seconds, the value being received
from a specific sensor node’s light sensor suddenly becomes
much larger.

Using the XML configuration specification format allows us
a lot of flexibility in improving the usability of ATEMU. We are
currently still in the process of defining and implementing this
feature in more detail.

D. The Operation of ATEMU

The basic flow of control of ATEMU is fairly straightfor-
ward. After loading and initializing all of the simulated nodes
and their components, each of the nodes is advanced by one
cycle, executing an instruction if appropriate, interrupts are
polled, and clocked devices receive a tick.

Using pseudo-code the high-level operation of ATEMU can
be represented as follows:

for each node
if node running and not sleeping
step cycle
if interrupt
PC = interrupt vector address
for each device
tick device clock

This loop continues until either the user interrupts it, or some
control structure such as a breakpoint or watch-point causes the
simulation to halt.

III. XATDB

Included in the ATEMU distribution is XATDB, XATDB is
a graphical front-end to the ATEMU sensor network emulator.
XATDB provides users a complete system for debugging and
monitoring the execution of their code. Using XATDB, users
can run code built for the MICA2 platform, and debug effi-
ciently using the ability to set breakpoints, watchpoints, as well
the ability to single step through either assembly or high level C
code. XATDB is particularly powerful in its ability to provide
a debugging interface to multiple nodes in a sensor network.

A. Symbolic Debug

XATDB derives its symbolic debugging capabilities from
Stabs [6][7]. Stabs is a format developed at the University of
California at Berkeley, that that can be used to describe a pro-
gram to a debugger. When the -g option is used with GCC, ad-
ditional debugging information is carried from the compilation
process into the final executable. This debugging information
describes features of the original source file, such as line num-
bers, the types and scopes of variables, function names, and
parameters.

XATDB differs from traditional debuggers like gdb, in that
it executes the sensor node binary(s), on the ATEMU emulator
and not on the host computer. In terms of functionality however,
XATDB duplicates most of the features of gdb. In addition to
the core functionality of being able to run, debug and watch a
binary execution on the ATEMU emulator, XATDB also has the
capability to monitor the execution of several different emula-
tions.

During initialization XATDB reads in the sensor network
configuration file from a XML based sensor network descrip-
tion specification file such as the one shown in Figure Figure 3.
It passes this information in an appropriate form to ATEMU
which in turn initializes separate emulation state machines for
each sensor node that is specified in the description file. In the
user interface, a separate tab is created for each sensor node,
which displays the assembly or C-level source code of the bi-
nary that is being run on that node. Figure 4 shows an example
of a 6 node sensor network emulation in progress. The win-
dow on the left displays a separate tab for each emulated sensor
node. When a particular sensor node tab is selected, the window
in the right displays registers, stack information, and local and
global variables and their values. The window on the bottom
displays various events, debugging information, breakpoints,

. Visual AVR Debugger & Simulator (= |
Flle Edit Debug Help
ASMsStep sourcestep Run Stap Restart
console | sender 7| 16m | 30m [40m [50m |
Source: Disazsembly - | |Reaisters | Stack | Locals Giobals
AUXDUSsAE: LD Rlb, UxUD 0 = mlere ==
A0x00504a: D1 R27, 000 ;0
A0x005c4c: ST 0x0272, R24 ADCREFM$CalReqMask
Sl 20x005:50: 3TS 0x0273, R25 ADCREFM$ContReqMask
A0x005e54: STS Ox0274, RIE @ ADCREFM$Refval
ADX005e58 : 5T5 0x0275, R27 SR
ADx005s5¢ DD R24, T+1 ADCREFM{ReqPort
A0x005¢5e CAIL Ox0003a8 ADCREFMSReqUector
A0x005c6Z @ CALL Ox005e=6
ADx005c66: EOR r25, R25
A0x005268 ADTW R28, OxD1 I
@20x005c6a: m RO, Dx3f
ADx005c6c: Lt
A0x005:6e: out Ox3e, RID P cClO00ControlM§gCurrentParaneters
A0x005e70: ouT Ox3f, RO FT b Ccc1000RadioIntM$ack_code |
&] | I 5
Events | Debug | Breakpoints | watchpoints
2432: led Red on []
2445: led Yellow on
2468: led ¢reen on
2057: led Red off
2975: led Yellow off
2998: led Greenm off
L=
Fig. 4. XATDB: Example of a 6-node sensor network
Visual AVR Debugger & Smulotor S
Ele Edit Detug Help |
> 0 & [x) @
ASMStep SourceStep Run sio Restart
Console| Chin 0
Source: _avinardware h (C./cygwiniopttinyas-1 xtos/plattormvavimote/a | [Registers | Stack| Locais| Globats |
e st & e e H
] tile ("nop”) ; HPLClocksminterval 0
) HPLClock$mscale 0
void TOSH slesp(} o
¢ HPLClockéset_flag 0
//sbi(MCUCR, 5);
Bl g FPLPowerManagenenthsdisabled 1
asm volatile ("aleep"); | & tedsciledson 1
i H 10
230
// atomic statement runtime 3
typedef t8_t ‘o
TREARE A struct TiwerMstimer_s[1]
inline start(void) _atJ < (0] struct TimerMjtiner s
{ type o
° Q 7P
= ticks 1000
a g) tickaneft 768 o]

Events | Debug | Breakpoints | Watchpoints
370: L n

8022762:

[
Hstart |) & 5 || @oogk tews- oz | Gfatems |32 - dcbogs.c.

| - cho dstsh|[@ visual AvR Debug.. S BE, soapn

Fig. 5. XATDB: Example of C-level Debugging

and watchpoints. It is possible to examine and step through
either assembly level code or at the C-level. Figure 5 shows an
example where XATDB is being used to single step through C-
level code. The red dots indicate where breakpoints have been
set, and the window on the right is showing various global vari-
able data structures, and their values. The screen at the bottom
is displaying the status of the LEDS on the emulated sensor
node.

IV. VALIDATION AND EXPERIMENTS

In order to verify the proper operation of ATEMU and to
demonstrate its capabilities we ran a series of simple experi-
ments. In order to be able to validate the operation of the em-
ulator, we have to use it initally in simple scenarios where the
results are intuitive and well understood. This also provides us
with a usage scenario from which we can extract the various
operational parameters of the emulator such as how it scales in
terms of memory and cpu usage.

A. Emulating a Heterogeneous 2-node Sensor Network

After performing basic testing and validation tests on
ATEMU consisting of simple well known TinyOS applications

149

such as Blink, and CntToLeds, we proceeded to run a test that
would demonstrate ATEMU’s ability to emulate a heteroge-
neous sensor network. The simple 2-node network consisted
of one node running the CntToRfm application, and the second
node running the RfmToLeds application. These are both well
known TinyOS test applications. The first simply transmits an
increasing counter value over the radio interface, and the sec-
ond application listens on the radio interface and displays the
counter values it receives on the LEDs.

We started by first separately compiling both application bi-
naries as if they were going to be used on actual MICA?2 hard-
ware. Next we use the sample XML configuration specification
file shown in Figure 3 to specify our 2-node sensor network.
This configuration file designates one node as the node that will
run CntToRfm and the other node as the node that will run Rfm-
ToLeds. We then proceed to load this XML configuration file
into XATDB. XATDB displays a “Finished Loading” message
after ATEMU has initialized the nodes. Now we are able to
run our sensor network by simply pressing the ”Run” button.
The console messages in the bottom window display the status
of the LEDs and by observing the changing values we are able
to verify the correct operation of our emulated network. We
are also able to stop the running emulation, inspect the source
code for either one of the running applications, set breakpoints,
single-step through the execution of the emulated sensor net-
work and examine any register values, global and local vari-
ables and their values.

Though simple in nature this experiment allows us to demon-
strate some of the basic features and capabilities of ATEMU.

B. Evaluating a Simple MAC Protocol

The first protocol we decided to study was an example of a
very simple collision avoidance scheme. The experimental sce-
nario consists of a single master node surrounded by various
numbers of transmitter sensor nodes. We want to study a sen-
sor network where the master node sends out periodic beacons
to all the transmitters, which respond by sending back a reply.
We study the behavior of two different MAC protocols in this
scenario. In the first protocol, the transmitter nodes all attempt
to transmit a single packet back to the master node at the same
time, in the second, the transmitters pause for a random amount
of time (between a min and a max) before they attempt to trans-
mit.

We first generate two different types of application binaries
for this project. The first binary image will be run on the mas-
ter node and is responsible for sending out the beacons. The
second binary image will be installed on the transmitter nodes
and is responsible for replying to the beacons transmitted by
the master. In order to run this type of an experiment using
TOSSIM [2] both these functionalities would need to be com-
bined into a single application then nodes would select which
subset of the functionality they are required to run.

Intuitively, from the description of the two protocols, we
would expect the jittered transmit protocol to have a much lower
number of retransmission attempts, as the transmissions are
staggered and therefore there are fewer collisions. However just
how big a difference does it make is still an important question
to answer.

150

MAC Layer Backoffs

1400
L

—e— No Jitter
-o- Jitter

800 1000 1200
L L L

Number of MAC Layer Backoffs
600
L

400
L
o

Number of Nodes.

Fig. 6. Number of Backoffs

MAC Layer Backoffs per Node

12
L

"
o

- No Jitter
-o- Jitter

Number of MAC Layer Backoffs per Node

T T T T T T
20 40 60 80 100 120

Number of Nodes

Fig. 7. Number of Backoffs per Node

Figure 6 shows the total number of backoffs reported by
ATEMU as the number of sensor nodes increases. As expected
the staggered transmit protocol outperforms the simpler direct
transmission approach. Also the performance gap increases as
the number of nodes increases. Figure 7 shows how the average
number of backoffs per node varies as the number of nodes is
increased.

Figure Figure 8 shows the memory used by ATEMU to emu-
late our topology with different number of nodes. As expected,
due to the detailed emulation of each individual node memory
consumption is linear with respect to the number of nodes in a
sensor network.

Figure 9 shows the number of real-time seconds it takes per
second of simulated time as a function of the number of nodes
in a sensor network. The graph shows that the time it takes
to emulate a single second of a sensor network in ATEMU in-
creases exponentially with respect to the number of nodes that
are present in the network. This behavior is largely due to the
n-squared nature of the emulation of the wireless component of
a sensor node. Each transmission has the potential to interfere
with every other node in the network, and therefore we end up
with a n-squared algorithm to keep track of transmissions and
received power at each node. Recently there has been some in-
teresting work in addressing the same problem in ns-2 [5]. Our
next step will be to attempt to apply the simple approach of lim-
iting the influence of transmissions to only nodes that are within

Memory Usage

20000
L

15000
L

Kilobytes (KB)
10000
|
o

5000
L

20 40 60 80 100 120

Number of Nodes.

Fig. 8. Memory Utilization

Runtime

400
L

300
L

Realtime Seconds per Simulated Second
200
L
o

100
L
o

T T
20 40 60 80 100 120

Number of Nodes.

Fig. 9. Runtime

a certain range of each transmitter to ATEMU.

V. RELATED WORK

While there has been quite a significant amount of work in
the general area of sensor networks, there has been substantially
less work in the area of simulation tools for studying them.
Here we describe some of the most relevant work in an effort to
demonstrate and motivate the need for its development.

Modifications to ns-2 [1] have been proposed in order to
make it suitable for modeling sensor networks. However, ns-2
operates at a much coarse level of detail, and therefore only pro-
vides results that are inadequate for some studies. In particular
it lacks the ability to accurately model specific hardware de-
tails that might have a significant impact on performance met-
rics such as power. This coarse grained nature of ns-2 is what
make it flexible enough for all types of studies ranging from
sensor networks to satellite networks to MPLS and fiber optic
networks.

TOSSIM [2] has been proposed as a method to simulate
the operation of TinyOS based sensor networks. However,
TOSSIM has several limitations that restrict its use to wider sce-
narios. In particular TOSSIM by virtue of its design is tied to
TinyOS, and therefore cannot be used to perform studies where
an alternate application is being used. TOSSIM is limited by
only being able to run a single binary image on all sensor nodes.
This does not allow users the flexibility they need in order to be

151

able to study the design and performance of heterogeneous sen-
sor networks.

The emulation approach itself is not new. Embra [8] was
developed as an emulator for the MIPS R3000/R4000 proces-
sor. However, we believe ours is the first attempt to emulate
multiple nodes in a network, as well as provide an extremely
useful debugging tool to aid in the development of embedded
software for the MICA2 platform. Recently, EmStar has been
proposed as a means of studying wireless sensor networks that
incorporate both motes as well as iPAQ based microservers [9].
However, this too fails to provide the level of detail provided by
ATEMU. The SensorSim project which provided a simulation
framework for sensor networks similar to ns-2 has been discon-
tinued is no longer available to researchers [10].

In terms of features that they provide, both ns-2 and TOSSIM
can be extremely useful. Sensor network developers and re-
searchers would simply pick the right tools depending on the
level of detail which was required. ATEMU serves to com-
plete the sensor network research toolchest by providing an
extremely high-fidelity emulation environment of sensor node
hardware. In its current implementation it is able to emulate
the operation of the MICA?2 sensor node hardware platform,
including the processor, radio interface, as well as other pe-
ripheral devices. ATEMU is particularly useful in studies that
require an extremely high level of detail, such as those which
would like to monitor power consumption, or those that involve
heterogeneous (both in terms of software as well as in terms of
hardware) nodes in the same network. Due to its emulation ap-
proach it is much closer in operation to actual hardware sensor
nodes.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have described the design and implementa-
tion of ATEMU, a sensor network emulation platform. ATEMU
differs from other existing simulators in that it has the ability
to perform extremely low-level emulation of the sensor node
hardware. Though the current version includes support for the
MICAZ2 sensor node, ATEMU can be easily extended to include
support for other hardware platforms as well. The low level em-
ulation capabilities of ATEMU make it an ideal complement to
the existing set of simulation tools. Scenarios that require ex-
tremely high-fidelity results even at the expense of longer simu-
lation times can benefit immensely from ATEMU. As ATEMU
emulates the hardware of the MICA?2 including the processor,
radio interface, ADC, LEDs, and other peripheral devices, it is
possible to run the same application binary image that is run
on actual hardware in the emulator further eliminating any sim-
ulation artifacts that running a different binary format might
introduce.

The ATEMU platform includes XATDB, a debugger front-
end which provides an excellent learning and debugging tool
for large sensor networks. Using XATDB, it is possible to sin-
gle step through code, set breakpoints and watchpoints, exam-
ine data structures and variables, and observe the status of pe-
ripheral devices.

The ATEMU platform relies on the use of XML based con-
figuration specification files. Using XML, we hope to be able
to develop a common sensor network definition specification

framework that can be used to specify the various parameters
of a sensor network in a simulation tool agnostic format. This
specification format can then either be used directly as input
into to various simulation tools, or can be converted into simu-
lator specific configuration files.

ATEMU has been publically released and can be downloaded
from our website [3]. A public mailing list and bug tracking
system are also provided to encourage feedback from the sen-
sor network research community. Bug fixes and suggestions
from the community are being taken into account and incorpo-
rated into the newer releases. The ATEMU platform provides
valuable functionality to both the sensor network research as
well as the sensor network deployment communities.

ACKNOWLEDGEMENT

This paper was funded and prepared through collaborative
participation in the Communications and Networks Consor-
tium sponsored by the U. S. Army Research Laboratory un-
der the Collaborative Technology Alliance Program, Coopera-
tive Agreement DAAD19-01-2-0011; by the Space and Naval
Warfare Systems Center - San Diego under contract num-
ber N66001-00-C-8063; and by NASA under award number
NCC8235. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory, the U. S. Government, the
National Aeronautics and Space Administration, or the Space
and Naval Warfare Systems Center.

REFERENCES

[1] I. Downard. Simulating Sensor Networks in NS-2.
http://nrlsensorsim.pf.itd.nrl.navy.mil.

[2] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accurate and scal-
able simulation of entire tinyos applications. Proceedings of the First
ACM Conference on Embedded Networked Sensor Systems(SenSys 2003),
November 2003.

[3] ATEMU. Sensor Network Emulator/Simulator/Debugger

. http://www.isr.umd.edu/CSHCN/research/atemu.

ATMEL. 8-bit AVR Instruction Set. http://www.atmel.com/.

1 V.Naoumov and T. Gross. Simulation of large ad hoc networks. Proceed-
ings of the Sixth ACM International Workshop on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, September 2003.

[6] Julia Menapace, Jim Kingdon, and David MacKenzie. The stabs debug
format
. http://citeseer.ist.psu.edu/342295.html.

[7]1 P.B. Kessler. Fast breakpoints. Proceedings of the Conference on Pro-
gramming Languate Design and Implementation, pages 78—84, 1990.

[8] E. Witchel and Rosenblum M. Embra: Fast and flexible machine simula-
tion. Proceedings of ACM Conference on Measurement and Modeling of
Computer Systems, 1996.

[9] L. Girod, Elson J., Cerpa A., Stathopoulos T., Ramanathan N., and Estrin
D. Em*: a sofware environment for developing and deploying wireless
sensor networks. Proceedings of USENIX, 2004.

[10] S. Park, Savvides A., and Srivastava M. Sensorsim: A simulation frame-

work for sensor networks. Proceedings of MSWiM, Aug 2000.

5E

152

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

