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Abstract—In networked systems, groups of agents achieve
certain objectives via interaction at local levels in a decentral-
ized manner. The performance of such systems is determined
by the communication infrastructure of the network as well
as the system dynamics. The interdependence of agents in a
networked system is often modeled by graphs. We study the
interdependence of communication and collaboration graphs in
a networked system in the context of a coordination control and
decision making problems. We model the decision on whether
to cooperate or not in a group effort as a result of a series
of two-person games between agents and their neighbors. The
payoff of each agent is computed as the sum of the agent’s
payoffs from each of these games. Since coordination games
have more than one equilibrium point, the problem is then
which equilibrium point will the agents choose and whether
they will settle on a Pareto-optimal equilibrium point. We
consider a behavior learning algorithm and study its effect on
the emergence of a collaboration graph. We also study the effect
of the communication network topology on the convergence
speed of the scheme.

I. INTRODUCTION
In networked systems, groups of agents achieve certain

objectives via interaction at local levels in a decentralized
manner. The performance of such systems is determined by
the communication infrastructure of the network as well as
the system dynamics. The interdependence of agents in a
networked system is often modeled by graphs. It is however
crucial to mention that several graphs are involved in the
modeling of a networked system. In [1], three graphs were
identified to describe the network of moving vehicles: a
connectivity graph, a communication graph, and an action
(collaboration) graph. The first two graphs describe the
information exchange in the network whereas the action
graph is specific to the particular collaborative activity that
the nodes perform.
In this work we study the interdependence of communi-

cation and collaboration graphs in a networked system in
the context of a coordination control and decision making
problem. The system consists of a group of entities referred
to as agents. The agents can be machines or humans with
different degrees of rationality. Each agent has to make a
decision on whether to cooperate or not in a group effort.
This is modeled by two-person coordination games between
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neighboring agents. The payoff of each agent is computed
as the sum of the agent’s payoffs from each of these games.
Since coordination games have more than one equilibrium
point, the problem is then which equilibrium point will the
agents choose and whether they will settle on a Pareto-
optimal equilibrium point. After the games are played, a
collaboration graph is formed from all the agents who have
decided to collaborate. Each agent’s decision on whether to
collaborate or not is based on its personal understanding
of its own behavioral tendencies as well as its neighbors’.
To account for this fact we provision the agents with a
behavioral variable, which indicates how risk averse an agent
is and models the agents’ behaviors and how they learn each
other’s behaviors and adapt to them based on a model of
learning proposed by Cucker, Smale, and Zhou [15]. Agents
exchange messages before playing the game and based on
these exchanges try to learn their neighbors’ behavior and
adapt their behavior. The effect of the agents on each other
is governed by an influence matrix which is partially derived
by the communication graph’s topology.
If the agents are allowed to interact for a long enough

period of time before the game, a consensus will be reached
[under certain conditions] on which equilibrium should be
played by the agents. This work focuses on three major
issues: The emergence of a collaboration graph based on
the behavior adaptation caused by the learning algorithm, the
effect of the communication network topology on the conver-
gence speed of the scheme, determination of the effect of the
number of like-minded agents and their well-connectedness
as major decisive factors on determining whether equilibrium
is attained.
The study of the emergence of cooperation and related

conventions has been the subject of interest for a long time
since it has applications in many social, economical and
political studies [2], [3], [4]. The emergence of coordination
and cooperation is explained in game theory literature by
considering boundedly-rational agents who play a game
indefinitely against fixed, or randomly matched agents, and
learn from the previous outcomes to achieve a notion of op-
timality or equilibrium [5]. This framework is also adapted
to study cooperation in networks and network formation
[6], [7], [8]. In this framework, it is usually assumed that
conventions result as equilibria of coordination games [7],
[6]. The trade-off between stability of the formations and
costs of link establishment are also studied using cooperative
game theory [9].
This work differs from the above-mentioned literature in

many respects. First, we consider a given communication
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topology, i.e. we do not consider the problem of establishing
communication and network formation, rather we focus on
the collaboration networks possible given an underlying
communication framework. In this respect, our objective
is similar to that of [10] with the difference that [10]
considers a n−person game with emphasis on deterministic
formation of common knowledge in a deterministic manner,
whereas we consider a set of 2−person games and consider
the agent’s learning and updating their types as a result of
their observations in their neighborhoods. This way common
knowledge on a global mode of operation may result. On the
other hand, we consider agents to learn not only the strategies
as there is the case with evolutionary game theory, but the
types. In other words, the adaptation provides the agents with
a mechanism to understand how the other agents see the
world so that they get a better chance to coordinate on a
single strategy. It is important to mention that this work is
relevant to but different from the concept of cheap talk in the
game theory literature, which refers to communicating non-
binding statements before the game is played. It is pointed
out by Aumann [13] that pre-game communication should
not affect the outcome of a game when the players have a
strict preference in their choices.1 Our work is motivated
by the assertion that conventions “are the product of a
largely unconscious process of cultural evolution” rather
than formation of common knowledge [14]. To this end
we consider the observations that agents make about their
neighbors’ behaviors and the adaptations to their behaviors
as a result of the influence of their neighbors prior to the
game being played.
The paper is organized in the following sections. The

model of the game and the learning process is provided in
Section II. Section III provides the analysis of the system
and some illustrating examples. . Section IV concludes the
paper.

II. SYSTEM MODEL

The agents are modeled as the nodes of a given [communi-
cation] graph, Each node has to take a decision on whether
to cooperate (C) or not cooperate (NC) in a group effort.
Based on its decision when encountered by a neighbor, a
given node will acquire a payoff as in a coordination game
according to the pay-off table of Figure 1.

C NC
C a, a 0, b
NC b, 0 c, c

Fig. 1. Coordination game matrix, a > b > c > 0

The overall payoff of a node is then the sum of the payoffs
it gets from playing the game with all of its neighbors. The

1While the logic of Aumann’s argument is valid, there are some arguments
opposing the notion that communication does not help coordination in the
case of cheap talk [11],[12].

coordination game has two pure ((C,C), (NC,NC)) and
one mixed Nash equilibria and the equilibrium (C,C) is
Pareto-optimal. However, the numerical values of a, b, and c
can be chosen such that the basin of attraction of the equi-
librium point (NC,NC) is large and it is a risk-dominant
equilibrium point. Therefore, it is not easy to predict which
strategy the agents will choose without knowing any further
information about the agents. This model will be formalized
in section II-A.
We consider agents with a behavioral state or type, which

determines the strategy they choose. We consider each
agent’s type to be defined as a function that maps a random
input to a deterministic output. The idea is to capture the
notion of how the agent interprets a random input: e.g. if the
agent is told that an event occurs with a certain probability,
how likely is it for them to believe that the event occurs
and in general, how do they interpret this information. For
example, an agent of the type ’Strictly Optimistic’ believes
that a certain event occurs regardless of the probability
assigned to it, while an agent of the type ’Strictly Pessimistic’
is risk averse and believes that the above-mentioned event
never occurs. It is assumed that most agents are not strictly
optimistic or pessimistic but ’somewhere in between’. This
will be formalized in section II-B.
Using the Cucker-Smale-Zhou framework of language

acquisition [15], we propose a model in which an agent’s
strategy will depend on what it knows about its neigh-
bors’behaviors . To this end, we consider a learning model in
which by observing the previous behavior of their neighbors,
each agent modifies its own behavior. We emphasize that
since agents do not trust each other completely, they do
not weigh the information they receive from their neighbors
equally. In this approach the agents value the information
they receive from their neighbors through a stochastic influ-
ence matrix. They then adapt themselves by changing their
behavior through minimizing a notion of distance between
their behavior and the neighbors’ weighted behaviors. The
agents’ decision on whether to cooperate or not is based
on their emerging type, when the game is played. If the
agents are successful to reach a consensus on their types,
they will get a higher expected utility and may achieve the
Pareto optimal equilibrium. The learning process model is
formalized in section II-C.

A. The coordination games
We consider a set of n agents and model the interconnec-

tion between them by a communication graph G = (V , E).
The nodes of the graph, V = {1, 2, ..., n} represent the
agents and the undirected edges E = {l1, l2, ..., le} ⊆ V × V
represent the communication links. Each agent in V has to
take a decision on whether to cooperate (C) or not cooperate
(NC) in a group effort. This is modeled by considering each
agent being engaged in a 2×2 coordination game with each
of its neighbors. We denote the set of neighbors of agent i
by Ni. The set of pure strategies for each agent is

S = {C,NC}.
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The pay-off matrix for all the coordination games is given
in Figure 1.
Therefore, the over all pay-off of agent i is given by:

ui(si, s−i) =







a
∑

j∈Ni
1{sj=C}, if si = C,

b
∑

j∈Ni
1{sj=C}+

c
∑

j∈Ni
1{sj=NC}, if si = NC.

(1)

B. Behavior modeling

Consider that each agent has a behavior (belief) system
that decides on its level of optimism and that this system
evolves with time. We model the evolution of this belief sys-
tem in the Cucker-Smale framework of ‘language evolution’.
The behavior of an agent can be considered as a function
f : X = [0, 1] → Y = [0, 1]. Given a uniformly distributed
random variable x ∈ X, fi(x) determines whether agent i
expects an event that is supposed to occur with probability x,
to actually happen. In this framework, we consider an agent
to be strictly optimist if its behavior function f is a step
function, which maps the interval (0, 1] to 1, (Figure 2:(i)).
Similarly, an agent is considered to be strictly pessimist,
if its belief function is the step function -for which the
interval [0, 1) is mapped to 0, (Figure 2:(ii)). Many other
types of behavior such as ambivalence ((Figure 2:(iii)) )
are possible. We assume that the beliefs of the agents in
the network can be modeled as continuous piecewise linear
functions between the two extremes of strict optimism and
strict pessimism. Figure 2:(iv) shows the behavior function
for agents which we call regular. The behavior of these
agents which is modeled by continuous functions f consist
of two thresholds. If x < β, the agent decides that the event
does not happen and therefore assigns y = 0. If on the other
hand x > γ, the agent decides that the event does happen
and assigns y = 1. For the values of x between these two
thresholds, the agent is not certain and therefore assigns y to
a number between 0 and 1 which can be interpreted as the
percentage of the agents’ confidence on whether the event
happens. We assume that the two thresholds are related as in
Figure 2:(iv) and therefore the behavior of a regular agent
can be determined given two parameters: threshold β and
slope α with π

4
≤ α ≤ αmax < ∞.

Remark 2.1: In order for the learning algorithm to be
more easily implementable, it is better to consider smooth
and differentiable behavioral functions. To this end, we
approximate the proposed piecewise functions by sigmoids.
For example, the function

f(x; θ1, θ2) =
1

2
(1 + tanh(

θ1
2
(x− θ2))), (2)

where θ1min ≤ θ1 ≤ θ1max and θ2min ≤ θ2 ≤ θ2max

for suitable extremal values provides a good approximation
for the regular agents’ behavior. Here θ1 and θ2 determine
the slope and bias of the function respectively. We denote
this family of sigmoid functions by F. An illustration with
θ = [10 0.5]T can be seen in Figure 3. In the sequel, we
will use the notations f(x) and f(x; θ1, θ2) interchangeably.
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Fig. 2. Agents’ sample behaviors. Graphs are numbered clockwise starting
from top left: (i) Optimist, (ii) Pessimist, (iii) ambivalent, (iv) Regular
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Fig. 3. Sigmoid function approximating the behavior

C. Learning algorithm

To model the agents’ partial understanding of the other
agents’ types, we need to model the communication that
happens before the game is played. In reality, people make
assumptions on peers’ judgement system based on their
observation of how their peers react to random events. We
model this aspect by assuming that that the system evolves
in a synchronized manner: at each time interval t, all the
agents receive data from their neighbors in the form of
{(xj(t), yj(t))}j∈Ni

. We assume that xj(t) is distributed
uniformly on X = [0, 1] and yj(t) = f(xj(t); θ1(t), θ2(t)),
where f(xj(t); θ1(t), θ2(t)) ∈ F.

We model the relative influence and credibility of the
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agents as perceived by other agents by a stochastic matrix
W = [w]ij , where wij denotes the relative influence of agent
j on agent i (to be used as below. If an agent j does not
influence agent i, wij = 0. This case includes situations,
where agent i does not trust agent j. We also assume that
wii > γ > 0 for a given γ > 0.
Having defined the influence matrix, the learning algo-

rithm requires that at each time, all agents update their
behavior function due to the following equation:

f(xi(t+ 1)) = argmin
f∈F

∑

j∈Ni

wij(f(xj(t))− yj(t))
2,

i = 1, 2, ..., n. (3)

The learning dynamics given by the set of equations (3)
determine the evolution of the behavior of the system in the
sense that it describe how the types of agents change with
respect to the change of their understanding of the other
agents’ types. Coordination on any policy happens if the
agents reach a consensus on their types. We assume that
when the game is played the policy of all agents is to choose
‘Coordinate’ action if and only if the agent’s emerging type is
more towards the optimist end of the spectrum, i.e. if θ2 < 1

2

and θ1 is such that f(0.5, θ1, θ2) > 1 − ε, for a predefined
small ε > 0.

III. ANALYSIS

The learning algorithm of the previous section constitutes
a stochastic dynamical system in which the dynamics are de-
termined by the samples of random inputs provided to agents.
Determining the convergence of the learning algorithm ( 3),
requires analyzing the contraction of the distance between
functions f, where the distance between the functions is
defined as in [15]. Since, we consider uniform probability
distribution for generating x ∈ [0, 1], this notion of distance
reduces to the deterministic distance using the induced
infinity norm on the Y space. The following theorem stated
without proof follows on the lines of Theorem 1 in [15].
Theorem 3.1: The learning algorithm of the system de-

fined in Section II, converges to a consensus on the type
functions, provided that the matrix W is irreducible.
In the sequel, we consider an approximate linearized

model of the system described in Section II, and show
how this approximation leads to a linear time varying
stochastic consensus algorithm for which the dependence of
convergence speed to the graph topology is well-studied. To
this end, we use an affine approximation of the functions
f(x; , θ1, θ2). We also consider the case that each agent
weighs its neighbors equally, for the ease of exposition. The
results are valid for any general weighting matrix W. We
consider agents with approximate type functions

f(xi; θ,λ) = θxi + λ. (4)

Writing optimality conditions, for all t > 1

d

dθ
f(x; θ,λ) = 0,

d

dλ
f(x; θ,λ) = 0,

for the learning equations (3) at each time yields simple
linear regression formulae:

θi(t+ 1) =

∑

j∈Ni
xj(t)yj(t)−

1

ni

∑

j∈Ni
xj(t)

∑

j∈Ni
yj(t)

∑

j∈Ni
xj(t)2 −

1

ni
(
∑

j∈Ni
xj(t))2

λi(t+ 1) =
1

ni

∑

j∈Ni

yj(t)−
θi(t+ 1)

ni

∑

j∈Ni

xj(t), (5)

where, Ni denotes the neighborhood of agent i and ni

denotes the number of agent i’s neighbors. Using the fact
that yj(t) = F (xj(t)) = θj(t)xj(t) + λj(t), and denoting

Si(t) =
∑

j∈Ni

xj(t)
2 −

1

ni
(
∑

j∈Ni

xj(t))
2,

and
x̄i(t) =

1

ni

∑

j∈Ni

xj(t),

we can rewrite Equation (5) as:

θi(t+ 1) =
1

Si

[

∑

j∈Ni

(x2
j (t)− x̄i(t)xj(t))θj(t))

+
∑

j∈Ni

(xj(t)− x̄i(t))λj(t))
]

λi(t+ 1) =
1

ni

∑

j∈Ni

[xj(t)θj(t) + λj(t)]

− x̄i(t)
1

Si

[

∑

j∈Ni

(x2
j (t)− x̄i(t)xj(t))θj(t))

+
∑

j∈Ni

(xj(t)− x̄i(t))λj(t))
]

(6)

If we denote ∀i ∈ {1, 2, ..., n}, Θi = [θi λi]T , and Θ =
[Θ1 Θ2 ... Θn]T , then it can be readily verified that the
learning dynamics of the system can be written in the form
of

Θ(t+ 1) = G(x(t))Θ(t), (7)

where G(x(t)) is a matrix with row sums determined by
edges of the graph G = (V , E) and the realization of the
random vector x = [x1 x2 ... xn]T at each time t. The
difference with regular consensus iterations is that the entries
of G(x(t) can be negative as well.
The convergence of iterations of the form (7), when all

the entries are nonnegative has been studied [16]. It has
been shown [17] that a system with self reinforcement
and stationary and ergodic sequence of matrices {Θt, t =
1, 2, ...}, reaches consensus almost surely if and only if
|µ2(E[G(xk))]| < 1, where µ2 is the second largest modulus
eigenvalue. Convergence of such schemes, where the weights
are not necessarily positive has been addressed in [18]
for a parameter estimation problem. Several results (e.g.
[19], [20], [21] ) address the speed of convergence of these
schemes.
In general, the speed of convergence of consensus schemes

and gossip algorithms is a function of the graph topology
as well as the weights that are assigned to the existing
links in a given topology. For probabilistic schemes bounds
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Fig. 4. Small world behavior

can be found based on expected Laplacian matrices that
determine the evolution of the system. While such results
mostly address the cases with i.i.d. choices of underlying
graphs and weighting matrices, a necessary condition for fast
convergence is to resort to graphs with the second smallest
eigenvalue of the corresponding Laplacian matrix bounded
away from 0. Equivalently, the random walk matrices de-
fined on these graphs should have second largest eigenvalue
modulus bounded away from 1.
Since, the speed of convergence of the learning algorithm

decreases with the number of agents, the communication
graph topology is a crucial factor that determines whether
coordination can be achieved effectively. For large scale
networks, small world topologies have proved to be efficient
in the sense that while considerably sparse, distributed algo-
rithms converge fast on them. Many large scale communica-
tion graphs can be turned into small world graph by adding
a few links between distant nodes. The following procedure
based on the probabilistic developments in [22], [19], [20]
shows the characterization of small world phenomena in
sparse networks.
Procedure 3.1:
1) To a nominal base graph, G0 corresponds a natural
random walk matrix, F0.

2) Capture the desired performance measure as the cor-
responding spectral gap of this matrix,

3) Take a probability distribution corresponding to a per-
turbation of the base graph,Gε. In other words, perturb
the graph in such a way that the random walk on graph
G0 is modified to be able to make transitions to non-
neighboring nodes, with small probability according to
a perturbed matrix Fε.

4) Determine if for a small perturbation parameter, there
is any abrupt increase in the spectral gap.

5) If such increase can be observed for a range of
perturbation parameter values, then the small world
phenomenon has occured.

6) Interpret the perturbations in the weights of the random
walk as structural perturbations.

Figure 4 illustrates the small world effect from ring, lat-
tice and hypercube topologies. The first column shows the
spectral gap for the initial topologies, the second column
shows the amount of perturbation for which the small world

effect starts, and the third column indicates the range of
perturbation for which the graph can be considered as a small
world.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we studied the interdependence of com-
munication and collaboration graphs in a networked sys-
tem in the context of a coordination control and decision
making problem. We modeled the decision on whether to
cooperate or not in a group effort as a result of a series of
two-person games between agents and their neighbors. We
considered agents with different behavioral variables (types)
and proposed an adaptive scheme by which the agents’ types
evolve so that they can coordinate on a common strategy. We
showed that the behavior evolution can be addressed in the
Cucker-Smale-Zhou framework of language evolution. We
mainly focused on the learning algorithm and demonstrated
that since it can be considered as a gossip-type algorithm,
its convergence is constrained by the spectral properties of
the communication graph. We illustrated sparse large scale
networks for which the small world effect can occur by
adding shortcuts. In this paper we considered a learning
model in which the agents use their observations of their
neighbors’ behaviors to determine their type. Future direc-
tions include determining how the number of like-minded
agents and their connectivity play a major decisive role on
the attained equilibrium. Further work also addresses how
the future behavior evolution is affected once the game is
played.
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