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Abstract— We consider the problem of coordination for
efficient joint decision making in networks of autonomous
agents. When making a decision, an agent is influenced by
its knowledge about others’ behaviors. Agents’ understanding
of others’ behaviors is shaped through observing their actions
over a long time. We have modeled the decision making on
whether to cooperate in a group effort as a result of a series
of two-person games between agents, where the payoff of each
agent is computed as the sum of its payoffs from each of these
games. The agents initially have different behaviors. In order to
maximize their pay-off, they need to learn the others’ behavior

and coordinate with them. We consider a behavior learning
algorithm for a class of behavior functions and study its effects
on the emergence of coordination in the network. The conditions
under which the learning algorithm converges are studied. We
show that for a class of linear functions the learning algorithm
results in an extension of non-homogeneous consensus protocol
to the more general case of block-stochastic matrices.

I. INTRODUCTION

In a network of autonomous agents the interdependence of

agents can be modeled by a three level abstraction. Connec-

tivity graph represents the geographical dependence of agents

and is useful in determining how the agent sense each others’

presence; communication graph determines which agents can

communicate, and collaboration graph determines the agents

that are coordinated in performing a task.

In [1] we proposed a learning algorithm based on the

Cucker-Smale-Zhou paradigm of ‘language learning’ [2] to

establish the dependence of a group’s collaboration graph

on its communication graph. The system consists of a group

of agents. The agents can be machines or humans with

different degrees of rationality. Each agent has to make a

decision on whether to cooperate or not in a group effort.

This is modeled by two-person coordination games between

neighboring agents. The payoff of each agent is computed

as the sum of the agents’ payoffs from each of these games.

After the games are played, a collaboration graph is formed

from all the agents who have decided to collaborate. Each

agent’s decision on whether to collaborate is based on its

personal understanding of its own behavioral tendencies as

well as its neighbors’. To account for this fact we provision

the agents with a behavioral variable, which indicates how

risk averse an agent is. We model how the agents learn
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and adapt to each other’s behaviors based on Cucker-Smale-

Zhou model of language leaning. Agents exchange messages

before playing the game and based on these exchanges try

to learn their neighbors’ behavior and adapt to them. The

effect of the agents on each other is governed by an influence

matrix which is partially derived by the communication

graph’s topology. If the agents are allowed to interact for a

sufficiently long period of time before the game, a consensus

will be reached [under certain conditions] on which equilib-

rium should be played. Equilibrium points corresponding to

more agents collaborating are desirable.

This work focuses on two major issues: the emergence

of collaboration based on the behavior adaptation and devel-

opment of a ‘generalized consensus protocol’ when behavior

functions are from a class of linear functions. The emergence

of cooperation and conventions has applications in many

social, economical and political studies [3], [4], [5]. It is ex-

plained in game theory literature by considering boundedly-

rational agents who play a game indefinitely against fixed,

or randomly matched agents, and learn from the previous

outcomes to achieve a notion of optimality or equilibrium

[6]. This framework is also adapted to study cooperation in

networks and network formation [7], [8], [9]. It is usually

assumed that conventions result as equilibria of coordination

games [8], [7]. The trade-off between stability of network

formations and costs of link establishment are also studied

using cooperative game theory [10].

This work differs from the above-mentioned literature in

at least two respects. First, we do not consider the problem

of network formation, rather we focus on the collabora-

tion networks possible given an underlying communication

framework. In this respect, our objective is similar to that

of [11] with the difference that [11] considers a n−person

game with emphasis on deterministic formation of common

knowledge, whereas we consider a set of 2−person games

and consider the agent’s learning as a result of their obser-

vations in their neighborhoods. Second, we consider agents

to learn the types and behaviors rather than the strategies

as there is the case with evolutionary game theory. In other

words, the adaptation provides the agents with a mechanism

to understand how the other agents see the world so that

they get a better chance to coordinate on a single strategy.

(See [1] for more in depth discussion)

The paper is organized in the following sections. The

model of the game and the learning process is provided in

Section II. Section III provides the analysis of the system.

Simulations of illustrating examples are included in Sec-

tion IV. Section V concludes the paper.
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II. SYSTEM MODEL

The agents are modeled as the nodes of a given graph.

Each node has to take a decision on whether to cooperate (C)

or not cooperate (NC) in a group effort. Based on its decision,

a given node will acquire a payoff as in the coordination

game setting of [1]. This model will be formalized in section

II-A. We consider agents with a behavioral state or type,

which determines the strategy they choose. We consider each

agent’s type to be defined as a function that maps a random

input to a deterministic output. The idea is to capture the

notion of how the agent interprets a random input: e.g. if the

agent is told that an event occurs with a certain probability,

how likely it is for them to believe that the event occurs. This

will be formalized in section II-B. Using the Cucker-Smale-

Zhou framework of language acquisition [2], we propose a

model in which an agent’s strategy depends on what it knows

about its neighbors’ behaviors. To this end, we consider a

learning model in which by observing the previous behavior

of their neighbors, each agent modifies its own behavior. If

the agents are successful to reach a consensus on their types,

they will get a higher expected utility and may achieve the

Pareto optimal equilibrium. The learning process model is

formalized in section II-C.

A. The coordination games

We consider a set of n agents and model the interconnec-

tion between them by a communication graph G = (V , E).
The nodes of the graph, V = {1, 2, ..., n} represent the

agents and the undirected edges E = {l1, l2, ..., le} ⊆ V ×V
represent the communication links. Each agent in V has to

take a decision on whether to cooperate (C) or not cooperate

(NC) in a group effort. This is modeled by considering each

agent being engaged in a 2× 2 coordination game with each

of its neighbors. Let a > b > c > 0. In case that both of the

agents cooperate (do not cooperation), each is rewarded by

a (resp. c). If only one of the agents decides to cooperate,

it will be rewarded by 0, whereas the non-cooperating agent

will be rewarded by b. We denote the set of neighbors of

agent i by Ni. The set of pure strategies for each agent is

S = {C,NC}.
The over all pay-off of agent i is given by:

ui(si, s−i) =







a
∑

j∈Ni
1{sj=C}, if si = C,

b
∑

j∈Ni
1{sj=C}+

c
∑

j∈Ni
1{sj=NC}, if si = NC.

(1)

B. Behavior modeling

Consider that each agent has an evolving behavior system

that decides on its level of optimism. We model the evolution

of this behavior system in the Cucker-Smale framework of

‘language evolution’ [2].

Consider a set of uniformly distributed random variables

on X = [0, 1], here referred to as states. Consider Y ⊆ R
be the space of observations.

Definition 2.1: The behavior of an agent is a piecewise

continuous function f : X → Y .

Given a uniformly distributed random variable x ∈ X,
fi(x) determines whether agent i expects an event that is

supposed to occur with probability x, to actually happen.

The idea is to consider an agent as an optimist if it assigns

to small values of x large values of y.

To be able to study the convergence of behaviors, we

need a notion of distance. Since x is uniformly distributed,

distance between two behaviors can be defined as follows:

Definition 2.2: The distance between two behaviors f and

g is determined by:

d(f, g) = (

∫ 1

0

|f(x) − g(x)|2)1/2dx

Remark 2.1: Here, we consider the set of linear functions

Fl = {f |f(x) = θx + γ; θ, γ ∈ R} and bounded linear

functions F∗
l = {f |f(x) = θx + γ; θ ∈ [θmin, θmax]; γ ∈

[γmin, γmax]}, as sets of allowed behaviors.

C. Learning algorithm

To model the agents’ partial understanding of the other

agents’ types, we need to model the communication that

happens before the game is played. In reality, people make

assumptions on peers’ judgement system based on their

observation of how their peers react to random events. We

model this aspect by assuming that that the system evolves

in a synchronized manner: at each time interval t, all the

agents receive data from their neighbors in the form of

{(xj(t), yj(t))}j∈Ni
. We assume that xj(t) is distributed

uniformly on X = [0, 1] and yj(t) = fj(xj(t)), where

fj(xj(t)) ∈ F∗
l.

We model the relative influence and credibility of the

agents as perceived by other agents by a stochastic matrix

W = [w]ij , where wij denotes the relative influence of agent

j on agent i. We assume that wii > γ > 0 for a given γ > 0.
Unless otherwise mentioned, in this paper we assume that all

neighboring agents’ influence is uniform, i.e..

wij =

{

1, if j ∈ Ni,
0, otherwise.

(2)

Having defined the influence matrix, the learning algo-

rithm requires that at each time, all agents update their

behavior function according to the following equation:

fi(xi(t+ 1)) = arg min
f∈F∗

l

∑

j∈Ni

wij(fj(xj(t))− yj(t))
2,

i = 1, 2, ..., n. (3)

The learning dynamics given by the set of equations (3)

determine the evolution of the behavior of the system in the

sense that it describes how each agent changes its behavior

to make it more aligned with the behavior of others, upon

getting more information that changes its understanding of

the other agents’ behaviors. Coordination on any policy

happens if the agents reach a consensus on their behavior.

III. ANALYSIS

The learning algorithm of the previous section constitutes

a stochastic dynamical system in which the dynamics are

determined by the samples of random inputs provided to
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agents. The following convergence theorem, stated without

proof, follows as a corollary to Theorem 1 in [2].

Theorem 3.1: If all the agents use bounded linear behavior

functions f ∈ F∗
l, the learning algorithm defined in Section

II, converges with probability 1 to a consensus on the

behavior functions, provided that the matrix W is irreducible.

At each time instant t, agent i minimizes its cost function

J(i) =
∑

j∈Ni
wij(fj(xj(t))−yj(t))

2 over the set F∗
l. The

set F∗
l is bounded, closed and convex, so the minimum will

be attained. Denote the minimizer parameters as θ∗(i) and

γ∗(i). The sufficient and necessary optimality conditions are:

∂J(i)

∂θ(i)
|θ(i)=θ∗(i) = 0, if θmin < θ∗(i) < θmax (4)

∂J(i)

∂γ(i)
|γ(i)=γ∗(i) = 0, if γmin < γ∗(i) < γmax (5)

∂J(i)

∂θ(i)
|θ(i)=θ∗(i) ≥ 0, if θ∗(i) = θmin (6)

∂J(i)

∂γ(i)
|γ(i)=γ∗(i) ≥ 0, if γ∗(i) = γmin (7)

∂J(i)

∂θ(i)
|θ(i)=θ∗(i) ≤ 0, if θ∗(i) = θmax (8)

∂J(i)

∂γ(i)
|γ(i)=γ∗(i) ≤ 0, if γ∗(i) = γmax (9)

If at time t the minimizer does not belong to the boundary

of F∗
l, equations 4 and 5 give linear regression formulae:

θi(t+ 1) =

∑

j∈Ni
xj(t)yj(t)−

1
ni

∑

j∈Ni
xj(t)

∑

j∈Ni
yj(t)

∑

j∈Ni
xj(t)2 −

1
ni
(
∑

j∈Ni
xj(t))2

λi(t+ 1) =
1

ni

∑

j∈Ni

yj(t)−
θi(t+ 1)

ni

∑

j∈Ni

xj(t), (10)

where, Ni denotes the neighborhood of agent i and ni

denotes the number of agent i’s neighbors. Using the fact

that yj(t) = θj(t)xj(t) + γj(t), and denoting Qi(t) =
∑

j∈Ni
x2
j (t), Q(t) =

∑n
j=1 x

2
j(t), Si(t) =

∑

j∈Ni
xj(t),

S(t) =
∑n

j=1 xj(t), x̄i(t) =
1
ni

∑

j∈Ni
xj(t), and S

(i)
i (t) =

∑

j∈Ni−{i} xj(t) = Si(t) − xi(t), we can rewrite Equation

(10) as:

θi(t+ 1) =
1

Qi(t)

[

∑

j∈Ni

θj(t)x
2
j (t) +

∑

j∈Ni

γj(t)xj(t)

− γi(t)Si(t)
]

γi(t+ 1) =
1

ni(t)

[

∑

j∈Ni

xj(t)θj(t) +
∑

j∈Ni

γj(t)

− θi(t)Si(t)
]

. (11)

At each time instant all agents calculate their corre-

sponding θ and γ using Equation (11). If the calculated θ
and γ are respectively inside the intervals [θmin, θmax] and

[γmin, γmax], their values are accepted, otherwise they are

set to the corresponding boundary.We will now show that

for the case of complete graph Theorem 3.1 still holds when

we relax the constraint on the behavior functions so that

f ∈ Fl = {f |f(x) = θx + γ; θ, γ ∈ R}.

A. The case of complete graphs

Let Θ = [θ1 θ2 ... θn γ1 γ2 ... γn]
T . The

learning dynamics of the system can be written as:

Θ(t+ 1) = F (t)Θ(t) =

[

P1(t) M1(t)
M2(t) P2(t)

]

Θ(t), (12)

where

[P1(t)]ij =
xj(t)

2

Qi(t)
, [P2(t)]ij =

1

n
,

[M1(t)]ij =







xj(t)
Qi(t)

, if i 6= j,

−
S

(i)
i

(t)

Qi(t)
, if i=j,

and

[M2(t)]ij =







xj(t)
n(t) , if i 6= j,

−
S

(i)
i

(t)

n(t) , if i=j.

The matrix F (t) has some interesting properties.1 Denote

1n = [1 1 ... 1]T ∈ Rn. It can be readily checked that:

P11n = 1n, M11n = 0,

M21n = 0, P21n = 1n,

and F12n = 12n. Furthermore, because for α, β ∈ R
[

P1 M1

M2 P2

] [

α1n
β1n

]

=

[

α1n
β1n

]

, (13)

1 is an eigenvalue of F with multiplicity of at least 2.

Therefore F is a block stochastic matrix [12] with associated

matrix Σ = I2, i.e. F is in the form

[

F11 F12

F21 F22

]

, and

Fij1n = δij1n, where δij denotes Kronnecker delta function.

The following lemma is immediate:

Lemma 3.1: 1) For all t, F (t) has eigenvectors v1 =
[

1n
0n

]

and v2 =

[

0n
1n

]

associated with λ = 1.

2) For all n and T , F (t)n and
∏T

i=0 F (t + i) are block

stochastic matrices with associated matrix Σ = I2.
This Lemma indicates that 1 is eigenvalue of F with multi-

plicity at least 2. The locus of the other 2n− 2 eigenvalues

of F can be determined using the following Theorem.

Theorem 3.2: The matrix F has no eigenvalue outside

the unit circle. Furthermore, with probability 1, the spectral

radius of F is 1 and λ = 1 is a semisimple eigenvalue2 with

algebraic and geometric multiplicities equal to 2.
Proof: Consider the n × n matrix

Kn =















1 0 0 · · · 0
1 1 0 · · · 0
1 0 1 · · · 0
...

. . .
...
...

1 0 0 · · · 1















. Consider a

1The dependence of F and other matrices on time are suppressed but
will be clear from the context.

2An eigenvalue is called semisimple if its algebraic and geometric
multiplicities are equal.
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transformation matrix T1 =

[

Kn 0n×n

0n×n Kn

]

,

and T2, a column swapping transformation T2 =
[e1 en+1 e2 en+2 e3 en+3 ... e2n], where ei
refers to the ith column of the identity matrix. Using the

transformation T = T1T2,

TFT−1 =

[

I2 D
0(2n−2)×(2n−2) C

]

,

in which

C =

[

0(n−1)×(n−1) − S
QIn−1

− S
N In−1 0(n−1)×(n−1)

]

. (14)

Therefore: det(λI2n − F ) = [det(λI2 − I2)][det(λI −

C)] = [det(λI2 − I2)][det(λ
2In−1 −

S2

NQIn−1)].
The eigenvalues of matrix F are: λ1 = λ2 = 1, λ3 =

λ4 = · · · = λn+2 = S√
nQ

, and λn+3 = λn+4 =

· · · = λ2n = − S√
nQ

. Considering two vectors v1 =

[x1x2...xn]
T and v2 = 1n and writing Cauchy’s inequality

yields: (
∑n

i=1 xi)
2 ≤ n

∑n
i=1 x

2
i or equivalently S2 ≤ nQ.

Therefore for i = 3, 4, · · · , 2n, |λi| ≤ 1 and the equality

holds only if x1 = x2 = · · ·xn. Therefore the spectral radius

of F is 1. Moreover, since xis are all uniformly distributed

on [0, 1] with probability 1 they are not all equal and, {λi}
n
i=3

fall inside the unit circle. The algebraic multiplicity of λ = 1
is 2. Lemma 3.1 implies that the geometric multiplicity of

λ = 1 is also 2. Therefore, λ = 1 is a semisimple eigenvalue

with probability 1.
Corollary 3.1: There exist a norm ||.||∗ such that ||C||∗ <

1 with probability 1.

Proof: Since ρ(C) < 1 with probability 1, there exists

a matrix norm ||.||∗ such that ρ(C) ≤ ||C||∗ ≤ ρ(C)+ǫ < 1,
for a particular choice of ǫ > 0.
We first consider the case of “one-time learning”, i.e. the

agents send their (x, y) data only once and then iterate to

achieve consensus. Therefore, we only have a single matrix

F and Equation (12) will be time invariant. The following

result follows as a corollary of Theorem 3.2.

Corollary 3.2: For the “one time learning” scenario,

agents will reach a consensus on θ and γ with probability

1, i.e. they will coordinate on the same behavior function

f(x) = θ∗x+ γ∗.
Proof: Theorem 3.2 states that the spectral radius of

matrix F is 1, and λ = 1 is the only eigenvalue on the

unit circle and it is semisimple. Furthermore, Lemma 3.1

and Theorem 3.2 indicate that the nullspace of I2n −F is a

two dimensional space spanned by v1 =

[

1n
0n

]

and v2 =
[

0n
1n

]

. Therefore limt→∞ F t exists and is the projector

onto nullspace of I2n − F along the range of I2n − F, i.e.

limt→∞ F t =

[

1n
0n

]

uT
1 +

[

0n
1n

]

uT
2 , where u1, u2 ∈ R2n

and

lim
t→∞

Θ(t) =
(

[

1n
0n

]

uT
1 +

[

0n
1n

]

uT
2

)

Θ(0) =

[

θ∗1n
γ∗1n

]

.

To generalize this result for the case where samples are sent

at each time, we first state a lemma.

Lemma 3.2: Any finite product of matrices of the form

Hm = F (m)F (m − 1) · · ·F (1), with F =

[

P1 M1

M2 P2

]

,

where P1,M1,M2, P2 are as in Equation 12 is similar to a

matrix of block upper triangular form

Gm =

[

I2 Dm

0(2n−2)×(2n−2) Cm

]

, (15)

in which Cm is a matrix of the form
[

0(n−1)×(n−1) C12

C21 0(n−1)×(n−1)

]

if the number of the terms in the product is odd and of the

form

Cm =

[

C11 0(n−1)×(n−1)

0(n−1)×(n−1) C22

]

if the number of the terms in the product is even.

Proof: The proof follows by induction. Consider

two matrices F (1) =

[

P1(1) M1(1)
M2(1) P2(1)

]

and F (2) =
[

P1(2) M1(2)
M2(2) P2(2)

]

. It is shown at the proof of Theo-

rem 3.2 that using transformation T , we can write F (2) =
T−1G(2)T and F (1) = T−1G(1)T, where for i = 1, 2,

G(i) =

[

I2 D(i)
0(2n−2)×(2n−2) C(i)

]

, for some matrices C(i)

and D(i). Direct multiplication results in F (2)F (1) =
T−1G2T, where

G2 = G(2)G(1) =

[

I2 D(1) +D(2)C(1)
0(2n−2)×(2n−2) C(2)C(1)

]

,

which is of the form of Equation (15). The induction step

from the product of m − 1 matrices to that of m matrices

is identical to above. Therefore it follows that F (m)F (m−
1) · · ·F (1) = T−1GmT, where

Gm =G(m) · · ·G(2)G(1) =
[

I2 D
0(2n−2)×(2n−2) C(m) · · ·C(2)C(1)

]

.

It follows from Equation (14) that for m = 2k,

Cm = C(m) · · ·C(2)C(1) =
[

S(2k)···S(2)S(1)
nkQ(2k)···Q(4)Q(2)

In−1 0(n−1)×(n−1)

0(n−1)×(n−1)
S(2k)···S(2)S(1)

nkQ(2k−1)···Q(3)Q(1)
In−1

]

,

(16)

and for m = 2k + 1,

Cm = C(m) · · ·C(2)C(1) =
[

0(n−1)×(n−1) − S(2k+1)···S(2)S(1)
nkQ(2k+1)···Q(3)Q(1)

In−1

− S(2k+1)···S(2)S(1)
nk+1Q(2k)···Q(4)Q(2)In−1 0(n−1)×(n−1)

]

(17)
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Theorem 3.3: For the general learning case, where each

agent sends samples at each time instant, agents will reach

a consensus on θ and γ with probability 1.

Proof: We show that for the learning dynamics iter-

ation, Θ(t + 1) = F (t)Θ(t) the corresponding sequence

{Hm}m≥1 = {F (m)F (m−1) · · ·F (1)}m≥1 converges to a

matrix H =

[

1n
0n

]

uT
1 +

[

0n
1n

]

uT
2 with probability 1 for

some vectors u1, u2 ∈ R2n. First, it follows from Lemma 3.1

that ∀m ≥ 1, v1 =

[

1n
0n

]

and v2 =

[

0n
1n

]

are also

eigenvectors of Hm corresponding to eigenvalues λ1,2 = 1.

Next, we show that as m → ∞, the ‘third largest

eigenvalue modulus’ of Hm goes to 0 and the invariant

space of Hm is spanned by v1 and v2 with probability 1.
It was shown in Lemma 3.2 that for any Hm, there is a

corresponding similar matrix Gm in block upper triangular

form (15). We show that as m → ∞ the sequence {Cm}m≥1

converges to 0(2n−2)×(2n−2) with probability 1 and therefore

the third largest eigenvalue modulus of Gm goes to 0. The

rest of proof follows immediately.

Suppose m = 2k + 1. Equation 17 yields that the

eigenvalues of Cm satisfy the following equation:

det(λI2n−2 − Cm) =

det
(

λ2In−1 −
S(2k + 1)2 · · ·S(3)2S(2)2S(1)2

n2k+1Q(2k) · · ·Q(3)Q(2)Q(1)
In−1

)

= 0.

Therefore, C has two sets of repeated eigenvalues, each with

multiplicity n− 1, which satisfy the following equation:

λ2 =
2k+1
∏

i=1

S(i)2

nQ(i)
. (18)

As was shown in the proof of Theorem 3.2, the Cauchy-

Schwartz inequality implies that for all i, S(i)2 ≤ nQ(i).
The equality holds only if for all i and j, x(i) = x(j), which

is a zero probability event. Therefore for all i, 0 < S(i)2

nQ(i) < 1
with probability 1. Now consider ǫ > 0 and let

Sǫ(m) = {i|1 ≤ i ≤ m and
S(i)2

nQ(i)
< 1− ǫ}.

Then, ∀1 ≤ i ≤ 2n− 2

λi(m)2 =

2k+1
∏

i=1

S(i)2

nQ(i)
=

(

∏

i∈Sǫ(m)

S(i)2

nQ(i)

)(

∏

i/∈Sǫ(m)

S(i)2

nQ(i)

)

.

(19)

Therefore, Cm has two repeated eigenvalues each of

algebraic multiplicity n− 1 :

λ1,2 = ±
(

∏

i∈Sǫ(m)

S(i)2

nQ(i)

)1/2( ∏

i/∈Sǫ(m)

S(i)2

nQ(i)

)1/2
,

As k → ∞, it can be proven by contradiction that the

cardinality of the set Sǫ grows unbounded, i.e. |Sǫ| → ∞.
Therefore, as k → ∞, the first term in the right hand side

of 19 goes to zero, while the second term remains bounded

by 1, i.e. with probability 1,

lim
m→∞

λi(m)2 = lim
m→∞

(1− ǫ)|Sǫ| = 0,

i.e. all the eigenvalues of Cm converge to zero. Let αm =
S(2k+1)···S(2)S(1)

nkQ(2k+1)···Q(3)Q(1) and βm = S(2k+1)···S(2)S(1)
nk+1Q(2k)···Q(4)Q(2) , then

we can write

Cm = λ1G1 + λ2G2 =

(
√

αmβm).
1

2





In−1 −
√

αm

βm
In−1

−
√

βm

αm
In−1 In−1



+

(−
√

αmβm).
1

2





In−1

√

αm

βm
In−1

√

β
αIn−1 In−1



 .

It can be shown that Prob(αm

βm
= 0∨ βm

αm
= 0) = 0, therefore

given a norm ||.|| on R2n−2,

lim
k→∞

||C2k+1|| = 0.

Also for m = 2k :

lim
k→∞

||C2k|| ≤ lim
k→∞

||C2k−1||.||C|| = 0.

Therefore, with probability 1,

lim
m→∞

Cm = 02n−2.

Given 0 < κ < 1, since limm→∞ Cm = 0, there exists

M < ∞ such that

Prob(||C(M)C(M − 1) · · ·C(0)|| ≤ κ) = 1.

Now, consider

Hm = F (m)...F (2)F (1) =
[

I2 D(1) + · · ·+D(m)C(m− 1) · · ·C(1)
02n−2 C(m)C(m − 1) · · ·C(1)

]

.

We have shown that

lim
m→∞

Cm = lim
m→∞

C(m)C(m − 1) · · ·C(1) = 02n−2.

Since ρ(F (i)) = 1, there is a constant K < ∞, such that

||D(i)|| ≤ K. Therefore with probability 1,

||D(M + 1)C(M) · · ·C(1) +D(M + 2)C(M + 1) · · · || ≤

MKκ+MKκ2 + · · · =
MKκ

1− κ
.

Therefore with probability 1, as m → ∞, Hm =
F (m)F (m − 1) · · ·F (1) converges to a matrix H. Further-

more for any matrix F of the form (12), we have

FH = F lim
m→∞

Hm = limm→∞Hm = H,

i.e. the columns of F∞ are in the nullspace of I2n − F.
But it was shown that the nullspace of F is spanned by

v1 =

[

1n
0n

]

and v2 =

[

0n
1n

]

and therefore we can write

H =

[

1n
0n

]

uT
1 +

[

0n
1n

]

uT
2 for u1, u2 ∈ R2n.
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Fig. 1. Evolution of θ for a sample situation of two initially optimist and
one initially pessimist agents that reach a final consensus to collaborate.

IV. SIMULATIONS

We now consider the game model of Section II and show

that by learning each others’ behaviors, the agents reach a

higher degree of coordination resulting in higher pay-offs.

The numerical values for the coordination game pay-off of

Section II-A are set to a = 5, b = 4, and c = 2. We consider

a complete graph of 3 agents with linear behavior functions

from the set Fl. We consider an agent to be optimist if its

behavior function f(x) = θx + γ intersects the y = 1 line

for 0 ≤ x ≤ 1/2 and pessimist if the intersection occurs at

x > 1/2. We ran different sets of simulations with initial

behaviors chosen randomly with θ ∈ [0, 8] and γ ∈ [−3, 1]
with the restriction that two pessimist and only one optimist

agents initially exist. Figures 1 and 2 show an instance that

starting with two pessimist agents (2 and 3) and one optimist

agent (1) leads to a configuration of all optimist agents

and thereby group collaboration occurs. We ran 100 sets of

simulations each consisting of 1000 runs with two randomly

chosen pessimist agents vs. one randomly chosen optimist

agent. It was observed that in 326.09± 14.66 times out of

the 1000 times the agents reached a consensus to cooperate

with average individual pay-offs of 5956.5 ± 87.97 (out of

a maximum of 10000). We then ran another set of simula-

tions with completely random initial behaviors with initial

behaviors chosen randomly with θ ∈ [0, 8] and γ ∈ [−3, 1].
This time, we ran 100 sets of simulations each consisting

of 1000 runs. It was observed that in 763.50± 12.97 times

out of the 1000 times collaboration emerged with average

individual pay-off of 8581 ± 77.86 (out of a maximum of

10000).

V. CONCLUSIONS AND FUTURE WORK

In this paper we studied the implications of a group’s

communication structure on the emergence of coordination

among them. The problem is to make a decision on whether

to cooperate or not in a group effort. This emerges as a result

of a series of two-person games between agents and their

neighbors. We considered agents with different behavioral

variables (types) and proposed an adaptive scheme by which

the agents’ behaviors evolve so that they can coordinate on
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Fig. 2. Evolution of γ for a sample situation of two initially optimist and
one initially pessimist agents that reach a final consensus to collaborate.

a common strategy. We addressed the behavior adaptation in

the Cucker-Smale-Zhou framework of language evolution.

We showed that in the special case of ‘linear behaviors’,

our scheme would result in an extension of consensus

problems, in which the evolution of the system is governed

by block-stochastic matrices. The derived linear systems may

not be stable if the underlying topologies are not complete.

However, this can be alleviated by scaling the non-diagonal

blocks. Currently, we are working on finding extensions

of the linear learning case to arbitrary topologies. Also,

in the current work, there is no relationship between the

pay-off values a, b, c and the initial tendency of the agents

towards pessimism or optimism. We are working to ‘close

this loop’. Future directions include determining how the

number of like-minded agents and their connectivity play

a major decisive role on the attained equilibrium.
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