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Abstract

This paper considers the nonlinear Hy, control problem
for systems subject to delayed measurements. Necessary
and sufficient conditions for the solvability of the prob-
lem are presented. A key point of our approach is the
extension of the information state concept. In particular,
the information state is no longer the “worst case cost to
come” function. We also present the certainty equivalence
principle for such systems, and draw an analogy with the
solution to the linear case. The paper ends with an exam-
ple.

1 Introduction

In recent years, nonlinear H., control has received a
great deal of attention as a potentially viable method-
ology for designing controllers for nonlinear systems
[5],(6],[9],[8],[11]. Although, a lot of work remains to
be done, in particular on the computational aspects, the
pieces are slowly falling into place. What has been con-
spicuously absent is a general framework for dealing with
systems with delays. In this paper, we consider the case
of systems with measurement delays. Such systems are
widespread in the chemical process, and semiconductor
industries, where either one takes samples to a laboratory
for off-line measurements, or the sensors have a finite data
processing delay. A typical class of such sensors are those
responsible for composition measurements.

In a recent paper, [9], it was shown that the standard
nonlinear Ho, control problem is solvable provided one
" solves a filter equation, a dynamic programming equation,
and satisfies a coupling condition. These results have an
interpretation similar to the linear case, where one solves
a pair of Riccati equations, and satisfies a coupling con-
dition [3]. Furthermore, in the linear case with delayed
measurements, one needs to solve [2] a control Riccati
equation, a filter Riccati equation, satisfy the coupling
condition, and an additional open loop Riccati equation

whose initial conditions are determined by the solution
of the control Riccati equation. This derivation involves
certainty equivalence, which does not hold in the general
nonlinear case. Hence, we would like to see whether one
can draw any analogies between the solutions to the linear
and nonlinear cases.

Our approach is based on identifying an appropriate
information state for the delayed measurement problem.
Such an approach leads to separation between estima-
tion and control. In addition one obtains both necessary
and sufficient conditions for solvability. However, the con-
troller so obtained maybe infinite dimensional in general,
although, for the delay free case, there exist certain sys-
tems for which the controller is finite dimensional (for ex-
ample bilinear systems {10]). In fact, as we shall see, if
the delay free system has a finite dimensional controller,
then the controller for the system subject to a finite mea-
surement delay is also finite dimensional.

We begin in Section 2 by stating the problem and in-
troduce some notation. In Section 3, we derive the infor-
mation state for the problem at hand. The solution to
the problem in terms of both necessary and sufficient con-
ditions is presented in Section 4. Section 5 discusses the
certainty equivalence principle, and an analogy is drawn
with the solution to the linear case presented in [2]. We
then present an example.

For purposes of brevity, we will concentrate on the dis-
crete time, finite horizon case. The results can be ex-
tended to the infinite horizon case by invoking stationar-
ity of the control dynamic programming equation, and by
making a detectability assumption. We can also apply the
ideas presented here to the continuous time case.

2 Statement of the Problem

The system under consideration is

Tir1 = Sf(ok, ug, wi)
8 yYkr1 = G(@hory Uk—r, Wk—r) (1)
Ze41 = h(Tr, uk, wi).

Here, z; € R" are the states, yx € R! are the measure-
ments. ux € U C R™ are the control inputs, and z; € R’



are the regulated outputs. It is assumed that the origin is
an equilibrium point for the system X, i.e. f(0,0,0) =0,
g(0,0,0) =0, and h(0,0,0) = 0. Also, we assume that U
is compact. Furthermore, the delay 7 > 0 is assumed to
be fixed. It is clear that if £ < 7, then no measurements y;,
are available. In general, one may have variable amounts
of delay, in which case, one fixes 7 to correspond to the
largest possible (worst case) delay.

We denote the space of output feedback policies as O.
Hence, if u € O then uy = w(y;+1.%, o k—1), where in
general s; ; is the vector [s; siy1...s;]. The finite time
H control problem can now be stated as [9], given K > 0,
and v > 0, find u € O, such that there exists a finite
quantity 8% (zx) > 0, with 5% (0) = 0, such that for each
initial condition z9 € R", we have

K-1 K-1
Do lzenl? <7 ) Jwil® + B (zo)- (2)
=0 i=0

This is also called the finite gain property, since it implies
that if 2o = 0, then

flz| 1R
sup Ilz([l.h],R )

welx([0,K~1]. "), w#0 ”w“lg([o,K—H,R')

A
1Z6 1. =

Before proceeding further, we introduce the spaces
A n .
E={p:R"> R}
and

UF S (uiu=uju €U, i<t<j0<j—i<k,
oru = ¢}

Now consider their direct sum
DEcou ! = {[ ‘Z } :pe&ueu"l}

and define the operators 7} : D — &, and 1y : D — Y771

o((2]) ([ 2]

Also, we associate with a sequence u; ; its length given by
l(u) = j—i+1. Here, we use the convention that {(¢) = 0.
We also define the “sup-pairing”,

A
(p,q) = sup {p(z) + q(z)}.
ZER“
We now consider the functional
A
Lpek(u) = Supwelz([O.k—l],R") iulzzoERn {p(z0)+
Yito lzie P = YPwil?}
Then, we have the following result

Lemma 1 X% is finite gain on [0, K] if and only if there
ezists a finite quantity 3% (-) > 0, such that

L_pv k(u) <0.

The robust control problem can now be expressed as,
find u* € Og k-1, such that

Lyi(u™) = inf

Ly i(u
u€O) k-1 po(1)

3 The Information State

For a fixed wox—1 € L([0,k — 1],U), yr+1.6 € L([r +
1,k], R"), we define the cost to come function py € &£ as

P

pk(l') Supwelz([O.k—l},RF) SungEIT1 {po(:to) + (3)

k-1 : . ;

Yo [z P =V lwi rx =2,

Yis1 = g(Tir, Ui—r,wi—r), T <1 < k=1,
Tiv1 = fzs,us,w;),0 <i <k -1}

We would like to express p; as a dynamical equation.
For this purpose, define H(p,u,y) € £ by

Hipiuy)(a) 2 PPee R PO BGmm itk 27

where the extended real valued function B is defined by

B(&,z,u,y) & sup, . gr{lh(E, ww)]® = 72|w] :
f(§7u9 w) = z?g(é’u’w) = y}

Here, we use the convention that the supremum over an
empty set equals —o0.

Let p € D, and define the shift /pad operation 7 : {7 ~! x
U->UT! by

fj—i<r—-1
else

A U;
N, ujt1) = { w S
i+1,j+1
and the functional J : D = R* by
R A A
J(pr)(z) = sup sup {m(Px)(z0) +
wela([0.(ma(pr))— 1) RT) 2o "

Uma(pr))—1
2 2 2
Z Zig1]® = 7wy P Ti(ma(pr)) = s
=0
« Tiv1 = f(xs, m2(Pr)i, wi),
0 <i < U(m(pr)) — 1} (4)

where (P ); denotes the ith element of m»(py), assum-
ing that the indexing starts from 0. In particular, if
w2 (Pr) = @, then J(py)(x) = w1 (Pr)(z). We now define
the functional F(p,u,y) € D by

F(pr, uk, yr1) () & Him (ﬁ;z;rzzéf’)“’)zgk“)(r)

We can now express the cost to come function recursively
as is the following lemma, which we state withought proof.



Lemma 2 The cost to come function (py) is the solution
to the following recursion

- ﬁk-‘}-l =
T Pkt =

for any po € D of the form { ];;) }. with pg € €.

F(ﬁkwukayk-i-l)ak € [OvK - 1]

J(Pra) 5)

Remark: We could have expressed the cost to come
function py as

SUDeey, (0,41, R™) 1P0(E0)+
Z?:_or_l (fufz+huuyz+1+r)+
SUP ety (k—r.k—1],R") Z] k=7 Al ug,w;)?
—72|wj|2 Dk = £J+1 = f(fjvujawj)»

jE ka—l]}}

where k — 7 equals k — 7 if k > 7, or else equals 0.

pr(z) =

Theorem 1 Foru € O -1, p € &, such that L, ;(u) is
finite, we have Ly i (u) =

{ SupyElz([T-}-l,kl,R‘){(pk,0) ‘po=p}, k€[r+1,K]
{(p,0) : po =p}, k<.

Proof:
In particular, we have for k < 7,

{(Pk,0) : po = p} =
= SUPyery(ok-1], R S‘;pzloeR" {p(z0)
- 2 2 )
+ 2o 1zim1)® = ¥ lwil*}
= Lp'k(u)A
Now if k£ > 7, we obtain

supyélg([r+1.k],R'){(pka0) ‘po =p} =
SUP ety (ir+1.4], R") SWPeelz(j0.k], R") SUPwels([0,k—1),R7) {
p(EO + Zk T B, Eirt s Wiy Yie 1)+
D AR L (1]
= SUP e (0.k—1). R) SUPse R {P(Z0)+
Zf:_ol lziva | = ¥ wil’}
= Lp,k(u).

This immediately yields the following corollary.

Corollary 1 For any output feedback controller u €
Oo.x—1, the closed-loop system L% is finite gain if and
only if pr satisfies

—BK
SUP ity ([r+1,5), R {(J( = { K }}

{00 =] 7 H [ )

for some finite B8} (x) > 0, 8% (0) = 0.

0>

In fact, the above result yvields a separation principle,
in the sense that p; € D contains all the relevant informa-
tion required to solve the problem. This justifies naming
Pr € D obtained via dynamics (5), with initial conditions

of the form { ‘ZZ;;

ticular, we have transformed the problem into one with
full information, with a new (infinite dimensional) system
=, whose states are p;, and the disturbance are the mea-
surements yx. The cost is now given by (6).

Remark: Note that the information state is no longer
the cost to come, as it was in the case of no measurement
delay [9]. However, in case we have 7 = 0, the two def-
initions coincide. Furthermore, note that we could have
taken the supremum in equation (6) over y € lo([1, k]. R"),
since the cost is independent of y;, for k£ € [0, 7].

Remark: It is also clear, that if the delay-free case
yields a finite dimensional information state, then the in-
formation state for the delayed measurement case is also
finite dimensional, provided that the delay (7) is finite.

4 Solution to the Delayed Mea-
surement Problem

}, po € & the information state. In par-

We employ dynamic programming to solve the problem.
Define

Mi(p) 2 inf sup

w€00k=1 1.k R

For a function M : D — R*, we write
dom M = {p € D: M(p) is finite}
and, we also write
dom L. j(u) = {p € £ : L, is finite}.

Now consider the following dynamic programming equa-
tion.

We() = inf,cqrsup . pe{ Wit (F(b,u,9))},
pedom Wy, ke[l,K] (8)
Wod) = (m(p), Q5"

where ng(p) is obtained via the following open-loop dy-
namic programming equation

:z(ﬁ)(x) =, SuPueR”“h z, w2 (P)k, )|z —’y?|w|2+
Q:;l (f(z, m2(P)k ) }, z€ R",
(5) k=0,....l(m(p) -1
oy (®) = 0
9)

Lemma 3 Let p € D, and let Q’"“’) be obtained as a
solution to the open-loop dynamic programming equation
(9). Then

(J(5),0) = (m1(5), Q5.



Proof:
Dynamic programming arguments imply that
8'2(17) (I) —
SUP ety ({0.4(ma( Tz P -
LIy = .Z‘}

Rr){21=0

¥ Iwzl

Which in turn implies that

(m(5), Q5> ") = supe. gr{m (B)(E)+
Supwelo([ol (72l p) -1], R ZI(W"(P) 1(
|zig1]® — 7 |w1| cxo = &}
= sup,.p~ J(P)(z)
= (J(p),0).
0

Theorem 2 Let W be the solution of the dynamic pro-
gramming equation (8), initialized via (9). Then W = M.

Proof:

Note that My(p) = (J(p),0) = Wo(p). We now estab-
lish that M satisfies (8). We use induction. Let this be
true for k. Then we have

M1 (p) =
= TnquOo‘k Supyelg([l',k+1],R’){(J(ﬁk+1)’ 0):po = P}
= 1nfuer sup, . Rt infuco, . Supy€l2([2’k+1]'Rt){
(J(pk‘+1)» 0) ‘h = H(pv U»y)}
(where we interchange the minimization over u; , and
maximization over y;, since uj  is a function of y;.)
= infueU sup, . gt infueo, ., suPyelg([l,k].R‘){
(J(Pr),0) = po = H(p,u,y)}
(due to time invariance.)
=inf gy Sup, . Rt My (H(p,u,y))-

Hence, since My = Wy, an induction argument also estab-
lishes that M, = Wy, k € [0, K].
O

We now state the necessary and sufficient conditions for
the solvability of the finite time robust control problem.

Theorem 3 (Necessity) Assume that u® € Op x—1 solves
the finite time output feedback problem subject to a con-
stant measurement delay of T > 0. Then there exists a so-
lution M to the dynamic programming equation (8), such

that dom L.k (u?) C mi(dom My), My < —i}:’ }) -
My(p) > (J(p),0), p € dom My, k € [0, K].

> (J(p),0).

Proof: We first establish that Al (p) Let

p € dom Mj,. We can write My(p) as
Mi(p) = infueogios SUP yepy(j0.k—1). R") sup,,e R™ {
J(B)(@o) + Lisy lzina P = 72 lwil}
> (J(p),0).

Let p € dom L. x(u°), and set p = { Z } Now by (7)

My <|: Z ]) = infueog i, Lpx(u)
< Lpa(u)
< (pBK)-
Thus, dom L. x(u®) C dom M. Since, B (z) > 0,

BY (0) = 0, we have

_g}t‘f’
J([ 6

This implies that M;, ({

) =ot0-

- }3}1‘,"
¢
establishes that A is the unique solution to the dynamic

programming equation (8).

}) = (. Also Theorem 2

i

Theorem 4 (Sufficiency) Assume there exists a solu-
tion M to the dynamic programming equation (8) on

some non-empty domain dom My, such that { ;’B } €

e
dom My, My dij = 0, for some 8 > 0, 5(0) =
and also that My(p) > (J(p),0), for all p € dom My,

€ [0,K]. Let ax(p) achieve the minimum in (8) for
each p € dom My, k € [1,K]. Let u* be a policy such
that u} = Gx—k(Pr), where Py is the corresponding tra-
jectory with initial conditions po = —¢ R
pr € dom My_y, k € [0,K]. Then u* solves the finite-
time output feedback problem subject to a constant delay
of T > 0.

assuming

Proof: Observe that

M ([ ’ D = Lya(u®) < Lys(u)

for all u € Og k-1, [ Z } € dom Mj. Hence,

Supyelz([l.k],R:‘) {(J(ﬁk),O) tPo = { _f ] ,U = u*}
< M(-8)=0

which implies by Corollary 1 that %" is finite gain, and
thus u* solves the finite time output feedback problem.

O

Remark: We see that the solvability of the delayed
measurement case requires: (i) existence of a solution p;, to
(5), (ii) existence of a solution Q™" to (9), (iii) existence
of a solution M to (8), and (iv) a coupling condition, viz.
pr. € dom Mg _.



5 Certainty Equivalence

In practice, solving the problem is computationally hard.
The reason for this is the infinite dimensional dynamic
programming equation (8). There is a tremendous reduc-
tion in complexity if one uses the certainty equivalence
controller. However, certainty equivalence controllers are
in general non-optimal [7]. Identifying J(px) as the “past
stress”, and Vi as the “future stress”, where Vj is the
upper value function of the state feedback dynamic game
obtained via

Vi(z) = inf g sup,e pr{|h(z, u,w)]* — ¥?|wl+
Vier(f(z,u,w))}, k=0,..., K -1, 2z € R"
VK(.T) = 0

and ugp is the corresponding minimizing control policy.
Then, we estimate

Iy € arg m%{«f(ﬁk)(z) + Vi(z)} (10)

EAS

and use u(pr) = ur(Zx) as the control value. The con-
dition for certainty equivalence to hold stated in [7] can
be extended to the delayed measurement case as well, and

can be stated as
My.(pr) = (J(Pr), Vi), k=0,..., A —1

or, if we want to avoid reference to the infinite dimensional
value function M as, {1]

(@) Vi) = inf e sup,epr JBO@+
sup,, ¢ g [h(z, u, w)| -7 |w|*+
V'k+1(f(1',u,’lU))}

fork=0,..., K — 1.
Note that we could have expressed the RHS of (10) as

(w1 (Be), P72

where P™2(Px) is the solution of the following open-loop
dynamic programming equation

Piﬂg(m)(ﬁ) = SqueR"{!h(xa'{rZ(ﬁk)iaw) 7-
Pl + PEEP (F (2,72 (0k)i w))}
0 << Uma(pe)) — 1
Pl7(r2 ( ))(3:) = Vi(z) .

(11)

Remark: Equation (11) is analogous to the third Ric-

cati equation encountered in the linear case, whose initial

conditions depend on the solution to the state feedback

Riccati equation [2]. In fact, it is simply equation (9)
with a different initial condition.

6 Example

We now present an example to illustrate the advantages
of delay compensation. The example is based on a simple

system presented in [4], and is described by

e I N
@ T oumTelmmo (12)
y = z+v

Here, y is the measured reactant concentration. z is the
true reactant concentration, ¢ is the dimensionless time, u
is the feed reactant concentration, K and A’> are kinetic
constants, 3 is a constant, w is the disturbance in the in-
put concentration, and v is the sensor noise. In [4] it is
mentioned that the model for the single enzyme-catalyzed
reaction with substrate-inhibited kinetics, as well as the
model for the ethylene hydrogenation in an isothermal
CSTR are of the above form. The reactant concentration
is controlled by manipulating the feed reactant concen-
tration u, based on the measured concentration y. The
constants are fixed as K, = 0.01, Ko = 0.1, and 8 = 2.0.
We pick the operating point for this reactor to correspond
to an unstable steady state at z = 0.125, and u = 0.9834.
The objective of the controller design is to reject the influ-
ence of the disturbances on the regulated output z, given
by

z =& +0.0001(u — 0.9834)° (13)
Here, ¢ represents the filtered error given by

d

:i% = —0.2§ + 10(z — 0.125) (14)

and the control effort is weighted to prevent very large
values of the control.

The system ((12)-(14)) is discretized with a sampling
period of 0.02, and the state feedback problem is solved
with v = 1.0 and a time horizon (K) of 100 steps. We
then implement the certainty equivalence controller (10),
with a moving horizon control (obtained by replacing Vi
in (10), with Vp at every time step k). The information
state is initialized as po(z,£) = 0 if 2 = 0.125,£ = 0, or
equals —oo else. The system is initialized to start from
equilibrium. For purposes of simulation, a zero order hold
was employed. The measurement noise (v) is modeled as
zero mean Gaussian with a standard deviation of 2e7°.
The response of the system with no delay (7 = 0), and a
delay of 0.2 (corresponding to a delay of 10 samples (7 =
10)), to a sinusoidal disturbance with magnitude 0.05, and
frequency 0.2 rad/time in the feed concentration (w) is
illustrated in Figure 1. One observes that the performance
of the system with delay deteriorates. However, stability is
still maintained. On the other hand, if no compensation
(i.e. we incorrectly assume 7 = 0) were employed the
system goes unstable, and oscillates as shown in Figure 2.
In fact, even a delay of 0.02 (corresponding to one sample)
results in instability.

7 Conclusion

This paper establishes a general framework for solving the
nonlinear H., control problem for systems subject to mea-
surement delays. In particular, our approach yields both
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Figure 1: Closed-loop response to feed disturbance with
and without measurement delays.

necessary and sufficient conditions for the solution to ex-
ist. The information state employed to solve the problem
is no longer the “cost to come” function. The conditions
for solvability require solutions to two dynamic program-
ming equations, a filter equation for the information state,
and satisfaction of a coupling condition. We also discussed
the certainty equivalence principle for such systems and
draw parallels with the solution for linear systems. An
example was presented to illustrate the ideas. One of the
most pressing issues is regarding good approximations (in
particular, finite dimensional approximations to the infor-
mation state), and computationally efficient solutions to
the nonlinear H., problem. This is currently being worked
upon.
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