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Robust Control of Semiconductor Manufacturing Processes

John S. Baras and Nital S. Patel

ABSTRACT. This paper considers the control of semiconductor manufacturing
processes. We start by considering the run to run control problem. We pose
the problem in a risk-sensitive control framework, and derive the recursion for
the information state. We then take large deviation type limits, and go on to
show that the limiting information state recursion is related to that arising in
solving ultimate boundedness control problems. For completeness we present
the solution to the deterministic problem. The paper ends with an example
involving application of run to run control to end-pointing.

1. Introduction

In recent years there has been considerable interest in the control of semicon-
ductor manufacturing processes. However, the implementation of modern control
techniques has been hindered primarily by: (i) lack of on-line wafer state sensors,
(i) momentum of statistical process control (SPC), and (iii) poor process models,
due to a lack of understanding of the physics/chemistry of the processes. The lack
of on-line wafer state sensors has resulted in a lot of attention being focused on run
to run or batch to batch control (starting with the work of [HSI92]). Here, one
employs monitor wafers and corrects for process shifts/drifts on a lot to lot basis.
Opponents of run to run control argue that doing so tends to increase the variance
as well as the higher order moments of the error incurred (see for example Deming’s
discussion of the funnel experiment [Dem886]). Finally, lack of understanding of the
fundamentals of the processes (and the resulting plant model mismatch) requires
the controller to posses sufficient robustness properties.

Another issue that need to be addressed concerns the noise or disturbance
statistics. As the wafer size keeps increasing, the cost of monitor wafers on the
overall production process increases substantially. This leads to a reduction in the
sample size, and one can no longer appeal to the central limit theorem. It has been
found that with smaller sample sizes, the distributions of the pertinent deviations
are often non-Gaussian [CMP95]. Furthermore, in many cases a strong correlation
exists between sequential samples. Lastly, batches of the same raw material supplied
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by different vendors have different distributions within the same tolerance bounds.
These result in different statistics of the noise influencing the process depending
on the source of the raw materials. Here, adding any new vendor would require
a complete recharacterization of the process statistics, and recomputation of the
controller. This makes implementation of controllers which depend on the noise
statistics extremely cumbersome.

In this paper, we present a mathematical framework for designing controllers
that addresses these issues. The resulting controller is deterministic, and it carries
out boundedness control (also called I'-optimal control in the linear systems context
[DP87]). We approach the problem by first setting up a risk-sensitive stochastic
control problem. We choose this formulation since the cost includes contributions
due to the variance, as well as, other higher order moments. Motivated by the
fact that although the noise statistics change, the tolerance bounds remain the
same, we break up the noise into two components. One taking values in a compact
set, and the other being Gaussian with variance €. The idea being that the noise
distributions within the tolerance bounds is represented by the first (in general non-
Gaussian) component, and the Gaussian part is employed to account for outliers.
In particular, if the tolerance limits have been chosen correctly, then the probability
of observing outliers should be extremely small. We set up the information state
recursion for this problem. In order to get independence from the noise statistics,
we take a large deviations type limit with the variance € of the Gaussian component
going to zero (the case of no outliers). The resulting information state dynamics are
independent of the noise statistics, and are a function of the tolerance limits alone.
Finally, these dynamics are linked to those arising in the solution of a boundedness
control problem.

2. Risk-Sensitive Control

In this section, we consider a special case of the risk-sensitive control problem.
On a probability space (2, F,P¥) consider the stochastic control problem

Ii+1 =<l§ +wi+1, Gk € F(Iiyuk)
i+ =Vi + iy, vf € G(zf)
on the finite time interval k = 0,..., K —1. The process ¥° € R is measured and is
called the observation process. z¢ € R" represent the states. For convenience, we
will write the dynamics as
Thyy €F(zh, uk) + Wiy
Vi1 €G(z5) + Vg
Denote by Sk,k+7, the sequence {sk, k41, - .. »Sk+7}. Let G, Ve denote the com-
plete filtrations generated by (2§ ,, ¥5 ) and Yok Tespectively. (We could have more

generally considered G(z, u) instead of G(z). Doing so would not affect the results,
and the analysis would follow through identically.) We assume that

Al The controls uy take values in U c R™, assumed compact and are Y
measurable.

With a slight abuse of notation, at time k let U (k) denote the set of control functions
ug which satisfy assumption Al. For 7 2= 0, we write Ukrvy = UYUU(k +
D -UUk + ). For u > 0, the cost function for the risk-sensitive stochastic
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control problem is defined for admissible u € Up k-1 by

K
JHE(p,u) = B* liexp ('LE—L ZL(xi'wi‘llk“l))}
k=1

(p defined in A8 below) and the partially observed risk-sensitive stochastic control
problem is to find u* € Up x_; such that

JEp,ut)y = inf  J*F(p,u).

u€lo K1
Let |- | denote the Euclidean norm. Before proceeding further, we state all the
assumptions for this section:
A2. y§ =0

A3. {wi} is a R™-valued i.i.d. noise sequence with density

1
W (w) = (2m¢) /2 exp (—2 w |2) .

A4. {vi} is a real-valued i.i.d. noise sequence with density
- 1 2
¥ = ne) Pexp (=5 10 1),

independent of {wf}. . . .
A5. {¢f} is a R™-valued random sequence with (§ € F(z%, u), .h§v1ng a densxt};
fur‘;ction f(z%, uk, ¢) for each k. Furthermore, for each k, ¢ is independent o
wé and v¢, j = k+1,..., K. Similarly, {v{} is a R-valued random sequence
with v§ € G(z{) having a density function g(zf, v} for each k. Furthlerr;llore,
; i - j = -1 e,
for each k, vi is independent of (5, w},, v, for j =k, ... ,If . ez
the independence of vf, and (} is interpreted as follows. Letlxk and ux be
given. Then ¢f and v{ are generated according to their respective probability
distributions, independently of each other. ‘ . ‘
A6. F is a set-valued map from R™ x R™ to R", uniformly c.ont?nuous in x,
. uniformly in v € U. G is a set-valued map from R" to R, sa‘tlsfymg th? same
assumptions as F. For the definition and properties of uniform continuous
set-valued maps, we refer the reader to [AF90]. o
A7. Furthermore, F', G assume compact values and have a non-empty interior
. for all z and u. f, and g are bounded functions of their arguments.
ity p(z) = (27) /2 exp( S lal?).
8. z§ has density p(x) = (21)7"/? exp(5 . .
29 206 C(R™ x R™ x R™) is single-valued, nonnegative, bounded and uniformly

continuous.

2.1. Change of Measure. Before proceeding with the solution pf the r'i?k:t
sensitive control problem, we first carry out a change of n}ea.sur}el. lElsmg :erl;e;
from [EM93], suppose there exists a reference Emeasure PE, S:Cﬁ that unde ,
{y} is Li.d. with density ¢, independent of {z}} where z* satisfies

£
T € Fzh, uk) + whyy

Define
AL =TT, (/ g(z5_1, §)d (v] + €)d€/¢f(vf)>
T \Jeeotar )

‘—
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and define P! by setting

apt
il = Af
dP* G

i.e. by setting the Radon-Nikodym derivative, restricted to Gi to equal Aj. Note
that in general P! at k, may depend on the states T5 - (but not on zj), however
we hide this to prevent notational clutter. We write ET, E* to denote expectations
with respect to the measures Pf, P¥ respectively. Then

LEMMA 2.1. Under P, the random variables {y]} are i.i.d. with density func-
tion ¢°.

PROOF. Let t € R, and consider

Pl(yi <t{Gi_1) = BN [I(y§ < t) [Gemi]
= E*[ALT(yf < 1)1Gko1] /E* [AS 1G]

Now
B G = [ [ ot 900k + et

= A5, / / o1, €)6° () dyde
Geg_) IR

by changing the order of integration and a change of variables

=7k
and
B0 <0 Ge) = 5y [ [ L 9o OT6E < 06 + )y
Glzg_,
=N o [ 106k < gty 0 iy
by changing thle order of integration, and a change of
variables.
t
=4 [ st
The result follows. O

It is clear that under PT, y;. and x5 are independent. Furthermore, the exis-
tence of P! is guaranteed by holmovorov s extension theorem. In a similar manner,
we define the inverse transformation relating P* to P' as follows.

dpPu ~ ) .
5Tl = 2L =15 (L y5)

Gr

where

e

L, o086 ~ag/e )

J*l)

- 11, .
[ os-noee (< - o) e
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2.2. Information State. Consider the space L>(R") and its dual L>*(R").
We will denote the natural bilinear pairing between L><(R") and L>*(R") by <
7,7 > for 7 € L**(R"), n € L>™(R"™).

We define the information state process o'* € L>*(R") by

k
5 < M s = e
<optin>= ET[n(zk)exp(g E L(z5,ws ui 1)) Z5 ]
=1

for all test functions n € L>(R"), for k = 1,... , K, with of* = p € LY(R"). We
introduce the bounded linear operator Z#< : L>*(R") — L>*(R") defined by

=ewun© 2 [ [ v new (ELts - ) et
) ' Ue (€, y)drdz

and its adjoint Z#<* : L>*(R") — L>*(R") defined by

St o(z) & Wz —ryexp (EL(z, 2 —ruw) -
oy Fwwee2 [ e nes (L -n)
Ve (€, y)o(§)drde.

LEMMA 2.2. The information state of"° satisfies

(2.2) o =2 (wer yf)ok )
N of =p k=1... K
PROOF.
b
<ot in > = Eln(a)) exp(= D L(x5, wf u;-1)) ZE (V)
j=1
B © : 3 £(..E £
= E'[(z}) exp(Z L(xf, w;,uk,l))\ll (Tf1,7) -
—1
exolE 3 Laf wfouy-) 24 A
Jj=1
~ £ /. ) (B Lz )W ()
R Fzf _ouk— <
Mk 1
F@hoy,ui—,7) exp( z Lz, wi uj-1)) 25
1=1
W (z — r)drdz| Vi)
c "
=< Uva/ / U(Z)eXD(le(z,z =) f(ue, ) -
an F( uk*l) <
Wyt (z —~ r)drdz >
=< op_ B (e yim >
=< ZHF (”k—lyu/k)ffkq-n >
for any n € L>(R"). O

e



a2 J.S. BARAS AND N. 8. PATEL

Observe that for all v € Uy k-1, we have

E'[< 05,1 >] = E'[E[exp(= ZL x5, wj, u5-1)) 2| V]
Jj=1

K
Z wi,uj-1)) Zk]

= E" {exp(

"\l‘i:

= J**(p,u).

Thus, the cost can be expressed as a function of ¢/;° alone, and hence the name

information state for i is justified. We can now obtain the solution to the risk-
sensitive stochastic control problem via dynamic programming. This methodology
is well known in the stochastic control literature [JBE94],{(EM93]. Define the
value function for o € L'(R™) by
V(g k)= inf El< i 1> |0 = o).
u€Ux k-1

Then it can be shown that this satisfies the following dynamic programming equa-
tion

Vi k)= inf EBHVHE(E (u yern)o, b+ 1)

k.
Vi (g, K) = Ef[< 0,1 >]

for k = 0,...,K — 1, where the infimizing control value ut(o) solves the risk-
sensitive control problem. It is clear that ux (the control value at time k) is a
function only of (the information state) o' at time k. Hence, the policy is sepa-
rated, and the information state contains all the relevant information required for
control.

The result above shows that the controller which solves the risk-sensitive sto-
chastic control problem is a function of f, and g. As mentioned in the Introduction,
these density functions could change frequently. Hence, because the problem needs
to be solved repeatedly with the appearance of new noise distributions, a direct
application of the results is extremely cumbersome and not practical. However,
what do remain constant are the tolerance limits specified for that particular mix
of product and raw materials. One can view the set-valued maps F, and G as rep-
resentatives of these tolerance limits. Furthermore, if the limits have been properly
specified, then the probability of outliers is extremely small. We employ this fact
to motivate the next subsection, where we take “small noise” limits of the Gaussian
component of the noise. As will be observed, under these large deviations type lim-
its the resulting information state dynamics are in fact independent of the actual
noise distributions. Furthermore, we will see in the next section the results can be
related to the solution of a [;-optimal control type problem (however in our case
for general nonlinear systems). A further advantage of the deterministic interpre-
tation is that we can drop most of the restrictive assumptions associated with the
risk-sensitive control problem, in particular the strong independence assumptions.

2.3. Small Noise Limits. We first define some spaces following [JBE94].
For'yEMé{'yeR”’n > 0,72 > 0} define

D2 (He CRY) | H(z) < —m |z 2 +7)
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A _
D={pe C(R")|plx) < —y1 |z |* +v2 for some vy € M}.
We equip these spaces with the topology of uniform convergence on compact sub-
sets. Define A#**: D — D by
. A - 1
AP (u,y)p(2) = sup {p(§) + sup (L(z.z—ru)— —|z—7[")~
gern reF(g,u) 2p
1
— inf (= 2 _
o sel?;(ﬁ)(Z s [* —sy)}
forpe D.
Then we have

THEOREM 2.3.
Jim — 10g S (u, )e P = A (u, y)p
in D uniformly on compact subsets of U x R x D7 for eachy € M.
PROOF. From (2.1) we have

log~“"(u Y)eP(z) = log/ / / Iz—rl2
H ~Jrea Jow T € " .
5; " log(2re) + L(z,z ~ r,u) + 5(€) + = log f(€, u,r) +

€ 1.1
oy | B el 2
u og g(&, 5) ﬂ[Q [ s |* —sy])dsdrde.

Under the assumptions made on the system, a straightforward application of the
Varadhan-Laplace lemma (Appendix) yields the result. 0

REMARK 2.4. In particular, setting o* = e¢? in equation (2.2), and employ-
ing the result of theorem 2.3, we obtain

Pea(e) = sup (Au(O) + _sup (L(zz = roun) o | 2 -1 [7) -
(2.3) £ERN reF(&ux) ©

s |° ~syrs
p,.sEG(E)(Z ' I k 1)}
fork=0,..., K —1. -

REMARK 2.5. If we had G as a function of both £ € R™, and u € U, all the
results would follow through, provided G, and g satisfy the same assumptions as
F and f respectively. For the deterministic case (next section), we will employ

G(z,u) instead of G(z).
3. Deterministic Problem

We now consider the deterministic system (corresponding to the no outliers
case) defined by

(3 1) Tk41 € F(:ck,uk) , g€ X()
‘ Ye+1 € G(Tx, uk)
for k =0,...,K — 1. Here, Xy denotes the set of possible initial conditions. We

assume that the system (3.1) satisfies the relevant assumptions of section 2. Namely,
that F', G take on compact values with non-empty interior, and ux € U, with U
compact. We first simplify the information state recursion (2.3) for this case. Here
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it is assumed that we have access to the function L, which is tied to the particular
kind of robust control problem being considered. More will be said about this in

the next subsection.
We carry out the following change of variables in equation (2.3}

po(x) £ polz)

k-1

A 1 .

pk(x)zpk(z)~ZZ|yj+1 *, k=1,... K
7=0

Then equation (2.3) can be written as

1 .
Pewr(z) = sup {pu(§) + sup (L(z,z—rup)—5=|z —r*) -
£ERM rEF(£uk) 2u
(32) )

— inf (s —ypr1)’.
2u sEG(f.u;‘.)( Yrr)"}
Using the convention that the supremum over an empty set is —oo, we can place a

natural restriction on £. Define

Uz,you) 2{EeR™ |z € F(&u) and y € G(€, u)} .

This just ensures that the values of £ are compatible with z, u and y, given the
dynamics (3.1) (i.e. there are no outliers). Then equation (3.2) can be written as

1
(33) prsa(z) = sup  {p(&)+ sup (L(zz—rw) -5 |z—1 ")}
€T ynrr k) rEF(E k) 2u
or by (compactly) writing H(px,yk+1, ux)(z) for the right hand side of (3.3) as
Prr1 =H (e, Yrr 1, ur)
Po =P
yielding the information state recursion for the deterministic system. Here, p de-
notes a weighting on the initial states. Since, we know that zq € X, we can set
p(x) = —oo for all z € X.
We next define
u A n s
Fox(zo) = {zox € G klzj41 € Flzj,u;),7=0,... ,k—1}
where R}, = {zgklz, e R*,j =0,...,k}, and

a N )
ydizo) = {zok € T§ w(zo)lysr1 € Gl uy),5 = 0,...  k—1}.

Furthermore, we write r, s € T . (zo) for trajectories r and s such that r € Ty i (o),
and s;.1 € F(rj uy), for j=0,... &k~ 1, with sp = ry = 9. We similarly write
r.s € Iy ¥(zo). Consider the information state recursion (3.3). By inspection, one
obtains

k-1
pr(z) = sup sup  {p(zo) + }:L(rﬁl,rjﬁ — S, Uy) —
(34) To€Xorsel ) ¥(za) j=0

1
5;% 1= sy’ e = 2

Here, py can be interpreted as the worst case cost to come for a dynamic game
problem. The game in this case is between the controller, and the set of state
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trajectories that the system can generate {which in turn is controlled by the dis-
turbances). We illustrate in the next subsection that this game is related to the
ultimate boundedness control (I'-optimal control for linear systems) problem.

3.1. Boundedness Control. Consider the system ¥ (3.1), along with a reg-
ulated output
2k1 = MTppr, ug)
on an infinite horizon k = 0,1,2...., with 2,41 € R'. Note that in general the
(apparently strange) indexing of u poses no problems, as we can always pass the

regulated output through a strictly proper low pass filter. Assume that b is such
that for any v > 0, the set £7 defined by

L& {zeRYBueUst. |h(z,u)| <~)

is compact and contains the origin. Furthermore, assume that 0 is an equilibrium
point of ¥, i.e.

F(0,0)30, G(0,0030, h(0,0)=0.

Let O be the space of output feedback policies, i.e. policies such that ux =
@(ug k—1,%1.%). The ultimate boundedness control problem can be stated as: Given
v = ﬁ > 0, find an output feedback policy u € O, such that

Cl. If zp = 0, then |z| <y forall k =0,1,2,...
C2. If zy # 0, then
limsup |2x] < 7.
k—oxc
Our assumptions on h ensure that is C1 and C2 are satisfied, then all state

trajectories are ultimately bounded. Hence, we need only worry about satisfaction
of Cl and C2 (i.e. the performance criteria). In particular, zx could be the tracking
or regulation error and the objective here is to ensure that if the system starts from
rest (zero initial conditions) it remains bounded by < in the presence of persistent
disturbances or else it tends asymptotically to this bound. We define a new function
[:R*"xU—->R

Tkt
Zkt1 = l(l‘k+1‘uk) = / ’h(évuk)’dg
0
Before proceeding further, define the “sup-pairing” (p, q) as
(p.g) = sup {p(z) +q(2)}.

We can now identify L in equation (3.4) to [ defined above as

Lix.w,u) £ 1z ) — i(z — w, u)2
to obtain
k-1
pi(z) = sup sup  {p(zo) + o srou) (s, 00, w)* —
(3.5) 20EXp sl (20) ; s ! !

Ve = syl =z},

We now state the solvability of the boundedness control problem in terms of a new
cost function involving the information state alone.
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LEMMA 3.1. For any u € O, the closed loop system Y satisfies C1 and C2 if
the information state pi (equation (3.5)) satisfies

(3.6) sup  sup  {(px,0)[lpo = 8"} <0
k>1y1 k€AY (Xo)

Jor some B¥(x) > 0, §*(0) = 0. Here, A}, (Xo) is the set of all measurement
trajectories that can be generated by the closed-loop system T up-to time k.

ProoOF. For any k > 1

sup  {(pe,0)lpo=~F"} = sup {sup sup  sup {-B%(zo) +
yl_,,EA;‘vk(Xo) yl,kEA;"k(Xo) TER™ Tg€ Xo T,SEF;":(IQ)
k-1
Dol ug) = Usjan, uy)? —
=0

Ylrivr — sk = z}}
sup sup  {—0%(z0) +
z0€Xo r,3€Ty , (o)
k-1
Dol ug) = (sjen, )2 —

7=0

il

’72|Tj+1 - Sj+112}-

For any k, z¢ € Xo, and ro 4,50 € FB‘,k(l‘o)y we have

k-1 :
H(rjen, u5) = Usjen,w)[° = ¥Pirien = 554117 < B*(20).
j=0
Pick
5. _ _ 2 _ .2 )
Sj+1 € arg,eg(l?f,(u,){”(r"“'u") s, u)l? = Plrjp = s}, 5=0,... k-1,
and set

Qj = lrjrr,w5) = 13501, u)P = ¥Prjer — &)
Then Q; >0,=0,1,2,... ,k—1, and

k-1

ZQ;‘ < f%(zo), for all k.

7=0

Hence,

Qr—0ask — oo

which implies that
limsup [z} < 7.
k—oo
Furthermore, if o = 0, then Qx = 0,k = 0,1,..., and it follows that
foe] <7, k=0,1,2,... .
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Lemma 3.1 also implies that the policy is separated. In particular, we can
write down the solvability of the boundedness control problem solely in terms of
the information state system (3.5), where the information states p play the role
of the states, and y are the disturbances. Hence, we have converted a partially
observed problem to a fully observed one, and the objective now is to find a policy
that minimizes the left hand side of (3.6). Such a policy will be a function of the
information state alone i.e. ux = u{px), and we call such policies information state
feedback policies, denoted by I C O.

We now apply dynamic programming to obtain the control policy. For any
k > 1, define the value function by

Mi(p) = inf sup  {(px,0)|po = p}
u€0o.k-1 yeAy , (Xo)

then the corresponding dynamic programming equation is
My (p) = inf sup{Myx_1(H(p,u,¥))}, k=1,2,...
uel yeRr

with My(p) = (p,0). Passing to the limit as k — oo, and invoking stationarity we
obtain the following stationary dynamic programming equation

(3.7 M(p) = iglfjsup{M(H(p,uyy))}
uEY yer

where M (p) = limg—o Mi(p). Let £ denote the space in which p lives. We define
for any function Z : £ — R*

dom Z & {p € &) Z(p) is finite}.

The foliowing theorem states the solvability condition for the ultimate boundedness
control problem in terms of the solvability of (3.7).

THEOREM 3.2. Assume there exists a solution M to the dynamic programming
equation (3.7) on some nonempty domain dom M, such that -3 € dom M (B(z) >
0, for all z € Xo, B(0) =0), M(-0) =0, M(p) > (p,0). Let @ € I be a policy
such that @(p) achieves the minimum in (3.7). Let pop = —f, and let py be the
corresponding information state trajectory salisfying pr € dom M, k = 0,1,....
Then @ € I solves the ultimate boundedness control problem.

PRrROOF. Since px € dom M for all k, we have for any k
M{pe) = sup M(H (px, &(px), ))-
yE?

Hence for any observed trajectory y; k, we have
(px,0) € M(px) < M(po) = M(-pB) =0

and hence by lemma 3.1, all trajectories are ultimately bounded. O

REMARK 3.3. During the development of the solution to the boundedness con-
trol problem, we made the assumption that there were no outliers. This is what
motivated us to define the information state along the lines of (3.3). Allowing for
outliers forces us to consider the information state defined by (3.2), but in doing
so the risk-sensitive control problem can no longer be linked to the boundedness
control problem. This is to be expected, since the boundedness control problem
no longer makes sense for the case where we allow outliers (since the system can
always violate the bounds on z, due to outliers).
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REMARK 3.4. We could have let | - | represent any norm of our choice withogt
affecting the results for the deterministic problem. Of particular interest here is
the oo narm (related to /!-optimal control).

REMARK 3.5. The approach taken here yields a dynamic game based ap.pro-a.ch
to boundedness control {as well as {!-optimal control) as compared to viability
theory [Aub91] based approaches of the past [Sha94].

The above vields a very intuitive framework for setting up and posing non-
linear control désign problems e.g. one can easily handle the case of parametr:c
uncertainty. Clearly, solving the stationary dynamic programming equatpn (3.7)
is computationally hard. Hence, in practice we implement a certainty equivalence
controller. Note that the cost to be minimized is given by

> B
Jw) = sup D |Urkeruk) = skers ue))® = Yl = sk}
rs€l(z0) g
The corresponding stationary dvnamic programming equation for the state feedback
case is
(3.8) Wi(z) = inf sup {Jl(ru)—I(s,0)]* =~*|r — s? +W(r)}
uel r.s€F(r.u)
with W(z) > 0, W(0) = 0. This yields a state feedback policy up such that

ur(z) achieves the infimum in (3.8). The certainty equivalence controller is. then
implemented as follows. Suppose we are at time k, i.e. we know py, we first estimate

iy € arg max{pe(v) + W(z)}

and then implement u, = up(2x). The conditions for this controller to optimally
solve the dynamic game problem are similar to those arising in the nonlinear Hu
context [Jam94], [BP96a).

4. Example

Since the approach taken in the developments above was motivated by run to
run control, we focus on this problem for our example. The specific .proble'm is to
end-point a deposition process in order to obtain a desired dfepositlon thickness.
The problem chosen yields a very simple system, but is very 1mpor.tant from the
industry point of view. Additional examples of the theory developed include robust
control applied to rapid thermal processing [BP96b].

4.1. End-Pointing. Lots consisting of 24 wafers are processed th.rotxgh a sin-
gle wafer reactor. Here, we assume that the process under consideration is dgpo—
sition. Measurements are carried out on the last wafer of each lot. The aim is t‘o
determine the processing time, so as to achieve a given target thickness. Here, it
is assumed that the processing time per wafer is constant for all wafers across a
lot. We assume that the process is subject to three kinds of noise: (i). vz?rlat'lon in
the average deposition rate at the test wafer from lot to lot, (ii? variation in the
instantaneous rate from test wafer to test wafer, due to changes in both the wafer
surface, and deposition conditions, and (iii) measurement noise, either due to finite
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resolution of the measurement apparatus, or due to experimental error. Here, the
basic process can be modeled as

Fhel = T + Uk
iy = (Fr + wi)tx
Gre1 = (Fi + wk)fk + my

where 7y is the average deposition rate for lot k, ék.“ is the actual deposition
thickness on the test wafer for lot k for a deposition time te, and Jk+1 1s the
measured thickness. Here, vy is the noise used to model the variation in the average
deposition rate, wy is the noise used to model the rate variation per wafer, and my, is
the noise modeling the measurement error. The objective is to maintain a deposition
thickness of 1500A. It is also assumed that is 7 leaves the interval [375.800}, a
maintainence call will be placed (i.e. the deposition rate is tod slow, or extremely
fast). This is typically done due to the following reasons. A very slow deposition
rate is undesirable, since this slows down production. On the other hand a very
fast deposition rate adversely affects the properties of the material being deposited
(e.g. grain size) and impacts the performance of the final integrated circuit. We
let v; be zero mean, Gaussian with standard deviation 2. wy is modeled by taking
the sum of two random variables, one from a uniform distribution over [—12,12],
and the other being zero mean Gaussian with variance 1. The measurement error
is assumed to be uniformly distributed between [~10,10]. Based on this, we now
place bounds on these noise values. Specifically we assume that

vk € [-6,6]; wy € [-15,15); my € [~10,10].
The cost is defined as
2k+1 = l(zk+1,uk) = O.l(ék+1 - 1500)2

We solve the state feedback problem, assuming that W(f',é) = 0 for all 7 ¢
[375,800]. We iteratively test different values of ~y, and the smallest one for which
the state feedback problem is solvable is approximately 20.2. We now implement
the certainty equivalence controller. Figure 1 shows the controlled and uncontrolled
trajectories (actual deposition £) for the system under drift generated by a Gauss-
ian distribution with mean 3 and variance 1 for vj.. It is observed that the noise
induced by the controller is extremely small, however the controller still tracks the
target accurately. Finally, Figure 2 shows the controller response to a sudden shift
in the deposition rate. The controller corrects for the shift in the very next run. The
perturbations in the deposition thickness are magnified for run 21 onwards, since
the deposition time is greater for the controlled case and this tends to magnify the
effect of wy.

Appendix

Here, we give an extension of the Varadhan-Laplace lernma presented in
[JBE94]. Below p denotes a metric on C(R™ x RP) corresponding to uniform
convergence on compact subsets. B.(z) denotes the open ball centered at z of ra-
dius 7. Lg(-) : R — R? defined as Furthermore, it is assumed that | - | denotes the
Euclidean norm. In what follows, £=, F, denote single-valued maps, and G® is a

a’

—
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set-valued map. We also define, L% (M) as

Ly(M) & | 6%a).
TEM
LEMMA A1 (Varadhan-Laplace). Let A be a compact space, F;, F, € C(R" x
RP) and assume
i, lim, o4 sup,e 4 p(FE, Fy) =0
ii. The function F, is uniformly continuous in each argument on each set
Bgr(0) x Bx(0); R, R > 0, uniformly ina € A.
iii. 31 > 0, v2 > 0 such that
Fzw), Falz,w) < =ni (|2 P+ |w?) + 72
Vz € R", Vw € R™, Va € A, Ve > 0.
iv. G* :R® > R™ is a set-valued map, uniformly continuous with conver com-
pact values on each set Br(0), uniformly ina € A.
v. IntG* # ¢, Ve € R™, Va € A.
Then

lim sup
e—0+5c4

elog/ / efa=wiegudy — sup sup F,(z,w)|=0
n a(z) TER™ weGa(x)

PROOF. Write

Ff=sup sup Fi{z,w)
z€R™ weGa(z)

F,=sup sup Fo(z,w).
ZER™ weGe (r)

Then our assumptions ensure that

A, uplFe — Bl =

For a given § > 0, define
By ={z € R"| 3w e G*(z) s.t. Fi(z,w) > F; -5},
Then assumption (iii) ensures that there exists R > 0 s.t.
. B:'E C BR(O) ]
Furthermore, by Berge's theorem [CV77], L&(Br(0)) is compact. Hence, 3R > 0
such that L& (Bgr(0)) C Bz(0).
By hypothesis (iii} on Br(0) x B4 (0) and using the uniform convergence of F;
to F, on Br(0) x BQ(O), 3r > 0 such that
Iz~ 2] < *;‘ implies |F} (7, w) - F£(«/,w)] <
for all w € sz(o)v Vr,z' € Bp(0),a€ Aand e >0 sufficiently small. Also,
§
lw—w'| < % implies | (z,w) =~ £ (z,w)] < 3
Vz € Br(0), Vw,w' € Bx(0), a € 4 and ¢ > 0 sufficiently small.
Pick a

zg €argmax sup Ff(x,w) C Br(0)
" weG(x)




o
2

J.S. BARAS AND N. S. PATEL

and

w; € arg max Ff(z, 5{0).
feaE max FI(hw) CBy(0)

By compactness, wi G*(z).
Now, let € be such that 0 < ¢ < 3, and define

JaN -
WE (w] 1w—w;|<g-é}.

Then, by the uniform continuity of G¢ on By(0), 37 such that vz with |25 -z |< 7

G )W #£¢
Ya € A.
Let 7 = min{%. 7}. Then, vz € B:(x;) and for any w2 € G z)NW
Be(wi) ()G (z) # ¢
and for any w € B;(w?)  G*(z)
lw -t < L.

Hence,

B(zi) C BY®, Yaec A,e>0 sufficiently small.

Now, let

[a)

R

2 / / exp(Fy (z,w)/e)dwdz
X" JweGa(z)
For each x € By(x%) pick a wi(z) € G*(x)W. Then

as > / / exp(F7(z, w)/e)dwdz
Br(z5) VG (2) N Be(ws (x))

Ff_§
2/ / exp< = )dwdz
Br(zg) JGo(2) N Be(wg (x)) €
_—
> Cp"af exp <u) .
‘ €

Which implies that

cloga) > elogC™F™all + 2 — 5
> F,—36

for all £ > 0 sufficiently small and for all a € A.
Next, for B > 0 write

A
:/ / exp (F: (z,w)/¢) dwdz +
jzi<R JweGa(r)

/ / exp (F2(z, w)/e) dudz
lz|>R JweGa(x)

[

B

=J+ K.
Note that

clogag = clogJ + O(K/.J)

e —
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for R sufficiently large.

Let

Then

K S/ exp<:m'+_vz) &z
[zI>R €
—_ 9 2
< Crexp (Q_Ci>

< Crexp(=C'/e)

where Cr, C1,Cs > 0, and C’ > 0 for R large enough.
Increase R if necessary to ensure that

argmax sup Fy(z,w) C Bg(0).
zeRn weG(x)

Then
clogJ < Elog/ / exp (Faf/a) dwdzx
|z|<R JweGa(z)
Ssloglb[R/ exp (F;/E) dz
Iz|<R
<¢elogCh,R"Mpg + F=.
Thus
elogas < F, +36
for all € > 0 sufficiently small and for all a € A. Thus
sup fslogafl - F‘a[ < 36
a€A
for all £ > 0 sufficiently small. 0
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Maintenance and Production Control
of Manufacturing Systems with Setups

Boukas E. K. and Kenne J. P.

ABSTRACT. In this paper, we consider a one-machine, multiple-product man-
ufacturing system with random breakdowns, preventive maintenance activities
and repairs times. Each part-type requires processing for a specified length of
time on the machine which may require both setup time and setup cost when
switching from one type of product to another. Our objective is to find the
preventive maintenance and production rates and a sequence of setups so as
to minimize the total cost of setup and surplus. An approximate optimality
condition is given in terms of approximated value functions based on the nu-
merical approach. The numerical techniques, based on Kushner approach, are
used to solve the optimal control problem. An example has been solved to
illustrate the method. The resulting control policy is machine age dependent.

1. Introduction

The production planning problem for manufacturing systems subject to un-
certainties such as demand fluctuations, machine failures, etc. has attracted the
attention of numerous researchers. During the past 15 years, a number of methods
have been reported for determining economic quantities for different products on
a single machine or multiple machines. A class of scheduling policies is developed
to stabilize the system in the sense that, in the long run, the required demand is
met. The spirit of the classical approaches is more in keeping with the pioneering
work of Kimemia and Gershwin [13] who study dynamic “close-loop” scheduling
for systems with random machine failures. In the work of Kimemia and Gershwin
[13], the system uncertainties are modeled by homogeneous finite state Markov
processes. This line of work has been continued by Akella and Kumar (2], Bielecki
and Kumar [3], Sharifnia {18] and Fleming et al. {10]. This concept was extended
in works by Boukas (see [4] and {6]) where the author considered the fact that
machine failure depends on its age.

The first studies dealing with the scheduling of the machines, which consists
of their setup sequences, are based on a static and open-loop approach. In this
approach, the issue of scheduling is usually formulated as an optimization problem
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