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Abstract— Distributed decision making in networked systems
depends critically on the timely availability of critical fresh
information. Performance of networked systems, from the
perspective of achieving goals and objectives in a timely and
efficient manner is constrained by their collaboration and
communication structures and their interplay with the net-
worked system’s dynamics. In most cases achieving the system
objectives requires many agent to agent communications. A
reasonable measure for system robustness to communication
topology change is the number of spanning trees in the graph
abstraction of the communication system. We address the
problem of network formation with robustness and connectivity
constraints. Solutions to this problem have also applications in
trust and the relationship of trust to control. We show that
the general combinatorial problem can be relaxed to a convex
optimization problem. We solve the special case of adding a
shortcut to a given structure and provide insights for derivation
of heuristics for the general case. We also analyze the small
world effect in the context of abrupt increases in the number
of spanning trees as a result of adding a few shortcuts to a
base lattice in the Watts-Strogatz framework and thereby relate
efficient topologies to small world and expander graphs.

I. INTRODUCTION

The study of networked systems has gained a lot of

interest in recent years. Many applications have emerged

with the unifying theme being a group of agents achieving

certain objectives via interaction in local levels. In most of

these applications, existence of a central control unit which

coordinates the agents actions is simply not possible. Also

the agents are assumed to have some limited computational

and processing power. Therefore, the objective has to be

achieved through local interactions in a distributed manner.

Different performance measures can be defined for dis-

tributed algorithms, the most important of which are the

speed of convergence, robustness to link/agent failures, and

energy/communication efficiency. These performance mea-

sures cannot be achieved all at once and there is a trade

off between the level at which the various measures can be

fulfilled. All of these measures depend substantially on the

structure of the network that the algorithm is running on

as well as the dynamics of the system. In this paper, we

address the problem of networks with robust structure in

the presence of connectivity constraints by maximizing the

number of possible spanning trees.
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In a cooperative system of autonomous agents, it is appro-

priate that the network is robust to link losses. The network

formation is usually modelled sequentially. Local schemes -

which use locally available information- have attracted much

interest. Spanos and Murray [22] consider a localized notion

of connectedness and study its relationship to the global

connectivity of a network of vehicles. Zavlanos and Papas

[28] address the problem of controlling the motion of a

network of agents while preserving k−hop connectivity. Das

and Mesbahi [8] have studied the problem of transmit

power optimization with k− node connectivity constraint in

a wireless framework using semidefinite programming.

Meanwhile, it is also important to address the effect of

adding links on the global measures of network robustness

even in the cases where local computation of such global

measures seem infeasible. The reason is twofold. First, it

provides upper bounds on the improvement based on local

schemes, determines fundamental limitations of the design,

and provides benchmarks for comparison of local measures.

Second, since network formation is a gradual process it

is plausible that the nodes initially have some information

about the network structure and use this information in the

process of edge augmentation. Also, there exist methods

(e.g. [2]) which provide nodes with information on the global

topology based on local message passing algorithms. A valid

question is then “ given the present structure of the network

and constraints on link establishment how should a node

choose which link to establish in order to maximize a global

measure of network robustness?” To answer this question, it

is important to notice that autonomous agents are critically

influenced by their understanding of the network topology.

Therefore, their behavior and performance are functions of

their initial knowledge or estimate of the group’s topology.

Ghosh and Boyd [9] consider the optimization of the

second smallest eigenvalue (also known as algebraic con-

nectivity and the Fiedler eigenvalue) of the graph Laplacian

as a measure of well-connectedness of the graph. They

relaxed the combinatorial problem to a convex problem,

used semidefinite programming to solve it, and provided a

heuristic for large scale graphs. The Fiedler eigenvalue is a

global measure of how fast local diffusion-type algorithms

converge on a graph. It also provides a lower bound on

the graph’s edge and node connectivity. The number of

spanning trees of a graph is a more general measure of

graph connectivity. This number depends on the value of

all the eigenvalues of the Laplacian matrix rather than only

on the Fiedler eigenvalue and therefore is a more informative

measure. As an example, in symmetric graphs such as rings
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the Fiedler eigenvalue has multiplicity of two or more.

As a result its value, does not change with augmentation

of an edge. However, adding an edge definitely changes

the structure of a graph and its properties. This change is

captured in the number of spanning trees of the graph.

In this paper we consider the number of spanning trees

in the graph abstraction of the system as a global indicator

of network robustness to link losses. Several measures have

been proposed for characterizing the robustness of networks

to link losses. Colbourn [7] provides a thorough literature

survey on the combinatorics of network reliability. The

classical approach in determining network reliability is to

consider constant link loss probabilities for network edges

and associate to each network configuration a polynomial,

which determines the probability of connectedness of the

corresponding configuration. We are interested in the case

where all of the nodes send information that is intended to

be used by all other agents, and therefore it is crucial to have

a measure which considers reliable communication between

all nodes (all to all). If the link loss probability is high,

maximizing the number of spanning trees is essential for

robustness of such systems [27], [25]. Kelmans [17], [18],

[19] has most prominently studied the problem of graphs

with the largest number of spanning trees. Tsen et al. [25]

consider an algorithmic approach to finding the most vital

edges for the number of spanning trees.

We address the problem of maximizing spanning trees

with connectivity constraints. In Section II we provide the

necessary background. In section III we state the problem

and show that the general combinatorial problem can be

relaxed to a convex optimization problem as in [9]. We

also show that two issues of symmetrizing the graph and

reducing the graph’s effective resistance distance appear in

the problem of maximizing the number of spanning trees; the

optimal graph can be considered as a result of the interaction

between these two factors. This is reminiscent of the logic

behind the formation of small world graphs which is a trade-

off between increasing clustering and decreasing distance. In

section IV, we study the small world effect in the context of

abrupt increases in the number of spanning trees as a result of

adding shortcuts to a ring in the Watts-Strogatz framework.

We use the analysis to provide insights for derivation of

heuristics for the general case of optimal edge attachment.

Due to space considerations some of the proofs are shortened

and sketched. Detailed proofs can be found in [3].

II. BACKGROUND

A. Motivation: Network Robustness and trust establishment

In networked systems of autonomous agents, a number

of agents share and exchange information and collaborate

to achieve a common objective. The information exchange

is crucial to the performance of the system. Many metrics

have been defined in different levels to address the reliable

performance of communication networks. Examples of such

measures are delay and throughput. At a higher level, it

is important to address issues considering the topology

of the network. The graph topological characteristics of a

network provide fundamental limits on what it can achieve.

In addition, in most realistic scenarios, it is important that

the connectivity of agents is conserved as the environmental

conditions or goals change in unexpected ways or the agents

are confronted with adversarial agents or environments.

The number of spanning trees of a graph is a metric for

well-connectedness of the graph [27], [7]. In a network with

probabilistic link losses, the probability that there exists a

path between any pair of nodes is equal to the probability

of existence of a spanning tree. In classic reliability theory,

a “reliability polynomial” is defined which determines how

robust the network is to link losses. Consider a graph G with

n nodes and e edges, a constant probability of link loss p, and

let Ni denote the number of connected spanning subgraphs

of the graph G. The reliability polynomial [7] is defined as:

Rel(G , p) =
e

∑
i=n−1

Ni(1− p)i pe−i

Denote the number of spanning trees of graph G by τ(G).
It can be verified [27] that for large p,

τ(G)(1− p)n−1 pe−n+1 ≤ Rel(G, p) ≤ τ(G)(1− p)n−1

In network security, an important problem is to address the

concept of trust and how it is established among agents

based on previously observed or available evidence [4].

Trust establishment can be considered as a path problem

on graphs. An agent i’s assessment of trustworthiness of

agent j can be calculated using the information contained

in any path (relational or logical) from agent i to agent j.

This problem has been addressed using a semiring method

by Theodorakopoulos and Baras [24]. In such methods

any spanning tree of the graph corresponds to a minimal

graph which is necessary for all-to-all trust establishment. A

larger number of spanning trees corresponds to a richer basis

for trust establishment. Reference [20] uses a probabilistic

model from reliability methods for trust assessments, in

which the spanning trees are crucial.

B. Graph theory: Matrix-tree theorem and its variants

Consider a set of n agents and model the interconnec-

tion between them by a graph G = (V ,E ). The nodes of

the graph, V = {1,2, ...,n} represent the agents and the

undirected edges E = {l1, l2, ..., le} represent the links. The

adjacency matrix for the graph, denoted by A is a symmetric

n by n matrix with 1 in the i jth position, if there is a link

between nodes i and j. Given an arbitrary orientation of the

edges of graph G , the incidence matrix E of the graph is an

n by e matrix, which has 1,−1 or 0 in the i jth position if

the edge j is correspondingly an incoming edge to node i,

an outgoing edge from node i, or not incident to node i. The

degree of the ith node, di equals the total number of edges

incident to it.

Many graph invariants and parameters such as expansion

parameters [14] and the number of spanning trees can be

determined from the spectrum of the matrices related to

graphs, most significantly the Laplacian matrix of the graphs.

Consider D be a diagonal matrix whose ith diagonal entry is
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equal to the degree of node i. The Laplacian of a graph is

defined as L = D−A = EET and is a positive semi-definite

matrix: λ1 = 0 ≤ λ2 ≤ ... ≤ λn. The eigenvalue λ1 = 0

corresponds to the eigenvector v1 = 1 = [11...1]T . If a graph

is connected, λ2 > 0 is known as the Fiedler eigenvalue of

the graph.

The normalized Laplacian of a graph, L is defined as:

L = D−1/2LD−1/2.

The normalized Laplacian is closely related to the stochastic

transition matrix of the natural random walk on a graph,

P = D−1A = I −D−1L.

Using the similarity transformation, D1/2PD−1/2, it can be

verified that λi(P) = 1−λn+1−i(L ), where λi(.) denotes the

ith smallest eigenvalue.

The number of spanning trees in a graph can be determined

by Kirchhof’s matrix-tree theorem [11]. Since for connected

graphs L is a positive semi-definite matrix with λ2(L) > 0,

the nullspace of L is spanned by 1. On the other hand

L.Ad j(L) = det(L).In = 0n,

and L is symmetric; therefore Ad j(L) is a constant multiple

of J = 11T . This constant is equal to the number of the

spanning trees of the graph as indicated by the Matrix-tree

theorem [11].

Theorem 2.1: Let τ(G ) denote the number of spanning

trees in a graph G, L,L ,P denote the Laplacian, normalized

Laplacian, and natural random walk matrices of G, Q = I−P,

and Qi denote the ith principal sub-matrix of Q, i.e. the matrix

obtained by deleting the ith row and column of Q, then:

Ad j(L) = τ(G )L. (1)

τ(G ) =
1

n

n

∏
j=2

λ j(L). (2)

τ(G ) =
1

n
det(L+

1

n
J) (3)

τ(G ) =
n

∏
j=2

λ j(L )
∏n

i=1 di

∑n
i=1 di

(4)

If G is connected,

τ(G ) =
n−1

∏
j=1

(1−λ j(P))
∏n

i=1 di

∑n
i=1 di

=
n

∑
j=1

det(Q j)
∏n

i=1 di

∑n
i=1 di

= det(Qk)∏
i 6=k

di, ∀k = 1, ...,n. (5)

Proof: (Sketch) The proofs of (1), (2), and (3) are

classic. See [11]. The proof of (4) can be found in [6]

and 5 is a direct result of (4).

Let Z = (L + 1
n
J)−1. Consider an edge l = (i, j). Since

l is between nodes i and j, its incidence vector can be

written as f = ei −e j, where ei denotes a unit vector with 1

in the ith entry. Therefore, we have f T Z f = zii − 2zi j + z j j.
This quantity is referred to as the effective resistance or the

resistance distance between nodes i and j of the undirected

graph G [10], [1]. If we consider the graph as a resistor

network with 1Ω resistors on edges, this is the effective

resistance when a voltage difference of 1V is applied across

edge l.

III. PROBLEM STATEMENT

In this paper we are interested in the following problem:

Given an initial graph topology, how should we add k edges,

so that the resulting graph topology has the maximal number

of spanning trees among all possible topologies. Consider a

dynamic graph which evolves in time from a given topology

G0 = (V0,E0). Let’s denote the complete graph on n vertices

by Kn. Also, denote the complement of a graph G = (V ,E )
-which is the graph with the same vertex set but whose edge

set consists of the edges not present in G - by Ḡ . So, E (Ḡ ) =
E (Kn)\E (G ).

If we denote the operation of adding edge e to graph G

by Add(G,e), we consider the dynamic graph evolution:

G(t +1) = Add(G(t),u(t)), t = 0,1, ...k−1

u(t) = e(t +1), e(t +1) ∈ S ⊆ E (Ḡ(t))
G(t) = G0

(6)

The problem is to:

maximize τ(G(t + k))

subject to: (6) (7)

where τ(G(t)) = ∏n
i=2 λi(L).

This is a combinatorial optimization problem. If we denote

the number of edges of G0 by e0, there are 2(n
2)−e0 possible

edges, among which we should choose k. Even if we take a

smaller candidate edge set S, the search space is very large

and exhaustive search is not practical even for moderate

graph sizes. In the sequel we will consider the convex

relaxation of this problem. A similar approach has been

independently pursued in [16]. We use the framework of

[9].

A. General case and convex relaxation

Consider G(1) = Add(G0,(l, p)), then we can write:

L(1) = L(0)+(el − ep)(el − ep)
T ,

where L(i) , L(G(i)). By indexing all candidate edges from

1 to m, denoting the corresponding incident vectors by fi =
(ei1 − ei2) where i1 and i2 are the two ends of a candidate

edge i, and introducing binary valued variables

xi =

{

1, if edge i is chosen,
0, otherwise,

we can write equation (7) as:

maximize τ(L(0)+∑l
i=1 xi fi f T

i )
subject to: 1T x = k

x ∈ {0,1}m.
(8)

We now relax the above problem. Let x > 0. Con-

sider F1(x) = [nτ (L(x))]
1

n−1 = (∏n
i=2 λi)

1
n−1 and F2(x) =

logdet(L(x)) = log∏n
i=2 λi, which have the same maximizers.
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Both of the above functions are concave functions of x.

This is because, for example g(L) = det logL is a concave

function for its positive definite argument L, and L(x) =
L(0)+ 1

n
J +∑l

i=1 xi fi f T
i is an affine function of x. Therefore

the composition g ◦ L is a concave function. We can now

solve the relaxed convex problem of maximizing F1(x) or

F2(x) given the constraints. Considering the function F2(x),
we have:

maximize F2(x) = logdet(L(x))
subject to: 1T x = k

x > 0.
(9)

The first order optimality condition requires that for max-

imum point x⋆,

∇F2(x
⋆)T (x− x⋆) ≤ 0

should hold for all x > 0 for which 1T x = k. Following [5],

if x⋆ is a maximizer with a nonzero entry x⋆
i and j is an

arbitrary index with j 6= i, selection of x such that

xp =











x⋆
p, if p 6= i, j

0, if p = i

x⋆
i + x⋆

j if p = j,

(10)

yields that at the maximum point x⋆ for all j = 1, ...,m,

∂F2(x
⋆)

∂xi

≥
∂F2(x

⋆)

∂x j

,

Therefore at x⋆, F2(x) has equal derivative with respect to

all positive xi.
Taking the derivative yields that at the maximum, for all

xi > 0,

Trace

(

(L0 +
1

n
J +

m

∑
i=1

xi fi f T
i )−1 fi f T

i

)

= f T
i (L(x)+

1

n
J)−1 fi

= λ > 0. (11)

The term f T
i (L(x)+ 1

n
J)−1 fi is equal to the effective resis-

tance (distance) between the two ends of the potential edge

fi. Since F2(x) is a concave function on a convex domain,

the optimality conditions are also sufficient. Therefore, If

feasible, one should add edges in a way that the effective

resistance distance of all selected edges become equal. Also,

the selected edges should be between the nodes with the

highest resistance difference. Since it is not always possible

to add the edges in this way, a good heuristic should make the

difference between the effective resistance of the candidate

edges as small as possible. We now address special cases

of adding one or two edges, which provide more insight on

how adding edges increases the number of spanning trees.

B. Adding one or two edges to a general graph

Consider adding an edge to a general initial graph, G(0) =
G0, which results in a new graph, G(1). As before enumerate

the nodes of the graph from 1 to n. The following result

holds.

Theorem 3.1: The optimal edge is between two nodes

with maximal effective resistance distance.

Proof: Take two previously disconnected nodes α,β ∈
{0,1, ...,n}, and connect them by an edge. The incidence

vector for this edge is f = eα −eβ . The number of spanning

trees in G(1) is:

τ(G(1)) =
1

n
det

(

L+
1

n
J +(eα − eβ )(eα − eβ )′

)

=

(

1+(eα − eβ )′(L+
1

n
J)−1(eα − eβ )

)

τ(G0) (12)

If we denote Z = (L+ 1
n
)−1, then

τ(G(1)) = (1+Zαα −2Zαβ +Zββ )τ(G(0))

=
(

1+Re f f (α,β )
)

τ(G(0)) (13)

Therefore, adding an edge between two nodes with the

highest effective resistance results in the highest increase in

the number of spanning trees of any general graph.

We now consider addition of two edges (α,β ) and (γ,δ ) to

the initial graph G(0).

G(2) = Add (Add(G0,(α,β )),(γ,δ )) .

The corresponding incidence vectors for the edges are, fαβ =
eα − eβ and fγδ = eγ − eδ . Also, as before we let Z = (L +
1
n
J)−1. Then,

τ(G(2)) =
1

n
det

(

L+
1

n
J + fαβ f T

αβ + fγδ f T
γδ

)

(14)

Using the Sherman-Morrison-Woodbury formula for the in-

verse of a rank one modification of a matrix and some

straight-forward calculations lead to:

τ(G(2)) =
[

(1+Re f f (α,β ))(1+Re f f (γ,δ ))

−
(

(zγα − zγβ )− (zδα − zδβ )
)2
]

τ(G0) (15)

It can be seen that if the term ((zγα − zδα)− (zδα − zδβ ))2

were absent, the number of spanning trees would increase

by a factor of (1+Re f f (α,β ))(1+Re f f (γ,δ )). In that case

it would suffice to join the two pairs of nodes with the

highest effective resistance distance to maximize the number

of spanning trees. However, this is not true in a general graph

due to the interaction term ((zγα − zγβ )− (zδα − zδβ ))2 in

equation (15). Therefore, adding two edges (α,β ) and (γ,δ )
with the highest effective resistance distance, will result in

the maximum spanning tree only in the symmetric cases

where the nodes α and β are situated symmetrically with

respect to nodes γ and δ . This is in line with the result

of equation (11) which requires symmetry with regard to

effective resistance distances.

The explicit formula for the cases of adding 3 or more

edges can be derived in the same manner by using the

Sherman-Morrison-Woodbury formula recursively. As the

number of edges increases, more complex terms representing

the interaction of the added edges appear in the formula.

It is worthwhile to notice that two factors determine the

optimal graph: minimizing a notion of distance and at the
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same time symmetrizing the graph. The resulting graph is

the result of the interaction and trade-off between these two

criteria. Such interaction and trade-off can be observed as the

basic phenomenon in the formation of small world graphs,

where the base graph provides necessary symmetry, while

the shortcuts provide decrease in distance.

C. Special case: adding a shortcut to a ring

To illustrate Theorem 3.1 we consider adding a shortcut

to a ring for which the explicit formula can be derived.

Consider G0 to be a ring with the corresponding Laplacian

matrix L = D(0)− A(0) and natural random walk matrix

P0 = (D0)
−1(A0). Take an arbitrary node. Without loss of

generality we label this node as 1, and label the rest of the

nodes as 2,3, ...,n in a clockwise way. If 2 < j < n−1, we

refer to the potential edge (1, j) as a shortcut. The length

of such a shortcut is j−1. Let G = {G(i)}n−1
i=3 denote a set

of graphs where G(i) denotes the ring with an augmented

shortcut between the nodes 1 and i. Denote the corresponding

matrices by L = {L(i)}n−1
i=3 and P = {P(i)}n−1

i=3 .

The number of spanning trees of a ring with n nodes is n.

The problem is to find the graph G(k) for which τ(G(k)) is

maximized. Since the node degrees are equal in all G(i), using

equation (5), the term ∏i 6=k di is equal for all configurations

and it suffices to maximize τ1 = det(Q1).
The following theorem characterizes the increase in the

number of spanning trees as a function of shortcut lengths.

Theorem 3.2: In the problem of adding a shortcut to a

ring, the number of spanning trees is an increasing function

of the length of the shortcut. The maximum is attained by

the graph G( n+2
2 ) in case n is even. If n is odd the maximal

value is attained by graphs G( n+1
2 ) and G( n+3

2 ).

Proof: (Sketch) The theorem can be proved directly by

calculating τ1(G
(i)) = det(Q

(i)
1 ), for i = 3, ...,n−2. Q

(i)
1 is the

first principal sub-matrix of I−P(i). The determinants can be

calculated using the special structures of the matrices Q
(i)
1 :

det(Q
(i)
1 ) =

[

1+
2

3n

(

(i−
n+2

2
)2 +

n2 −2n+4

4

)]

det(Q
(0)
1 )

Therefore the number of spanning trees is an increasing

function of the shortcut length. Furthermore the maximum

is attained by the graph G( n+2
2 ) in case n is even. If n is odd

the maximal value is attained by graphs G( n+1
2 ) and G( n+3

2 ).

IV. SMALL WORLD EFFECT AND SPANNING TREES

We consider the increase in the number of spanning trees

in the Watts-Strogatz model for the small world effect. Watts

and Strogatz [26] introduced a simple tunable model to

explain the behavior of many real world complex networks.

Their “Small World” model takes a regular ring or lattice and

replaces the original edges by random ones with some prob-

ability 0 ≤ φ ≤ 1. Dynamical systems coupled in this way

display enhanced signal propagation and global coordination,

compared to regular lattices of the same size. At the same

time small world graphs have reasonably high “clustering

effect”, which suggest that they are robust to link losses.

In the control community, several works have considered

the small world effect as a measure of speed-up in the

convergence of consensus problems [21], [23], [2], [15]. In

our previous works, we developed a new method for inves-

tigating the effects of small world topologies by building

on the probabilistic models of Higham [13], that established

an equivalent representation of small world topologies as

rare transitions among non-neighboring states in the Markov

chain associated with a graph. We showed that since the

small world model is obtained by stochastically adding or

rewiring a few edges to a nominal graph, adding a small num-

ber of long distance edges is analogous to choosing graphs

with low probability shortcuts and provided a probabilistic

model based on our “mean field” model.

Here we adopt the same framework as in [13], [2] and

study the increase of the number of spanning trees in the

graph as a result of adding shortcuts with small weights.

Consider the base lattice to have a ring topology on n nodes,

G0 = C(n,2), with adjacency and random walk matrices

A0 = Circ([0 1 0 ... 0 1])

P0 = Circ([0
1

2
0 ... 0

1

2
]), (16)

where by Circ(a) we mean a circulant matrix whose first

row is given by the vector a. There are n spanning trees in

a ring of size n. Instead of shortcuts with small probability,

we assume applying negligible weights, ε to non-neighboring

nodes. The resulting perturbed adjacency matrix is therefore:

Aε = Circ([ε 1 ε ... ε 1]) (17)

In the perturbed system, each node’s degree is equal to

the sum of the weights of the corresponding rows of the

adjacency matrix, 2+(n−2)ε . Denote Dε = (2+(n−2)ε)I,

the corresponding random walk matrix is equal to:

Pε = D−1
ε Aε =

1

2+(n−2)ε
Aε . (18)

The Laplacian and normalized Laplacian matrices (Lε ,Lε )

can be defined similarly. Pε can be written in terms of P0,
the random walk matrix of the unperturbed graph:

Pε =
2(1− ε)

2+(n−2)ε
P0 +

ε

2+(n−2)ε
J. (19)

The following lemma determines the eigenvalues of Pε in

terms of those of P0.

Lemma 4.1: The eigenvalues of Pε are

λn(Pε) = 1,

λn−i(Pε) =
2(1− ε)

2+(n−2)ε
λi(P0), i = 1,2, ...,n−1. (20)

Proof: Consider the matrix P1 = 2+(n−2)ε
2(1−ε) Pε = P0 +

ε
2(1−ε)J. Then,

det(P1 −λ I) = det(P0 −λ I +
ε

2(1− ε)
11T )

= [1+
ε

2(1− ε)
1T (P0 −λ I)−11]det(P0 −λ I)

(21)
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Furthermore, for any λ /∈ Spec(P0), (P0 − λ I)−11 = (1 −
λ )−11. Therefore for such λ ,

det(P1 −λ I) =

(

1+
nε

2(1− ε)(1−λ )

)

det(P0 −λ I) (22)

It follows that the eigenvalues of P1 are the same as the

eigenvalues of P0 except for λn(P1) = 1+ nε
2(1−ε) .

Since Pε = 2(1−ε)
2+(n−2)ε P1,

λn(Pε) = 1,

λi(Pε) =
2(1− ε)

2+(n−2)ε
λi(P0), i = 1,2, ...,n−1.

Now, we can state the following proposition:

Proposition 4.1: Let ε = K
nα , α > 1, and consider the

ratio r = τ(Gε )
τ(G0) , which measures the increase in the number

of spanning trees as a result of adding ε weights:

• For α > 3, the effect of the perturbation is negligible.

• α = 3 is the onset of the effectiveness of shortcuts.

• For 1 < α ≤ 3, the shortcuts dominantly increase the

number of spanning trees, i.e. limn→∞
τ(Gε )
τ(G0) = ∞.

Proof: (Sketch) Using equation (5),

r(n) =
τ(Gε)

τ(G0)
=

(

∏n−1
j=1(1−λ j(Pε))

∏n−1
j=1(1−λ j(P0))

)

.

(

∏n
i=1 di(Gε)

∏n
i=1 di(G0)

)

.

(

∑n
i=1 di(G0)

∑n
i=1 di(Gε)

)

(23)

The result follows by computing the three terms in the limit

of r(n) as n → ∞.
As we have argued in [15], this probabilistic interpretation

leads to a construction of small world networks by switching

between graphs with low probability shortcuts. At each

switching interval a few shortcuts are generated uniformly.

Similarly, one can think of generating random spanning trees.

In a recent paper Goyal et al. [12] have shown that the union

of a few random spanning trees has constant edge expansion

ratio and can be considered as expander graphs.

Expander graphs [14] capture the notion that any “local”

set of nodes can access a large “global” neighborhood very

efficiently. In a d−regular graph on n nodes G = (V,E), the

edge expansion ratio is defined as: h(G) = min{S||S|≤ n
2 }

∂ |S|
|S| ,

where |S| is a set of nodes and ∂S is the set of edges

that separates S from its complement. Expander graphs are

families of graphs, for which the expansion ratio is uniformly

bounded away from zero as n increases. The expansion ratio

of a graph is directly related to its spectrum by Cheeger’s

inequality. An algebraic limit for expansion is determined by

Alon in terms of the spectral gap [14].

Efficient heuristics should consider symmetrizing the

graph and adding edges between nodes with high resistance

distance. Since the problem of adding one or two shortcuts

is less complex, an efficient method is to solve such smaller

problems, determine the best choices of edge augmentation

for a set of nodes, and probabilistically switch between these

configurations.
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