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Abstract: In this paper we address the problem of multi-agent optimization for convex functions
expressible as sums of convex functions. Each agent has access to only one function in the sum and
can use only local information to update its current estimate of the optimal solution. We consider
two consensus-based iterative algorithms, based on a combination between a consensus step and a
subgradient decent update. The main difference between the two algorithms is the order in which
the consensus-step and the subgradient descent update are performed. We obtain upper bounds on
performance metrics of the two algorithms. We show that updating first the current estimate in the
direction of a subgradient and then executing the consensus step ensures a tighter upper bound compared
with the case where the steps are executed in reversed order. In support of our analytical results, we give
some numerical simulations of the algorithms as well.
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1. INTRODUCTION

Multi-agent optimization problems appear naturally in many
distributed processing problems (such as network resource al-
location, collaborative control and estimation, etc.), where the
optimization cost is a convex function which is not necessarily
separable. A distributed subgradient method for multi-agent
optimization of a sum of convex functions was proposed in
Nedic and Ozdalgar (2009), where each agent has only local
knowledge of the optimization cost, that is, it knows only one
term of the sum. The agents exchange information subject to
a communication topology, modeled as a graph; graph that
defines the communication neighborhoods of the agents. The
agents maintain estimates of the optimal decision vector, which
are updated in two steps. In the first step, called so forth,
consensus-step, an agent executes a convex combination be-
tween its current estimate and the estimates received from its
neighbors. In the second step, the result of the consensus step is
updated in the direction of a subgradient of the local knowledge
of the optimization cost.

The consensus step is introduced to deal with the fact that
the agents have incomplete knowledge about the optimization
problem. Consensus problems received a lot of attention in
recent years thanks to their usefulness in modeling many phe-
nomena involving information exchange between agents, such
as cooperative control of vehicles, formation control, flocking,
synchronization, parallel computing, etc. Distributed computa-
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tion over networks has a long history in control theory start-
ing with the work of Borkar and Varaiya (1982), and Tsitsik-
lis (1984), Tsitsiklis et al. (1986) on asynchronous agreement
problems and parallel computing. A theoretical framework for
solving consensus problems was introduced in Saber and Mur-
ray (2004), while Jadbabaie et al. (2004) studied alignment
problems for reaching an agreement. Relevant extensions of
the consensus problem were done by Ren and Beard (2005),
Moreau (2005) or, more recently, by Nedic and Ozdaglar
(2010). The analysis of consensus problems was extended to
the case where the communication topology is random, with
relevant results being found in Salehi and Jadbabaie (2010),
Hatano and Mesbahi (2005), Porfiri and Stilwell (2007), or
Matei et al. (2008).

A different version of a consensus-based distributed optimiza-
tion algorithm was proposed in Johansson et al. (2008). In this
version, in the first step the current estimate is updated in the
direction of a subgradient of the local knowledge of the opti-
mization cost. In the second step a consensus-step is executed.
Performance analysis of the aforementioned algorithms and
extensions to the case where the communication topologies are
random were addressed in Duchi et al. (2010), Matei and Baras
(2010), Lobel and Ozdalgar (2008).

In this paper we compute upper bounds on performance metrics
of the two algorithms and compare them. We use two per-
formance metrics: the first metric looks at how close the cost
function evaluated at the estimates gets to the optimal value;
the second metric looks at the distance between the estimates
and the minimizer. We obtain error bounds for the two metrics
and rate of convergence for the second metric. The results of
our analysis show that, under a constant step-size multiplying
the subgradient, the second version of the algorithm ensures
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a tighter upper bound with respect to accuracy, compared to
the first version of the algorithm. The rates of convergence of
the second metric however are the same. The paper presents
proofs only for the main results, while the proofs of the stated
preliminary results can be found at Matei and Baras (2012).

Notations: Let X be a subset of R" and let y be a point in R".
By slight abuse of notation, let ||y — X|| denote the distance from
the point y to the set X, i.e., |ly— X|| = infex ||y — x||, where ||- || is
the standard Euclidean norm. For a twice differentiable function
f(x), we denote by V f(x) and V2 f(x) the gradient and Hessian
of f at x, respectively. Given a symmetric matrix A, by (A > 0)
A > 0 we understand A is positive (semi) definite. The symbol
® represents the Kronecker product.

Let f: R" — R be a convex function. We denote by df(x) the
subdifferential of f at x, that is, the set of all subgradients of f
at x:

Af)={d e R"f() 2 f()+d'(y—-x), VyeR"}. (D

Let € > 0 be a nonnegative real number. We denote by 9. f(x) the
e-subdifferential of f at x, that is, the set of all e-subgradients
of f atx:

Oef(X)={d e R"f() > f()+d'(y-x)—€ VyeR".  (2)

The gradient of the differentiable function f(x) on R” satisfies
a Lipschitz condition with constant L if

IVf(x) = VSOl < Llix = yll, ¥x,y € R™.
The differentiable, convex function f(x) on R” is strongly
convex with constant | if

)
FO) = f)+ V) (v —x) + Eny—xnz, Vx,y € R".

We denote by LEM and SLEM the largest and second largest
eigenvalue (in modulus) of a matrix, respectively.

2. PROBLEM FORMULATION

In this section we describe the communication model and the
optimization model used throughout the paper.

2.1 Communication model

We consider a network of N agents, indexed by i = 1,...,N.
The communication topology is modeled by a graph G = (V, &),
where V is the set of N vertices (nodes) and & = (e;;) is the set
of edges. The edges in the set & correspond to communication
links between agents.

Assumption I. The graph G = (V,&) is undirected, connected
and does not have self-loops.

Let G be a graph with N nodes and no self loops and let
A € RMN be a row stochastic matrix, with positive diagonal
entries. We say that the matrix A corresponds to the graph G,
or the graph G is induced by A, if any non-zero entry (i,j) of A,
with i # j, implies a link from j to i in G and vice-versa.

2.2 Optimization model
The goal of the N agents is to minimize a convex function f :

R” — R. The function f is expressed as a sum of N functions,
ie.,

N
F@ =) fi), (3)
i=1

169

where f; : R" — R are convex. Formally expressed, the agents’
goal is to cooperatively solve the following optimization prob-
lem

N
min Zfi(x). “4)
i=1

xeR™

The fundamental assumption is that each agent i has access only
to the function f;.

Let f* denote the optimal value of f and let X* denote the set
of optimizers of f,i.e., X* = {x e R"|f(x) = f*}. Let x;(k) € R"
designate the estimate of the optimal decision vector of (4),
maintained by agent i, at time k. The agents exchange estimates
among themselves subject to the communication topology de-
scribed by the graph G.

As mentioned in the introductory section, we consider two
versions of a multi-agent subgradient optimization algorithm.
The first version, referred henceforth as Algorithm 1, was
introduced by Nedic and Ozdalgar (2009) and is given by

N

k1) = 3 a0~ athd ), 5)
j=1

where a;; is the (i, " entry of a symmetric, row stochas-

tic matrix A, corresponding to the undirected communication

graph G. The real valued scalar a(k) is the stepsize, while

the vector d}l)(k) € R" is a subgradient of f; at xl(,])(k), that

is, (k) € 3f:(x{"(k)). Obviously, when fi(x) are assumed

differentiable, dfl)(k) becomes the gradient of f; at xgl)(k), that

is, dV(k) = VA ().

The second version of the algorithm, referred henceforth as
Algorithm 2, was introduced by Johansson et al. (2008), and
is expressed as
N
Pkt D= ) ay [ k) - atd P ©)

J=1

where dﬁ.z)(k) is the subgradient of f; at xgz)(k), and the rest of
the parameters of the algorithm are the same as in Algorithm 1.

In what follows we assume that the step size is constant, that
is, a(k) = a, for all kK > 0. Note that we use superscripts to
differentiate between the estimates of the two algorithms. In
addition, we note that the main difference consists of the order
the two steps of the algorithms are executed. In Algorithm 1,
first the consensus-step is executed followed by an update in
the direction of a subgradient. In Algorithm 2, the estimate
is first updated in the direction of a subgradient of the local
cost function, and the result is shared with the neighboring
agents; agents that use these intermediate updates to generate
new updates at the next time-step, by executing a consensus
step.

The following assumptions, which will not necessarily be used
simultaneously, introduce restrictions on the cost function f(x)
considered in this paper.

Assumption 2. (Non-differentiable functions)
(a) The subgradients of the functions fi(x) are uniformly
bounded, that is, there exists a positive scalar ¢ such that
Ildll < o,Yd € dfi(x), YxeR", i=1,...,N,
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(b) The optimal solution set X* is nonempty.
Assumption 3. (Differentiable functions)

(a) The functions f;(x) are twice continuously differentiable on
n

[l

(b) There exist positive scalars /;, L; such that
LI < V% fi(x) < Lil, Yx € R" and Vi,
(c) The step-size a satisfies the inequality
(1 1+4
O<a<mind—,— ¢,
" L

where A is the smallest eigenvalue of A, L = max; L; and
[= mini li.

If Assumption 3 -(a) holds, Assumption 3 -(b) is satisfied
if the gradient of fj(x) satisfies a Lipschitz condition with
constant L; and if f;(x) is strongly convex with constant /;. Also,
under Assumptions 3, X* has one element which is the unique
minimizer of f(x), denoted henceforth by x*.

2.3 Performance metrics

We analyze these algorithms with respect to two performance
metrics. First, we look at how close the cost function evaluated
at the estimates gets to the optimal value f*. Let fl.bes”(“)(k) =

ming=g_x f' (xﬁ“)(s)) be the smallest cost value achieved by agent
i at iteration k. The first metric is given by

fibest,a k) — f* (7

The second metric looks at how close the estimates computed
by the agents get to the optimal value, and we can formally
expressed this as

1169 k) - X7, (8)

where X™ is the set of minimizers of f. In the above, the scalar
index a € {1,2}, differentiates between the two optimization
algorithms. For both algorithms, our goal is to obtain upper
bounds for these performance metrics and compare them.

3. PRELIMINARY RESULTS

In this section we lay the foundation for our main results.
The preliminary results introduced here revolve around the
idea of providing upper-bounds on a number of quantities
of interest. The first quantity is represented by the distance
between the estimate of the optimal decision vector and the
average of all estimates. The second quantity is described by the
distance between the average of all estimates and the minimizer.
We introduce the average vector of estimates of the optimal
decision vector, denoted by x“(k) and defined by

—(a) » 1 S (@)

@ (k) 2 Nle. k). )

i=1

The dynamic equation for the average vector can be derived
from (5) and (6) and takes the form

O+ 1) = 200 - Thik), (10)

where h(k) = Zfil d;(k) and a € {1,2}. We introduce also the de-
viation of the local estimates xl(.“)(k) from the average estimate
@ (k), which is denoted by z\”’(k) and is defined by

290 £ X - Tk, i=1...N, (11
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and let 8 be a positive scalar such that
22O <B, i=1...N.

Let us define the aggregate vectors of estimates, average esti-
mates, deviations and (sub)gradients, respectively:

Xy 2 [k kY. D)€ R

(kY 2 X%, FOKY ..., 5Dk e RN,

ZO%ky £ [P0, 2K, .. 20 (k)] e RV

and

dO%) 2 [d\ V%), dP kY ..., dP (k)1 e RN
From (9) we note that the aggregate vector of average estimates
can be expressed as

X9 (k) = Ix k),

where J = %]1]1’ ® I, with I the identity matrix in R"" and 1
the vector of all ones in R". Consequently, the aggregate vector
of deviations can be written as

29k = I- Hx“(k), (12)

where I is the identity matrix in R"V*"V,

Let us define the matrices A 2 A® ] and W £ A — J and let A be
the SLEM of A. By Assumption 1, A < 1. In addition, it is not
difficult to observe that A is the SLEM of A and the LEM of W
and W.

In the next lemma we show that, under Assumption 3, for
small enough « (the step-size) the gradients V fi(xga)(k)) remain
bounded for all &, for both optimization algorithms.

Lemma 4. Let Assumption 3 hold and let ¥ : RM — R be a
function given by ¥ (x) = Zi]\il fi(xi) where X" = (x{,..., X))
There exists a positive scalar ¢ such that

VAL R < @,

IVAEO W < o,

for all k and i, where ¢ = 3L(||x(0) — X|| + |IX]|), L = max; L;, X is
the unique minimizer of ¥ (x), xl(,])(k) and xl(,z)(k) satisfy (5) and
(6), respectively, and D (k) satisfies (10).

Remark 5. Throughout the rest of the paper, we are going to
use ¢ to denote the upper bound on the subgradients of f(x)
(given by Assumption 2) or on the gradients of f(x) (given
by Assumption 3 and Lemma 4), when these quantities are
computed at values given by the two distributed optimization
algorithms discussed above.

The next Proposition characterizes the dynamics of the vector
Z9D(k).

Proposition 6. Let Assumptions 1 and 2 or 1 and 3 hold. Then
the dynamic evolution of the aggregate vector of deviations in
the case of the two optimization algorithms is given by

2%k +1) = W29 (k) — oaHD AV k), 290) =29,  (13)
where
I-J, ifa=1
(a) —_ ] £
H*™ = { W, ifa=2.
with norm upper-bound
129 (k)| < A*BVN + ap VNY' (), (14)
where A is the SLEM of A and
1
—, ifa=1,
y =1 174 (15)
—, ifa=2.

-2



IFAC NecSys'12
September 14-15, 2012. Santa Barbara, CA, USA

The following lemma allows us to interpret dl@(k) as an e-
subgradient of f; at ¥ (k).

Lemma 7. Let Assumptions 2 or 3 hold. Then the vector
d“ (k) is an €@ (k)-subdifferential of f; at ¥ (k), i.e., d\“ (k) €
O iE(K)) and hO(k) = TN d (k) is an Ne@(k) -
subdifferential of f at X9(k), i.e., h(k) € Dyew o f(XV(K)),
for any k > 0, where € (k) = 2¢|z'® (k)||.

For twice differentiable cost functions with lower and upper
bounded Hessians, the next result gives an upper bound on the
distance between the average vector 7@ (k) and the minimizer
of f.

Lemma 8. Let Assumptions 1 and 3 hold and let {¥®(k)};s0
be a sequence of vectors defined by iteration (10). Then, the
following inequality holds

’yk—/lk

19 (k) — xII? < 1%(0) — x*|*v + 4agB VN oy

+

2,2
+ 2 (4N O + 1), (16)
-y

where /@ () is defined in (15), ¥ = 1 — al, with [ = min;/;.
4. MAIN RESULTS - ERROR BOUNDS

In this section we derive upper bounds for the two performance
metrics introduced in the Problem Formulation section, for the
two distributed optimization algorithms. First, we give a bound
on the difference between the best recorded value of the cost
function f, evaluated at the estimate xga)(k), and the optimal
value f*. Second, we focus on the distance between the estimate
xl(.a)(k) and the minimizer of f*. For a particular class of twice
differentiable functions, we give an upper bound on this metric
and show how fast the time varying part of this bound converges
to zero. The purpose of this section is to show the difference in
upper bounds on performance between the two algorithms.

The following result shows how close the cost function f
evaluated at the estimate xl(.a)(k) gets to the optimal value f*. A
similar result for the standard subgradient method can be found
in Nedic and Bertsekas (2001), for example.

Theorem 9. Let Assumptions 1 and 2 or 1 and 3 hold and
let {xl(.a)(k)}kzo be a sequence generated by the two distributed

optimization algorithms, where a € {1,2}. Let fl.bes”(“)(k) =
ming—q. f(xga)(s)) be the smallest cost value achieved by agent
i, at iteration k. Then

Nag?

Jim I k) < £+ 3a® N VNGO () + ——an

where ¢@(2) is defined in (15).

Remark 10. The previous result shows that the asymptotic error
bound of the first metric decreases with both @ (the algorithm
step-size) and A (the connective measure). In addition, it em-
phasizes the difference in upper bounds on performance from
the first metric perspective, in the case of the two optimization
algorithms. We note that the error bound in the case of Algo-
rithm 2 is improved (diminished) by a factor of 3a@?*N VN,
compared to Algorithm 1.

In the case of twice differentiable functions, the next result
introduces an error bound for the second metric, in the case of
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the two optimization algorithms. We essentially show that the
estimates produced by the two algorithms “converge to within
some guaranteed distance” from the optimal point, distance
which can be made arbitrarily small by decreasing the stepsize
a. In addition, the time varying component of the error bounds
converges to zero at least linearly.

Theorem 11. Let Assumptions 1 and 3 hold. Then, for the
sequence {xga)(k)}kzo generated by iteration (5) we have

tim sup [1x{”(k) - x°|"] < arp| VNG (0)+
k— o0
AN +1
1-y ’

IR = 2P < Qi y) +¢5°,

(18)

and
(19)

where @ (1) is defined in (15), £ and _é“) are positive con-
stants depending on the initial conditions, and the parameters
of the algorithms, and

A, A=y,
nu,w:{w <y

where y = 1 — @/, with [ = min; ;.

(20)

Remark 12. The previous result shows that the algorithms en-
sure convergence of the estimates within some distance of the
optimal solution; distance that depends on the parameters of the
problem, and on the connectivity of the network, parameterized
by A. This distance decreases with @ and A. However, as in
the case of the standard subgradient algorithm, decreasing «
induces a slower convergence rate. We also note that as long
a< % according to our analysis the rate of convergence (of
the error bound) is dictated by y. As in the case of the first
metric, Algorithm 2 ensures a tighter upper bound with re-
spect to precision, since the aforementioned distance is smaller
compared to Algorithm 1. However, the error bounds rate of
convergence in the case of the two algorithms are the same.

Remark 13. As pointed out earlier, our results show that in a
worse-case scenario, the second algorithm outperforms the first
algorithm. In Tu and Sayed (2012) the authors analyzed the
performance of the two distributed optimization algorithms, as
well. They managed to show that indeed the second algorithm
performs better compared to the first algorithm. However, they
assumed that the objective function is quadratic, and as a con-
sequence the (sub)gradient is a linear function. Therefore, the
optimization algorithms become linear and an exact analysis of
the performance is possible. In our case, since we assume more
general objective functions, an exact performance analysis has
not been obtained to-date, and may not be possible.

5. NUMERICAL EXAMPLE

Our analytical results indicate that in worse case scenarios,
Algorithm 2 performs better than Algorithm 1, at least from the
accuracy stand point. However, we cannot claim that indeed
Algorithm 2 performs better than Algorithm 1, since no lower
bounds are given. In this section, we are going to test on a
specific example, that the intuition provided by the analytical
results is verified in numerical simulations. To this end we
consider a network of ten agents organized in a star topology,
where node 1 is connected to the rest of the nine nodes (Figure
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1). The collaboration matrix A is chosen as A = 7+ 0.101Lp,
where Lp is the Laplacian of the undirected graph shown in
Figure 1. The smallest eigenvalue of A is given by 4 =-0.0101,
while the SLEM of A is 1 = 0.8990.

Fig. 1. Star network topology with ten nodes

The function to be collaboratively minimized is given by f(x) =
2,!21 fi(x1,x2), where
1 1

—X1— 5 X2.
i

1 1
_12 2
filx1,x2) = =X+ 7x2 - 2

i
We note that f;’s are convex, twice continuously differentiable
and

2 2
SI< V2 fix1,x) S 51, i€fl,...,10}.
i i
Therefore, L = max; L; = 2, [ = min; /; = 0.02 and by choosing

(1 1+4
@€ (O,mln{? T_}) =(0, 0.495),

we satisfy Assumption 3. The function f(x1,x;) admits a
unique minimizer given by x] = 0.2645 and x; = 0.9450. Fig-
ures 2, 3 and 4 show the evolution of the second performance
metric for the two algorithms, for different values of a, as the
algorithms iterate. We note that the intuition given by our anal-
ysis is verified by the numerical simulations, since in all cases
Algorithm 2 performs better than Algorithm 1. In addition, we
observe that as expected, as we decrease a the accuracy of
the two algorithms improve, but at a cost of decreased rate of
convergence.

14

— Algorithm 1
- — — Algorithm 2

max; ||z (k) — «*|

Fig. 2. Decay of max; ||x;(k) — x*|| for @ = 0.2

Tables 1 and 2 summarize the asymptotic behavior of the two
performance metrics, in the case of the graph presented in
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14 T T T T

max; ||z; (k) — ||

250

Fig. 3.

max; ||z; (k) — z*||

Fig. 4. Decay of max; ||x;(k) — x*|| for @ = 0.05

Figure 1. As shown analytically, for both performance metrics,
Algorithm 2 fairs better than Algorithm 1.

lim supy_, o, max; ||x;(k) — x*|| for Figure 1 graph
a Algorithm 1 Algorithm 2
0.2 0.1785 0.0701
0.1 0.0980 0.0454
0.05 0.0517 0.0266
Table 1.
limg— 00 max; f(x;(k)) — f* for Figure 1 graph
a Algorithm 1 Algorithm 2
02 | 52.1x1073 8.5x1073
0.1 15.9x107° 3.4x1073
0.05 | 4.48x107° 1.27x107°
Table 2.

We repeated the numerical simulations for a graph with im-
proved connectivity; graph shown in Figure 5. As before, we
choose as collaboration matrix A = 7+0.101Lp, where Lp is the
Laplacian of the undirected graph shown in Figure 5. It can be
checked that the smallest eigenvalue in this case is 4 = —0.0101
and the SLEM is given by A = 0.8868, which shows the im-
proved connectivity.

The asymptotic behavior of the two metrics for the new graph is
shown in Tables 3 and 4. As proved by our analysis, improved
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Fig. 5. Ten nodes graph with improved connectivity

connectivity improves the performance metrics for the two
optimization algorithms, phenomenon observed in numerical
simulations as well.

limsupy _, ., max; ||x;(k) — x*|| for Figure 5 graph
a Algorithm 1 Algorithm 2
0.2 0.1634 0.0369

0.1 0.0860 0.0209

0.05 0.0504 0.0138

Table 3.
limy_, 0 max; f(x;(k)) — f* for Figure 5 graph
a Algorithm 1 Algorithm 2

02 | 43.8x1073 2.4x1073
0.1 | 123x1073 7.81x 107
0.05 | 42x107° 3.19x107%

Table 4.

6. CONCLUSIONS

In this paper we addressed two consensus-based distributed
subgradients algorithms. The main difference between these
algorithms is the order in which the consensus step is executed.
In the first algorithm first a consensus step is executed, followed
by an update in the direction of a subgradient. In the case of
the second algorithm, the order is reversed. Under a set of as-
sumptions on the objective function, we gave upper bounds on
the accuracy of the algorithms and on the rate of convergence.
We showed that in the case of the second algorithm, the upper
bound on the accuracy is tighter. This suggests that in a worse-
case scenario, the second algorithm performs better. A similar
effect was not observed in the case of the rate of convergence.
In addition, we presented numerical simulations of the two
algorithms that confirm the superiority of the second algorithm.
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