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Abstract: In this paper, we study almost sure convergence of a dynamic average consensus
algorithm which allows distributed computation of the product of n time-varying conditional
probability density functions. These density functions (often called as “belief functions”)
correspond to the conditional probability of observations given the state of an underlying Markov
chain, which is observed by n different nodes within a sensor network. The topology of the
sensor network is modeled as an undirected graph. The average consensus algorithm is used
to obtain a distributed state estimation scheme for a hidden Markov model (HMM). We use
the ordinary differential equation (ODE) technique to analyze the convergence of a stochastic
approximation type algorithm for achieving average consensus with a constant step size. It is
shown that, for a connected graph, under mild assumptions on the first and second moments
of the observation probability densities and a geometric ergodicity condition on an extended
Markov chain, the consensus filter state of each individual sensor converges almost surely to the
true average of the logarithm of the belief functions of all the sensors. Convergence is proved by
using a perturbed stochastic Lyapunov function technique. Numerical results suggest that the
distributed estimates of the Markov chain state obtained at the individual sensor nodes based on
this consensus algorithm track the centralized state estimate (computed on the basis of having
access to the observations of all the nodes) quite well, while more formal results on convergence

of the distributed HMM filter to the centralized one are currently under investigation.

Keywords: Convergence analysis, stochastic approximation, state estimation, stochastic

stability, asymptotic properties.

1. INTRODUCTION

The study of distributed estimation algorithms in a net-
work of spatially distributed sensor nodes has been the
subject of extensive research. A fundamental problem in
distributed estimation is to design scalable estimation al-
gorithms for multi-sensor networked systems such that
the data of a sensor node is communicated only to its
immediate neighbor nodes. This is in contrast to the cen-
tralized estimation where the data from all the sensors are
transmitted to a central unit, known as the fusion center,
where the task of data fusion is performed. The centralized
scheme, clearly, is not energy-efficient in terms of message
exchange. Also, this approach makes the estimation algo-
rithms susceptible to single point failure. Moreover, for
a large scale network, performing a centralized estimation
algorithm at the fusion center may not be computationally
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feasible. As such, the centralized approach is not robust
and also not efficient in terms of both computation and
communication.

Recently, designing scalable distributed estimation algo-
rithms using consensus schemes has attracted significant
surge of interest. For this, consensus filters are used to
combine the individual node data in a way that every
node can compute an approximation to a quantity, which
is based on data from all the nodes, by using input data
only from its nearest neighbors. Then, by decomposing
the centralized algorithm into some subalgorithms where
each subalgorithm can be implemented using a consen-
sus algorithm, each node can run a distributed algorithm
which relies only on the data from its neighboring nodes.
The problem, then, is to study how close the distributed
estimate is to the estimate obtained by the centralized
algorithm.

Some pioneering works in distributed estimation were done
by Borkar and Varaiya (1982) and Tsitsiklis et al. (1986).
Recently, there has been many studies on the use of
consensus algorithms in distributed estimation, see, e.g.,
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distributed Kalman filtering in Olfati-Saber (2005), Olfati-
Saber and Shamma (2005), Carli et al. (2008), approxi-
mate Kalman filter in Spanos et al. (2005), linear least
square estimator in Xiao et al. (2005), and distributed
information filtering in Casbeer and Beard (2009).

This paper will focus on analyzing asymptotic properties
of a stochastic approximation type algorithm for average
consensus introduced in Olfati-Saber and Shamma (2005).
In particular, we study almost sure convergence of the al-
gorithm proposed in Olfati-Saber and Shamma (2005). Us-
ing the proposed dynamic average consensus algorithm, we
compute the product of n time-varying conditional proba-
bility density functions, known as beliefs, corresponding to
n different nodes within a sensor network. The stochastic
approximation algorithm uses a constant step size to track
the time-varying average of the logarithm of the belief
functions. We use the ordinary differential equation (ODE)
technique! in stochastic approximation to study almost
sure convergence of the consensus algorithm. In order to
prove convergence, we use a stochastic stability method
where we introduce a perturbed stochastic Lyapunov func-
tion to show that the error between the consensus filter
state at each node and the true (centralized) average enters
some compact set infinitely often w.p.1. Then, using this
result and stability of the mean ODE it is shown that the
error is bounded w.p.1. This is then used towards proving
almost sure convergence of the consensus algorithm.

2. PROBLEM STATEMENT

Notations: In this paper, R denotes the set of real num-
bers and N and Z™ represent the sets of positive and
nonnegative integers, respectively. We denote by C™ the
class of n-times continuously differentiable functions. Let
(©, F) be a measurable space consisting of a sample space
Q and the corresponding c-algebra F of subsets of (.
The symbol w denotes the canonical point in €. Let P
represent probability distribution with respect to some
o-finite measure and [E denote the expectation with respect
to the probability measure P. By 1,, and 0,, we denote
n-dimensional 2 vectors with all elements equal to one,
and zero respectively. Let I denote the identity matrix
of proper dimension. Let ||.||, denote the p-norm on a
Euclidean space. In this paper, vector means a column
vector, and ’ denotes the transpose notation.

2.1 Distributed Filtering Model: Preliminaries €& Notations

Let a stochastic process {Xy,k € Z*}, defined on the
probability space (2, F,P), represent a discrete time ho-
mogeneous Markov chain with transition probability ma-
trix X = [z;;] and finite state space S = {1,--- ,s}, s € N,
where z;; = P(X =j | Xg—1 =1) for 4,j € S. Assume
that s > 1 is fixed and known. Note that X is a stochastic
matrix, that is, x;; > 0,32 = 1,Vi € S. The initial
probability distribution of { X} is denoted by m = [m;];es,
where m; = P(Xy = i).

The Markov process {Xj} is assumed to be hidden and
observed indirectly through noisy measurements obtained

1 see Benveniste et al. (1990) and Kushner and Yin (2003).
2 for convenience, the dimension subscript n may be omitted when
it is clear from the context.
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by a set of sensor nodes. Consider a network of spatially
distributed sensor nodes, observing the Markov process
{Xy}, where the network topology is represented by a
graph G = (N, &), with N ={1,--- ,n}, n € N denoting
the set of vertices (nodes) and £ C N x N representing the
set of edges. An edge between node 7 and j is denoted by
an unordered pair (i,5) € €. In this paper, all graphs are
assumed undirected and simple (with no self-loop), i.e., for
every edge (i,j) € £, i # j. The set of neighbors of node j
is denoted by N; = {i e N'| (i,4) € €}.

For each node m € N, the sequence of observations is
denoted by {Y™,k € Z*}, which is a sequence of con-
ditionally independent random variables given a realiza-
tion {zp} of {Xx}. The conditional probability distri-
bution of the observed data Y™, taking values in RY,
given the Markov chain state X, = ¢,¢ € S is assumed to
be absolutely continuous with respect to a nonnegative
and o-finite measure ¢ on RY, with the density function
fi*(.), where P(Y" € dy | Xy, = () = f"(y)o(dy), L € S.
Let Y}, adapted to ), denote the sequence of ob-
served data at node m € A up to time instant k, where
Vi =0o(Y™,0<1<k)is the o-algebra generated by the
corresponding random observations. Define also Y}, mea-
surable on ), as the random vector of the observations
obtained by all n number of sensors at time k, where
Vi =0, 1 <m <n) is the corresponding o-algebra.
We introduce the following assumption:

A-1. The observations Y = [Y;],,en are mutually con-
ditionally independent with respect to the node index m
given the Markov chain state X =/¢,£ € S.

We specify an HMM corresponding to the observation se-

quence {Yy,k € ZT} by H 2 (X, S, m, ¥), where we define
the matrix ¥(y) = diag[¢;(y)]ies, with i-th diagonal ele-
ment 1;(y) called state-to-observation probability density
function for the Markov chain state X = 1.

2.2 Distributed Information State Equations

For k € Z*, define the centralized information state vector
or normalized filter ¥ = [U4(j)],cs, as the conditional
probability mass function of the Markov chain state Xj
given the observed data from all n number of nodes up to

time k, that is, U(j) 2 P(Xy=3|V,---,V0) for each
jEeS.

Clearly, in the centralized estimation scenario, where each
node transmits its observations to a (remote) fusion center,
¥V can be computed at the fusion center using the received
measurements from all the sensors. However, in the dis-
tributed scenario, in order to compute the centralized filter
Vi at each node, G must be a complete graph which may
not be a practical assumption for most (large scale) sensor
networks. A practical approach is to express the filter
equation in terms of summations of the individual node ob-
servations or some function of the observations, as shown
in the following lemma. Each node, then, can approximate
those summations using dynamic average consensus filters
by exchanging appropriate messages only with its imme-
diate neighbors. In this way, the communication costs for
each sensor are largely reduced which leads to a longer
life time of the overall network. It is clear, however, that
without the knowledge of all the sensors’ measurements
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and distribution models, each node may only be able to
find an approximation to the centralized filter v;. The
following lemma presents the equivalent distributed form
of the centralized filter equations.

Lemma 1. Assume A-1. For a given sequence of the sen-
sors’ observations {yy}, where yj, = [yi, -+ ,y?]’ € Y and
for any ¢ € S, the centralized filter vy (¢) satisfies the fol-
lowing recursion:

@i (yr) = n~ L, 2 (yx)), k € Z7F,

vo(l) = e~ Bory |

or(0) = ek Y0 migv_1 (i), k €N,

T)k(g) = <]lS,Vk>_1’Uk(€>, ke Z+,

where vi = [vr({)]res is the unnormalized centralized

. A .
filter, zj = [z(j)]jen = [~logfi (yp), -, —logfi (yp))' is
the vector of sensors’ contributions.

From Lemma 1, assuming the knowledge of HMM parame-
ters (X, S, m) at each node, the centralized filter 7y (¢) may
be computed exactly with no error if the average quantity
u‘;i is known exactly at each node. It is clear, however, that
in a distributed scenario, this average quantity could be
calculated with no error only for a complete graph with all-
to-all communication topology. In practice, for other net-
work topologies, each node may only be able to compute an
approximation to wﬁ by exchanging appropriate messages
only with its neighboring nodes. A possible approach to
approximate u’)ﬁ at each node is to run a dynamic average
consensus filter for every ¢ € S.

2.8 Stochastic Approzimation Algorithm for Consensus
Filter

In the following, we present a stochastic approximation
algorithm for estimating the centralized (time-varying)
quantity wﬁ € RT as the average of the vector elements
2£(5),j € N defined in Lemma 1. Since the same algorithm
is performed for every Markov chain state ¢ € S, to sim-
plify the notation, henceforth we omit the superscript de-
pendence on the Markov chain state, e.g., 0, z; = [2£(5)]
will be simply denoted by @wg, z; = [2x(j)] respectively.

Let the consensus filter state for node i € N at time
k € Z* be denoted by i which is, in fact, the node’s
estimate of the centralized (or true) average wy. Let
Wi = [} ];en denote the vector of all the nodes’ estimates.
Each node 7 employs a stochastic approximation algorithm
to estimate @y, using the input messages z;(j) and con-
sensus filter states 7, only from its immediate neighbors,
that is, j € N; U {i}. For k € Z*, the state of each node
1 € N is updated using the following algorithm introduced
in Olfati-Saber and Shamma (2005):

Wy, = (L + pgii) 0y _q + p(AiWg—1 + Ajzg + 25,(1)) (1)
where p is a fixed small scalar gain called step size, A;
is i-th row of the matrix A = [a;j]; jenr which specifies
the interconnection topology?® of the network, and the
parameter g¢;; is defined by g;; 2 —(1 4 2A;1). Precise
conditions on the step size p will be introduced later.

Definition 1. Strong Awverage Consensus Consider a
stochastic process {Zy,k € ZT} with a given realization

3 in this paper, it is assumed that aj; > 0 for j € N; and is zero

otherwise.
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{z1, = Zi(w),w € Q}, where zj, = [21(i)];en is the random

data assigned to the set A of nodes at time k. It is said that

all the nodes have reached strong consensus with respect
. . EPRVAN

to the average of the input vector zy, if for wj = n=!(1, z),

the condition limy_.. (W} —w)) =0 P-a.s. is satisfied

uniformly in i € N.

We may write (1) in the form
WE = Wg_1 + p(AV‘Vk71 + sz), kezt (2)

where the matrices A, T are defined * by A = diag[giilien+
Aand T 21 + A, and the initial condition w_; may be

. . A
chosen as an arbitrary vector w_; = cl, for some ¢ € RT.

3. CONVERGENCE ANALYSIS OF THE
CONSENSUS ALGORITHM

8.1 Preliminary Assumptions

A-2. Forany /(€ S,and k € Z™, the conditional probabil-
ity distribution of the observed data Y} given the Markov
chain state X = ¢ is absolutely continuous with respect
to a nonnegative and o-finite measure ¢ on appropriate
Euclidean space, with g-a.e. positive density ,(.), where
P(Yy € dy | X =€) = e(y)o(dy).

A-38. The transition probability matrix X = [z;;] of the
Markov chain {Xj, k € ZT} is primitive.

Remark 1. Under A-2, A-3, the extended Markov chain
{(Xk,Yg), k€ Z*} is geometrically ergodic® with a
unique invariant measure v, = [Vf]jes on S x R,

v(dy) = v5e(y)a(dy) for any £ € S, where v, = [7¢]ees
defined on S is the unique stationary probability distribu-
tion of the Markov chain {Xj,k € Z*}.

Define the stochastic process {n, k € Z*}, where the error
, A e
N, = [N} ]ien, defined as m, = Wi — W}, is the error
between the consensus filter state and average of the nodes’
A . . .
data w;, = w;1 at time k. For notational convenience, let

& 2 (z1,2z,—1) adapted to Oy denote the extended data,
where Oy, is the o-algebra generated by (Y, Yi_1).

Lemma 2. For a given sequence {z(yy)}, where yi € Vg,
the error vector m, evolves according to the following
stochastic approximation algorithm:

M1 = M + PQMg, Epv1), k€ Z* (3)

where Q(.) is a measurable function”, which determines
how the error is updated as a function of new input zg1,
defined ® by

A _
QMgs &rt1) =AN, +T(zZp11 —n "11'z;,)
) MV (e ) ()

4 Note that for the undirected graph G, the matrix —(A +T) is
positive-semidefinite with 1 as an eigenvector corresponding to the
trivial eigenvalue Ag = 0.

equivalently, the Markov chain is irreducible and aperiodic.

see LeGland and Mevel (2000).

note that for each (z,%), Q(.,2,%) is a CO-function in 17 on R™.
The argument may be verified by using the algorithm (2) and the
equality A1l = —I'1 for the undirected graph G.

(20

7
8
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3.2 Mean ODE

In the following, we define, for ¢ € R, a continuous time in-
terpolation n, (t) of the sequence {n,} in terms of the step
size p. Let tg = 0 and t; = kp. Define the map «(t) = k,
for t > 0,t, <t < tps1, and a(t) =0 for t < 0. Define the
piecewise constant interpolation 7,(t) on t € (—o0,0)
with interpolation interval p as follows: n,(t) = n,, for
t>0,t, <t <ty and n,(t) = n, for ¢t < 0. Define also
the sequence of shifted processes n%(t) = n,(tp +1t) for
t € (—00,00).

Define mean vector field Q(n) as the limit average of the

function Q(.) by Q(n) 2 limy oo Eyy Q(n, &) where E,
denotes the expectation with respect to the distribution
of &, for a fixed . In order to analyze the asymptotic
properties of the error iterates n, in (3), we define the

ODE determined by the mean dynamics as
’I"]. = Q(no)a 7’].(0) = Mo (5)

where 7, is the initial condition. In Proposition 3, we
present a strong law of large numbers to specify the mean
vector field Q(.).

A .
Define x(,) = [x.(i)]icnr, where
N\ A (o by i
x.(i) = mag/ [r?eag [log fi(y') | " f3(y")e(dy")

je

AN L

Ay = 1 (y)o(d

) I}leag/ [max [logde(y) | ] '¢;(y)a(dy)
- A

and the average Qi (n) = (k + 1)1 ), Q(n,€)-

Proposition 3. Assume conditions A-2 and A-3. If Ay is

finite, then there exists a finite Q(7) such that

Jim Qi(n) = Q(n) P-as.
is satisfied uniformly in 7, where
Q) =An+T(z—n'11'2) (6)
and Z = [2(¢)];en, in which we have

i) = [ 1og i) (@) ces (@

with p! denoting the marginal density of the invariant
measure v, for node i € N defined on RY.

We now establish the global asymptotic e-stability of the
ODE (5) in sense of the following definition.

Definition 2. A set I* is said to be asymptotically e-stable
for the ODE (5) if for each &1 > 0 there exists an €2 > 0
such that all trajectories n(t) of the ODE (5) with initial
condition 7,(0) in an ez-neighborhood of E* will remain
in an £1-neighborhood of E* and ultimately converge to an
e-neighborhood of IE*. If this holds for the set of all initial
conditions, then IE* is globally asymptotically e-stable.
A-/. There exists a real-valued C''-function V'(.) : R” — R
of n, such that V(0) = 0, V(n,) > 0 for n, # 0 and
Vi(n,) — oo as [n,|| — oc.

A-5. For any trajectory m,(.) solving the ODE (5) for
which the initial condition n,(0) lies in R™\ Q., where Q.

is a compact level set defined by 2, = {Me : V(N (t)) < c},
for some 0 < ¢ < 00, V(n,(t)) is strictly negative.
Proposition 4. Consider the ODE (5). Assume A-4. In

particular, consider the Lyapunov function V(n,) = %n’.n..
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Also, assume A-5 holds for some compact set o,
where ¢® = 1e? for some € >0. Then, the origin is
globally asymptotically e-stable for the mean ODE (5),
with € given by € = 20y/n(1 + dmaz)| Amaz(A) |71, where
= max;en Z(4).

Proof. See Appendix A, Ghasemi et al. (2010).

3.8 Stochastic Stability of the Consensus Error Iterates

Since the error iterates m;, in (3) are not known to
be bounded a priori and not confined to a compact
constraint set, in this section, we use a stochastic stability
method to prove that the sequence {m,} is recurrent,
which means that the error process {m,} visits some
compact set £ {n:V(nt)) <c}, 0<¢< oo infinitely
often P—w.p.1. In order to prove that some compact set 2z
is recurrent, we introduce a perturbed stochastic Lyapunov
function in which the Lyapunov function of the mean ODE
is slightly perturbed in a way that the resulting stochastic
Lyapunov function has the supermartingale property. The
Doob’s martingale convergence theorem is then used to
show that the compact set {2z is reached again P-w.p.1
after each time the error process {n,} exits Qg.

Define the filtration {Fj,k € Z*} as a sequence of non-
decreasing sub-o-algebras of F defined as Fj = [Filien
such that for each i € N, F} C Fj,, is satisfied for all
k € Z*, and Fi measures at least o(nj, Y1,j € N; U {i}).
Let E; denote the conditional expectation given Fj. For
i > k, define the discount factor 3% by i 2 (1 — p)i=k+t
and the empty product 3}, 21 fori < k.

Define the discounted perturbation 6Jx(n) : R™ — R™ as
follows:

09(m) =D _ P Bx[Q(n, &) — Q)] (8)
i=k
In view of the fact that sup, > .o, pﬁ,i_H < 00, the sum
in the discounted perturbation (8) is well defined and we
have °

Ex60k41(n) = Z Pﬂli+2]Ek[Q(7h£i+1) - Q(’?)] P-w.p.1
i=k+1
Define the perturbed stochastic Lyapunov function
A
Vi) = V() + Vg, V() 69k(ny) (9)

where V., V(n) = VV (1) |n=n,, with VV(n) denoting
the gradient of V(.). Note that Vj(n;) is Fr-measurable.

A-6. Let there be positive numbers {b;,7 € N'} and define

= [b; %];en such that b, — oo for large n. In particular,

let b, = n. Let the following series

(b, X(2)) — (b, x{y)
converge for sufficiently large n.

(10)

A-7. The step size p is strictly positive 1°

condition p < 2(1 + 3d,naz) L

satisfying the

9 cf. (Kushner and Yin, 2003, Chapter 6, Section 6.3.2)

10note that p must be kept strictly away from zero in order to allow
1212 to track the time varying true average wy, see Kushner and Yin
(2003) for further detail.
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The following theorem establishes a sufficient condition for
recurrence of the error iterates 7.

Theorem 5. Consider the unconstrained stochastic ap-
proximation algorithm (3). Assume conditions A-1, A-
2, A-3, and A-6 hold. Let the real-valued Lyapunov
function V(.) of the mean ODE (5) have bounded second
mixed partial derivatives and satisfy condition A-/. Also,
assume Ay and Ay are finite and let the step size
p satisfy condition A-7. Then, the perturbed stochastic
Lyapunov function Vj(n,) is an Frp—supermartingale for
the stopped process n;, when 7, first visits some compact

set Qs 2 {n:V(n(t)) < e}, for ¢ € (0,00).
Proof. See Appendix B, Ghasemi et al. (2010).

The following theorem establishes the recurrence of the
error iterates 7.

Theorem 6. Consider the perturbed stochastic Lyapunov
function Vi (n,,) defined in (9). Let Vi (n;,) be a real-valued
supermartingale with respect to the filtration F. Assume
that EV (n,) is bounded. Then, for any § € (0, 1], there is a
compact set Ls such that the iterates n;, enter Ls infinitely
often with probability at least §.

Proof. See Appendix C, Ghasemi et al. (2010).
8.4 Almost Sure Convergence of the Consensus Algorithm

In this section, we use the recurrence result of the previous
section in combination with an ODE-type method to prove
almost sure convergence of the error sequence {n, } under
rather weak conditions ' . The ODE method shows that
asymptotically the stochastic process {n, }, starting at the
recurrence times when 7, enters the compact recurrence
set {2z, converges to the largest bounded invariant set of
the mean ODE (5) contained in z. Therefore, if the origin
is globally asymptotically e-stable for the mean ODE (5)
with some invariant level set .o, where ¢® < ¢, then {n,}
converges to an e-neighborhood of the origin P-w.p.1.

The following lemma establishes a nonuniform regularity
condition on the function Q(., &) in 7.

Lemma 7. There exist nonnegative measurable functions
Iy (.) and hyo(.) of  and &, respectively, such that Ty (.)
is bounded on each bounded 7-set and

Q. &) — Q7. & <hi(n—Dhi2(§)  (11)

where hi(n) — 0 as 7 — 0 and for some 7 >0, Ty
satisfies
a(tl—ﬁ-?)
P[limlsup Z phya(€)) < oo] =1
k=l

(12)

Proof. See Appendix D, Ghasemi et al. (2010).

A-8. For each m, let the rate of change of
a(t)—1
> rlQm &) — Q)
i=0
go to zero P-w.p.1 as ¢ — co. This means the asymptotic
rate of change condition '2

A

Q1) =

for example, the square summability condition on the step size p
is not needed.
125ee Section 5.3 and 6.1, Kushner and Yin (2003) for further detail.
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/N,

Fig. 1. Network topology G

1i]£n sup max | Qp(jT +1t) - Q,(jT)| =0 P-wp.l

g2k OStsT
is satisfied uniformly in 0 for every 7" > 0.

Theorem 8. Consider the unconstrained stochastic ap-
proximation algorithm (3). For any ¢ € (0,1], let there
be a compact set Ls such that the iterates m; return
to Ls infinitely often with probability at least §. Assume
conditions A-/ and A-5. Then, {n,} is bounded P-w.p.1,
that is,

limsup |9l <oco P-w.p.l
k

Assume condition A-8. Also, assume that the function
Q(., &) satisfies the nonuniform regularity condition in n
established in Lemma 7. Then, there exists a null set U
such that for w ¢ U, the set of functions {n%(w,.),k < co}
is equicontinuous. Let m(w,.) denote the limit of some
convergent subsequence {n’fl (w,.)}. Then, for P-almost all
w € Q, the limits n(w,.) are trajectories of the mean
ODE (5) in some bounded invariant set and the error
iterates {1, } converge to this invariant set. Moreover, let
the origin be globally '2 asymptotically e-stable ' for the
mean ODE (5) with some invariant level set Q.., where
Qe C L;. Then, {n,} converges to the e-neighborhood of
the origin P-w.p.1 as k — oo.

Proof. The proof follows from (Kushner and Yin, 2003,
Theorem 7.1 and Theorem 1.1, Chapter 6) and for brevity
the details are omitted here.

4. NUMERICAL RESULTS

In this section, we numerically evaluate the performance
of the distributed HMM filter computed using the aver-
age consensus algorithm (1), and study its average be-
havior relative to the centralized filter. To this end, we
present some numerical results for distributed estima-
tion over a sensor network with the irregular topology
G depicted in Fig. 1. We consider a dynamical system
whose state evolves according to a four-state Markov chain
{Xy,k € Z*} with state space S = {-7.3,-1.2,2.1,4.9}
and transition kernel

0.80 0.10 0 0.10

X — 0.06 090 005 O
o 0 010 0.85 0.05
0.06 0 010 0.85

The initial distribution of {Xj} is chosen as an arbi-
trary vector m = [0.20,0.15,0.30,0.35]. The Markov pro-
cess {Xi} is observed by every node j according to

I3 note that in case of local asymptotic stability, convergence result
holds if Ls is in the domain of attraction of the ODE equilibrium.
14 this is shown in Proposition 4.
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State Estimate

Node 1
—4— Node 2
—v— Node 3
——— Node 4
—#— Node 5
—+— Node 6

Fusion Center

!
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&
F—T—

20 40 60 80 100
Time (k)

Fig. 2. Distributed and centralized state estimates

Node 1
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Fig. 3. Convergence in mean of the distributed state
estimate at each node to the centralized one.

Y] = X + uj, where the measurement noises {u, =

[ul]jen,k € Zt} are assumed to be zero-mean white
Gaussian noise processes with the noise variance vector
[0.29 4+ 0.01j];enr- The initial condition W_; is chosen
w_1 = cl, with ¢ = 3.

Fig. 2 shows the distributed (or local) estimate X7 2
EI[Xy | Fi] of the Markov chain state {X;} at each
node j € A/, where the expectation E’ is with respect
to distributed filter ¥;, = [0 (¢)],.g computed using the
average consensus filter (1). Although node 5 and 2 have
direct access to only one and two nodes’ observations
respectively, they maintain an estimate of {Xj} but with
some time delay. The reason is because these two nodes
receive the observations of other nodes in the network
indirectly through the consensus algorithm which incur
some delay. Nevertheless, every node follows the state
transition of the Markov process { X} at each time k.

Fig. 3 shows the convergence in mean of the local state es-
timate X7 for each node j to the centralized state estimate
X, obtained by using the observations of all the nodes. The
mean state estimate error is computed as the time average

gl 2 (k+1)7! Zf:o | X/ — X, |. This is done based on
the fact that gi converges P-a.s. to the expectation
E| X,]C — Xy |. This is due to the geometric ergodicity of
the extended Markov chain {(X,Yy), k € Z*}. As it can
be seen for each node j, the average gi converges to a

§9-ball around the origin as k — oo. The radius ||§||, where

15 here we have used the standard notion of convergence in mean.

§ = [07];en and the rate of convergence, though, depends
on how well connected the network is. Precise results on
the exact nature of convergence of the distributed HMM
filter to the centralized HMM filter and the corresponding
proof of convergence are currently under investigation.
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