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Abstracti— If heterogeneous ad hoc battlefield networks are to 
scale to hundreds or thousands of nodes, then they must be 
automatically split into separate network domains. Domains 
allow routing, QoS and other networking protocols to operate on 
fewer nodes. This division greatly reduces overall overhead (e.g., 
routing overhead with n nodes goes from ( )2O n  to ( )logO n n ) 

and allows protocols to be tuned to more homogenous conditions 
[1]. Domain generation (or clustering) can be done using either 
local or global information. The two approaches are 
complementary since local domain generation reacts faster, 
requires less overhead, and is more robust; while global domain 
generation provides better overall domains. While most existing 
work has concentrated on local distributed solutions, this paper 
reports on new global domain generation techniques. In 
particular we concentrate on the design of good cost functions 
and efficient optimization algorithms. We show that simple 
“intuitive” cost functions do not produce good domains; rather 
we need complex functions with multiple parameters depending 
on the design goals (e.g., low overhead or low delay). Although 
existing optimization algorithms are too slow to be useful in a 
large dynamic network, we show that a modified simulated 
annealing algorithm, with well chosen cooling schedule, state 
transition probabilities and stop criteria, produces good quality 
domains in acceptable time.  

Keywords-ad hoc networks; mobile networks; dynamic 
clustering; simulated annealing 

I.  INTRODUCTION  
In recent years there has been an increasing interest in ad 

hoc networks that do not rely on a fixed infrastructure. The 
ability to deploy these networks quickly and have them work 
through rapid changes makes them ideal for battlefield and 
emergency situations. There have been many good solutions 
proposed to deal with topology management, 
autoconfiguration, routing and QoS in ad hoc networks; 
however, most of these solutions do not scale well (e.g., only to 
about 50 nodes). To build ad hoc networks with hundreds or 
                                                           
i Prepared through collaborative participation in the Communications and 
Networks Consortium sponsored by the U.S. Army Research Laboratory 
under the Collaborative Technology Alliance (CTA) Program, Cooperative 
Agreement DAAD19-2-01-0011. The U.S. Government is authorized to 
reproduce and distribute reprints for Government purposes notwithstanding 
any copyright notation thereon. 

even thousands of nodes, such as that required for the Future 
Combat System (FCS), the network must be split into relatively 
independent layer 3 clusters or domains. 

We assume the creation of layer 3 clusters or domains is 
done after layer 2 topology management has set local 
parameters such as the link frequencies, spreading code, 
transmit power and antenna direction. At this point, when the 
ad hoc network is simply an interconnected mesh of potentially 
thousands of nodes, the domain generation divides node 
interfaces into different layer 3 domains. The domain 
generation then continuously adjusts the domain as nodes and 
links change to maintain good network performance. 

Smaller domains allow routing, QoS and other networking 
protocols to operate on fewer nodes, with cross-domain 
interaction only through a few border nodes. This division has 
two key benefits. First, it reduces overall protocol overhead. In 
most routing protocols, for example, the route update overhead 
grows as ( )2O n  as the number of routers n  in a domain 
increases. Using smaller domains, with inter-domain 
interaction through a single border router per domain, we can 
reduce overall overhead to ( )logO n n . Second, if the domains 
are well designed, then networking protocols can be tuned to 
more homogenous conditions. For example, if part of the 
network has links constantly going up and down, then it can be 
put in a separate routing domain whose border router does not 
propagate internal changes. 

The domain generation and maintenance can be done using 
either local or global information. The two approaches are 
complementary since local domain generation reacts faster, 
requires less overhead, and is more robust; while global domain 
generation provides better overall domains. Most existing work 
on domain generation, however, has used only very limited 
local information. Indeed, most approaches simply elect a 
“cluster-head” within each subnet based on node attributes like 
the lowest ID or highest degree [2] [3]. Some proposals use 
local metrics during cluster generation, but the metrics are 
utilized just for the selection of cluster-heads; the generation of 
clusters is based only on the distance in hops of nodes from the 
corresponding cluster-heads [4] [5].  

Our goal is to take global network environment and its 
dynamics into account, then optimally grouping together nodes 
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based on the appropriate metrics to improve a priori selected 
aspects of the performance of the network. A key question in 
this work is whether the domains generated using global 
information significantly improves the network’s performance. 
If not, then the extra overhead will degrade the performance of 
the network, and we should simply perform robust local 
domain generation. This paper reports on the two key aspects 
of global domain generation that we are needed to generate 
significantly better network performance even with hundreds of 
dynamic nodes: designing good cost functions and fast 
optimization algorithms. 

Section 2 investigates the cost functions for defining good 
domains. Section 3 describes the general Simulated Annealing 
(SA) algorithm for clustering and Section 4 shows how a 
modified SA algorithm can produce near optimal clustering 
maps quickly. Section 5 evaluates the clustering maps 
generated by the SA algorithm with different cost functions. 
Finally, section 6 gives our conclusions and some future 
directions. 

II. COST FUNCTIONS 
This section looks at the design of cost functions that 

determine the goodness of a particular domain configuration 
map.  

A. Metrics 
We treat each cluster as part of a group and not as an 

individual entity in order to optimize the overall network 
performance and not just on the performance of a single 
cluster. The key metric used to decide the best domain 
configuration is the global topology map. This IP topology 
simply gives information about who can talk to whom, and 
through which interfaces. In addition to topology it may be 
beneficial to use a lot of additional metrics, such as: a) Link 
performance (e.g., capacity, delay, error rate, and up-time); b) 
Node velocity (e.g., average node speed and direction); c) 
Groups (e.g., what unit of action or brigade the node or user is 
a member of); d) Mission information (e.g., giving some 
indication of likely mobility or traffic pattern) 

Although we believe these additional metrics can 
potentially be a very powerful tool in creating better topologies, 
this paper only considers the use of basic topology information. 
It is important to look at this simple case first, since: a) other 
metrics might not be available, b) may not be estimated with 
accuracy in an ad hoc network (and may thus harm the instead 
of helping the network), and c) can be done before a node is 
configured with it IP information (e.g., address and routing 
protocol). 

B. Cost Function Variables 
We designed cost functions for the generation of clusters 

based on the following variables: 
• Diameter (D(Ci))- The size of the longest path within a 

cluster in number of hops. Minimizing diameter is useful 
because it can reduce overhead and reduce the latency of 
many networking protocols. For example, a proactive 
routing protocol, which exchanges routing information 
among all nodes, can update information quicker (e.g., due 

to link failure) and using less total hops if the diameter is 
smaller.  

• Number of nodes (N(Ci))- The number of nodes that have 
been assigned to the cluster. The importance of Cluster 
Size metric rises from the fact that the overhead and 
performance of most networking protocols is strongly 
dependent on the number of nodes. For example, we know 
that the overhead of most routing protocols is proportional 
to the square of the number of nodes  

• Number of Border Nodes (B(Ci))– The number of nodes 
that interconnect two or more clusters. There are scenarios 
where we want to have some minimum number of border 
nodes to improve robustness or to provide more bandwidth 
for inter-domain communication. In other cases we want to 
minimize the number of border nodes, in order to isolate 
each cluster from the rest of the clusters in the network 
(i.e. security, small number of inter-cluster connections).  

C. Single Variable Cost Functions 
• Based on Diameter 

The simplest cost function E based on the cluster diameter 
D(Ci) is to sum the diameters of each of the K clusters Ci with 
our objective being to generate clusters such that the Cluster 
Diameter is minimized among all clusters. 

1

min ( )
K

i
i

E D C
−

= ∑                     (1) 

Through our testing, we found that this simple formula (1) 
produces very unbalanced clusters in terms of their diameter. 

( )( )∑
−

=
K

i
iCDE

1
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2

2
1

2 ,....,,min=                 (3) 

These functions (2) and (3) generate balanced diameter 
clusters.  

• Based on Cluster Size 

The simplest cost function based on the number of 
members in each cluster is to sum the number of nodes in each 
of the K clusters with our objective being to generate clusters 
such that the cluster sizes are balanced: 

1

min ( )
K

i
i

E N C
−

= ∑                                   (4) 

Similarly with (1) this function produces unbalanced size 
clusters, so we applied more complex functions (e.g., (5), (6) 
and (7)), which as we present in section 5 result in balanced 
size clusters. Cost function (5) sums the squares of the size of 
each cluster.     

2

1

min ( )
K

i
i

E N C
−

= ∑                                     (5) 

The goal of producing balanced size clusters is useful if we 
select K so as to produce the “right sized” clusters, assuming 
we can balance them using this cost function.  An alternative 
we investigated was to use variance (6) or to put in explicit 
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information about the optimal number of nodes (OptSize) of a 
cluster (7). 

( ) ( ) ( )( )( )2 2 2
1 2min , ,...., KE Var N C N C N C=               (6) 

( )42

1 1
min ( ) ( )

K K

i i
i i

E N C N C OptSize
− −

 = + − 
 
∑ ∑                (7) 

• Based on Border Nodes 

The final simple cost function we tested was to use the 
number of border nodes. Cost function (8) shows example of a 
cost function that attempts to minimize the number of border 
nodes B(C). 

)(min
1

∑
−

=
K

i
iCBE                                 (8) 

D. Multiple Variable Cost Functions 
In addition to the simple cost functions, we also 

investigated cost functions that combine multiple variables. 
Equations (9) and (10) are some examples, where we combine 
the size of the clusters with the number of border nodes and the 
diameter of the clusters with the number of border nodes 
respectively.  

( ) ( ) ( )( )2 2 2
1 2

1
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K
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i
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III. SIMULATED ANNEALING 
We here describe the simulated annealing algorithm applied 

to the specific networking problem of partitioning a network in 
K disjoint clusters. 

A. General SA Algorithm 
Simulated annealing (SA) has been widely used for tackling 

different combinatorial optimization problems [6]. The process 
of obtaining the optimum configuration is similar to that 
followed in a physical annealing schedule. In SA, however, the 
temperature is merely used as a control parameter and does not 
have any physical meaning.    

Figure 1 highlights the general steps in the algorithm. The 
objective of the algorithm is to obtain the K cluster network 
partition configuration, C*, that optimizes a particular cost 
function. The process starts with an initial temperature value, 
T0, which is iteratively decreased by the cooling function until 
the system is frozen (as decided by the stop function).  

For each temperature, the SA algorithm takes the current 
champion configuration C* and applies the recursive function 
to obtain a new configuration C’ and evaluates its cost, E’. If E’ 
is lower than the cost of the current E*, C’ and E’ replace C* 
and E*. In order to avoid local minima, the algorithm randomly 
accepts a new configuration C’ even though E’ is greater than 
E*. In the latter case C’ and E’ replace C* and E* respectively. 
One of the key characteristics of simulated annealing is that it 
allows uphill moves at any time and relies heavily on 
randomization [6]. The higher the temperature, the higher the 

probability of accepting a configuration that worsens E* instead 
of improving it. The lower the temperature, the lower the 
probability of accepting worse configurations. 
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Figure 1.  Simulated Annealing Algorithm for network partitioning 

B. Comparison of SA with Other Optimizations 
SA is one of many choices when looking for optimization 

algorithms. For example, one can use the 2-Opt, 3-Opt, Lin-
Kernighan, genetic and neural net algorithms. As shown in the 
work of Johnson [7] depending on the problem to which it is 
applied, SA appears competitive with many of the best 
heuristics: a) easy to implement; b) provides good solutions for 
most problems; c) can deal with cost functions with arbitrary 
degrees of non-linearity, discontinuity, and randomness; d) can 
process arbitrary boundary conditions and constraints imposed 
on these cost functions.  
However, the general SA optimization can be quite slow.  
Figures 2a and 2b show the completion time of SA for various 
network sizes (25 nodes to 1000 nodes) and fixed cluster size 
(25 nodes). The number of clusters to be generated varies based 
on the network size and Cluster size (7) has been taken as the 
cost function. 

0

500

1000

1500

10
0

30
0

50
0

70
0

90
0#  Nodes

Ti
m

e 
(s

)

0
20
40
60
80

100 200 300 400# NodesTi
m

e(
s)

 
Figure 2.  Convergence Time vs. Number of Nodes. (Cost Function= (6), 

Uniform Transition Probs)   
 

It can be observed that the completion time of the general 
SA optimization increases significantly as the network size 
increases. The completion time is in the order of 50s for 
network sizes of 300 nodes; this time is increased to 400s for 
network sizes of 1000 nodes. Thus, we can conclude it need 
either a) a small networks (e.g. few hundreds of nodes), or b) 

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE3866



large networks with low rate of topology changes (e.g., sensor 
networks where we have none or very slow movement of the 
nodes). In order to SA to be useful in large dynamic 
environments, we propose enhancement to the general SA 
optimization to produce good clustering maps in a much 
shorter period of time. 

IV. IMPROVING THE SIMULATED ANNEALING ALGORITHM 
FOR CLUSTERING 

The following sections describe some of the enhancements 
that we propose to decrease SA’s computational time while 
keeping its optimality. We focus on three functions from figure 
1: a) the function that evaluates the frozen state (stop 
function), b) the cooling scheme (cooling function) and; c) 
algorithms that generate new clusters at each iteration of SA 
(reclustering function).  

Figure 3.   (left) Opt. Energy vs. StopRepeats , (right) Time vs. StopRepeats 
(Nodes=100,Clusters=5) (Cost Function=(6)) 

A. Improving the Stop Function 
 In our implementation, SA terminates when the same 

optimum cost value E* is observed for a continuous number of 
iterations, called StopRepeats. Figure 3 (left) shows E* as a 
function of the StopRepeats parameter for 5 different 100 node 
networks. We can observe that in all scenarios we get similar 
E* values for values of StopRepeats larger than 100. Therefore, 
the optimality of the algorithm is the same whether the 
algorithm is stopped using a number of StopRepeats equal to 
100 or equal to 10000. The smaller the number of StopRepeats, 
the faster the completion time of the algorithm (fig. 3 right). 

B. Improving the Cooling Functions 
The speed of the SA algorithm depends on the cooling 

schedule used to lower down the temperature at each iteration. 
The two most popular cooling schedules are: 

• Logarithmic Cooling Schedule :  Tt=T0/(1+lnt)                     
• Geometric Cooling Schedule :  Tt=αtT0 

Tt, T0 are the new and initial temperatures, respectively and t is 
the number of iterations. 

Figure 4 shows the effect the cooling schedule has on the 
progress (value of cost function) and the speed (number of 
iterations) of SA on a network of 100 nodes. 

It can be observed that a geometric cooling schedule 
decides faster on the clustering map than a logarithmic cooling 
schedule. Therefore, it is better suited to a dynamic 
environment. However, the clustering map obtained with the 
geometric cooling scheme may not be as optimal as the one 

obtained with the logarithmic cooling scheme. Nevertheless, as 
figure 6 (right) shows this is not necessarily true in every case. 

 

 

 

 

 

Figure 4.  Optimal Energy vs. Number of Iterations vs. Cooling Schedule 

C. Improving the Reclustering Function 
We can further improve the convergence time of the SA if 

we bind the state transition probabilities, used for the 
generation of new clustering maps, to the cost function. Given 
a cluster map C, a new clustering map C’ is generated by 
selecting a node from a cluster (“from” cluster) and moving it 
to a different cluster (“to” cluster).  In figure 5 we show the 
convergence time of SA for two different clustering map 
generation schemes: 

1) Initially, for simplicity and generality, we use uniform 
probabilities to select nodes in the “from” and “to” cluster.  

2) We customized the transition probabilities to the cost 
function.  For example, for a cost function that aims for 
balanced size clusters, we assigned higher probabilities to 
those clusters with larger cluster size in order to select the 
“from” cluster and higher probabilities to those clusters 
with smaller size to select the “to” clusters. This approach 
utilizes the following state transition probabilities: 
• ( )"from" cluster 

(Total Number Of Nodes)
iC

P i =               (11) 

• ( ) (Total Number Of Nodes)-
"to" cluster 

(Number of Clusters - 1)x(Total Number Of Nodes)
iC

P i = (12) 

Figure 5 compares the completion time of the SA algorithm 
applying uniform and non-uniform state transition probabilities 
described by (11) and (12) for a network of 200 nodes. 
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Figure 5.  Convergence Time: Uniform vs. Non-uniform probabilities 
Uniform vs. Non-Uniform Trans Probs (Cost Function=(6)) 

Thus, where the search space is large (e.g., small number of 
generated clusters imposes larger number of possible solutions 
using non-uniform probabilities improves the speed of the 
algorithm up to 100%. With smaller search space, however, the 
application of non-uniform state transition probabilities does 
not improve the speed of the algorithm compared to the 
uniform probabilities. As our main objective is the 
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improvement of the speed of the SA algorithm when we have 
large search space, state transition probabilities customization 
approach is desirable. 

D. Summary of SA Options for Clustering 
Since the dynamics change the topology, we do not want 

the optimal clustering map but a good quality clustering map as 
fast as possible. Thus, we chose a geometric cooling schedule 
since it gives good quality clustering maps fast (even though in 
some cases may not be as good as the results we get from the 
logarithmic cooling schedule). We also set the StopRepeats to 
the lowest value without significantly affecting the protocol 
optimality and take into account the cost functions in the 
generation of new clusters. 

V. EVALUATION OF COST FUNCTIONS IN DYNAMIC 
ENVIRONMENTS 

This section evaluates the clustering maps that the SA 
algorithm generates with the application of the cost functions 
described in section 2. In order to test the proposed cost 
functions and evaluate the performance of SA algorithm we 
require a number of networks (connected graphs). For the 
construction of the inputs we implemented software that 
produces random connected graphs given the number of nodes, 
their transmission range and the area. With this set of input 
parameters we can control the density of the network. Figure 6 
shows some samples of the networks. The top plot shows the 
clustering map based on the balanced cluster size (equation (6)) 
for a network of 100 nodes and 10 clusters. 

 

 
Figure 6.  Generating 10 clusters from 100 nodes: (top)  with Balanced size 

clusters, (bottom) minizing the number of Border Routers. 
 

Each closed curve represents a different cluster. By 
measuring the number of nodes that each cluster has we 
observe that we have perfectly balanced clusters (e.g., each 

cluster consist of exactly 10 nodes (10nodes x 10clusters = 
100nodes)). However, the clusters overlap.  

If we do not want such overlap among clusters, we utilize 
the metric that minimizes and balances the number of border 
routers. The bottom of Figure 6b shows the clustering map for 
equation (9). The results show that we kept the balanced 
clusters (e.g., 10 nodes per cluster for 10 generated clusters), 
but with more isolated and topologically defined clusters. 

VI. CONCLUSIONS 
This paper proposes some new cost functions and an 

optimization algorithm for network partitioning based on 
Simulated Annealing. We show that simple “intuitive” cost 
functions, such as minimizing the average domain diameter, do 
not produce good domains; rather we need complex functions 
(e.g., equation 9) produce good results. We also show that 
algorithms that find the optimal configuration are too slow to 
be useful in a large network with rapidly changing topology, 
but a modified simulated annealing (SA) algorithm, produces 
good quality domains quickly. Specifically we use SA with 
geometric cooling schedule, low StopRepeat value and 
generate new clusters based on the cost functions. 

We have to evaluate the overhead that the centralized 
approach imposes on the network. Since we deal with mobile 
networks, the generation of an effective clustering map it is a 
solution for a limited time window (e.g., depending on the 
network dynamics) and it cannot provide us with a complete 
solution for the lifetime of the network. To achieve the 
maintenance part of the clustering and due to the centralized 
nature of SA we are currently looking ways to bind the SA 
with localized algorithms (e.g., distributed heuristics). Finally 
we think it is important to look beyond topology for input into 
the global optimization. For example, investigate the use of 
link quality or a node’s mobility characteristicsii. 
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