
Applying Simulated Annealing for Domain
Generation in Ad Hoc Networks

Kyriakos Manousakis
Electrical and Computer Engineering and

the Institute for Systems Research
University of Maryland, College Park

College Park, MD, 20740
kerk@isr.umd.edu

Anthony J. McAuley, Raquel Morera
Telcordia Technologies Inc.

Piscataway, NJ, 08854
{mcauley, raquel}@research.telcordia.com

Abstracti— If heterogeneous ad hoc battlefield networks are to
scale to hundreds or thousands of nodes, then they must be
automatically split into separate network domains. Domains
allow routing, QoS and other networking protocols to operate on
fewer nodes. This division greatly reduces overall overhead (e.g.,
routing overhead with n nodes goes from ()2O n to ()logO n n)

and allows protocols to be tuned to more homogenous conditions
[1]. Domain generation (or clustering) can be done using either
local or global information. The two approaches are
complementary since local domain generation reacts faster,
requires less overhead, and is more robust; while global domain
generation provides better overall domains. While most existing
work has concentrated on local distributed solutions, this paper
reports on new global domain generation techniques. In
particular we concentrate on the design of good cost functions
and efficient optimization algorithms. We show that simple
“intuitive” cost functions do not produce good domains; rather
we need complex functions with multiple parameters depending
on the design goals (e.g., low overhead or low delay). Although
existing optimization algorithms are too slow to be useful in a
large dynamic network, we show that a modified simulated
annealing algorithm, with well chosen cooling schedule, state
transition probabilities and stop criteria, produces good quality
domains in acceptable time.

Keywords-ad hoc networks; mobile networks; dynamic
clustering; simulated annealing

I. INTRODUCTION
In recent years there has been an increasing interest in ad

hoc networks that do not rely on a fixed infrastructure. The
ability to deploy these networks quickly and have them work
through rapid changes makes them ideal for battlefield and
emergency situations. There have been many good solutions
proposed to deal with topology management,
autoconfiguration, routing and QoS in ad hoc networks;
however, most of these solutions do not scale well (e.g., only to
about 50 nodes). To build ad hoc networks with hundreds or

i Prepared through collaborative participation in the Communications and
Networks Consortium sponsored by the U.S. Army Research Laboratory
under the Collaborative Technology Alliance (CTA) Program, Cooperative
Agreement DAAD19-2-01-0011. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation thereon.

even thousands of nodes, such as that required for the Future
Combat System (FCS), the network must be split into relatively
independent layer 3 clusters or domains.

We assume the creation of layer 3 clusters or domains is
done after layer 2 topology management has set local
parameters such as the link frequencies, spreading code,
transmit power and antenna direction. At this point, when the
ad hoc network is simply an interconnected mesh of potentially
thousands of nodes, the domain generation divides node
interfaces into different layer 3 domains. The domain
generation then continuously adjusts the domain as nodes and
links change to maintain good network performance.

Smaller domains allow routing, QoS and other networking
protocols to operate on fewer nodes, with cross-domain
interaction only through a few border nodes. This division has
two key benefits. First, it reduces overall protocol overhead. In
most routing protocols, for example, the route update overhead
grows as ()2O n as the number of routers n in a domain
increases. Using smaller domains, with inter-domain
interaction through a single border router per domain, we can
reduce overall overhead to ()logO n n . Second, if the domains
are well designed, then networking protocols can be tuned to
more homogenous conditions. For example, if part of the
network has links constantly going up and down, then it can be
put in a separate routing domain whose border router does not
propagate internal changes.

The domain generation and maintenance can be done using
either local or global information. The two approaches are
complementary since local domain generation reacts faster,
requires less overhead, and is more robust; while global domain
generation provides better overall domains. Most existing work
on domain generation, however, has used only very limited
local information. Indeed, most approaches simply elect a
“cluster-head” within each subnet based on node attributes like
the lowest ID or highest degree [2] [3]. Some proposals use
local metrics during cluster generation, but the metrics are
utilized just for the selection of cluster-heads; the generation of
clusters is based only on the distance in hops of nodes from the
corresponding cluster-heads [4] [5].

Our goal is to take global network environment and its
dynamics into account, then optimally grouping together nodes

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE3864

based on the appropriate metrics to improve a priori selected
aspects of the performance of the network. A key question in
this work is whether the domains generated using global
information significantly improves the network’s performance.
If not, then the extra overhead will degrade the performance of
the network, and we should simply perform robust local
domain generation. This paper reports on the two key aspects
of global domain generation that we are needed to generate
significantly better network performance even with hundreds of
dynamic nodes: designing good cost functions and fast
optimization algorithms.

Section 2 investigates the cost functions for defining good
domains. Section 3 describes the general Simulated Annealing
(SA) algorithm for clustering and Section 4 shows how a
modified SA algorithm can produce near optimal clustering
maps quickly. Section 5 evaluates the clustering maps
generated by the SA algorithm with different cost functions.
Finally, section 6 gives our conclusions and some future
directions.

II. COST FUNCTIONS
This section looks at the design of cost functions that

determine the goodness of a particular domain configuration
map.

A. Metrics
We treat each cluster as part of a group and not as an

individual entity in order to optimize the overall network
performance and not just on the performance of a single
cluster. The key metric used to decide the best domain
configuration is the global topology map. This IP topology
simply gives information about who can talk to whom, and
through which interfaces. In addition to topology it may be
beneficial to use a lot of additional metrics, such as: a) Link
performance (e.g., capacity, delay, error rate, and up-time); b)
Node velocity (e.g., average node speed and direction); c)
Groups (e.g., what unit of action or brigade the node or user is
a member of); d) Mission information (e.g., giving some
indication of likely mobility or traffic pattern)

Although we believe these additional metrics can
potentially be a very powerful tool in creating better topologies,
this paper only considers the use of basic topology information.
It is important to look at this simple case first, since: a) other
metrics might not be available, b) may not be estimated with
accuracy in an ad hoc network (and may thus harm the instead
of helping the network), and c) can be done before a node is
configured with it IP information (e.g., address and routing
protocol).

B. Cost Function Variables
We designed cost functions for the generation of clusters

based on the following variables:
• Diameter (D(Ci))- The size of the longest path within a

cluster in number of hops. Minimizing diameter is useful
because it can reduce overhead and reduce the latency of
many networking protocols. For example, a proactive
routing protocol, which exchanges routing information
among all nodes, can update information quicker (e.g., due

to link failure) and using less total hops if the diameter is
smaller.

• Number of nodes (N(Ci))- The number of nodes that have
been assigned to the cluster. The importance of Cluster
Size metric rises from the fact that the overhead and
performance of most networking protocols is strongly
dependent on the number of nodes. For example, we know
that the overhead of most routing protocols is proportional
to the square of the number of nodes

• Number of Border Nodes (B(Ci))– The number of nodes
that interconnect two or more clusters. There are scenarios
where we want to have some minimum number of border
nodes to improve robustness or to provide more bandwidth
for inter-domain communication. In other cases we want to
minimize the number of border nodes, in order to isolate
each cluster from the rest of the clusters in the network
(i.e. security, small number of inter-cluster connections).

C. Single Variable Cost Functions
• Based on Diameter

The simplest cost function E based on the cluster diameter
D(Ci) is to sum the diameters of each of the K clusters Ci with
our objective being to generate clusters such that the Cluster
Diameter is minimized among all clusters.

1

min ()
K

i
i

E D C
−

= ∑ (1)

Through our testing, we found that this simple formula (1)
produces very unbalanced clusters in terms of their diameter.

()()∑
−

=
K

i
iCDE

1

2min (2)

() () ()()()KCDCDCDVarE 2
2

2
1

2 ,....,,min= (3)

These functions (2) and (3) generate balanced diameter
clusters.

• Based on Cluster Size

The simplest cost function based on the number of
members in each cluster is to sum the number of nodes in each
of the K clusters with our objective being to generate clusters
such that the cluster sizes are balanced:

1

min ()
K

i
i

E N C
−

= ∑ (4)

Similarly with (1) this function produces unbalanced size
clusters, so we applied more complex functions (e.g., (5), (6)
and (7)), which as we present in section 5 result in balanced
size clusters. Cost function (5) sums the squares of the size of
each cluster.

2

1

min ()
K

i
i

E N C
−

= ∑ (5)

The goal of producing balanced size clusters is useful if we
select K so as to produce the “right sized” clusters, assuming
we can balance them using this cost function. An alternative
we investigated was to use variance (6) or to put in explicit

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE3865

information about the optimal number of nodes (OptSize) of a
cluster (7).

() () ()()()2 2 2
1 2min , ,...., KE Var N C N C N C= (6)

()42

1 1
min () ()

K K

i i
i i

E N C N C OptSize
− −

 = + − 
 
∑ ∑ (7)

• Based on Border Nodes

The final simple cost function we tested was to use the
number of border nodes. Cost function (8) shows example of a
cost function that attempts to minimize the number of border
nodes B(C).

)(min
1

∑
−

=
K

i
iCBE (8)

D. Multiple Variable Cost Functions
In addition to the simple cost functions, we also

investigated cost functions that combine multiple variables.
Equations (9) and (10) are some examples, where we combine
the size of the clusters with the number of border nodes and the
diameter of the clusters with the number of border nodes
respectively.

() () ()()2 2 2
1 2

1

min , ,...., ()
K

K i
i

E Var N C N C N C B C
−

  = +  
  
∑ (9)

() () ()()2 2 2
1 2

1

min , ,...., ()
K

K i
i

E Var D C D C D C B C
=

  = +  
  
∑ (10)

III. SIMULATED ANNEALING
We here describe the simulated annealing algorithm applied

to the specific networking problem of partitioning a network in
K disjoint clusters.

A. General SA Algorithm
Simulated annealing (SA) has been widely used for tackling

different combinatorial optimization problems [6]. The process
of obtaining the optimum configuration is similar to that
followed in a physical annealing schedule. In SA, however, the
temperature is merely used as a control parameter and does not
have any physical meaning.

Figure 1 highlights the general steps in the algorithm. The
objective of the algorithm is to obtain the K cluster network
partition configuration, C*, that optimizes a particular cost
function. The process starts with an initial temperature value,
T0, which is iteratively decreased by the cooling function until
the system is frozen (as decided by the stop function).

For each temperature, the SA algorithm takes the current
champion configuration C* and applies the recursive function
to obtain a new configuration C’ and evaluates its cost, E’. If E’
is lower than the cost of the current E*, C’ and E’ replace C*
and E*. In order to avoid local minima, the algorithm randomly
accepts a new configuration C’ even though E’ is greater than
E*. In the latter case C’ and E’ replace C* and E* respectively.
One of the key characteristics of simulated annealing is that it
allows uphill moves at any time and relies heavily on
randomization [6]. The higher the temperature, the higher the

probability of accepting a configuration that worsens E* instead
of improving it. The lower the temperature, the lower the
probability of accepting worse configurations.

yes (downhill move)

No (uphill move)

Current Temperature
Current Cluser map
New cluser map to test
Champion cluster map
Current cost
Cost of new cluster map
Champion cost
Inner loop counter
Outer loop counter

Initialization
T = T0

Generate K Clusters C
Calculate the cost E=Cost(C)

E*=E; C*=C; t=0

equilibrium function (T, j)

Try New Clustering
C’ = reclusering function (C)

E’ = Cost function (C’)
∆E = E’ – E; j++

Cost is lower?
∆E < 0

C = C’ ; E = E’ r < e–(∆E /T)

r= random[0,1]

Lower Temperature
T = Cooling function (T, T0, t)

t++

Start with new temperature j=0

yes

no
no

yes

T
C
C’
C*
E
E’
E*
j
t

Definition

Inputs Examples

Variable

Equilibrium
unction

Cost function

Stop function

Reclustering
function

Constant (j = 5000);
“Stop repeats”
(function of T);…

Minimum temperature
“Stop repeat” criteria

Random move of one node

)(
1

i

K

i
CDiameter∑

−
Cooling function Geometric or logarithmic

Frozen?
stop function (T)

Done
Return (C*)

no yes

C*=C’;E*=E’
E’ < E*

yes
(new best)

no

K Number of clusters
T0 Initial Temperature

Figure 1. Simulated Annealing Algorithm for network partitioning

B. Comparison of SA with Other Optimizations
SA is one of many choices when looking for optimization

algorithms. For example, one can use the 2-Opt, 3-Opt, Lin-
Kernighan, genetic and neural net algorithms. As shown in the
work of Johnson [7] depending on the problem to which it is
applied, SA appears competitive with many of the best
heuristics: a) easy to implement; b) provides good solutions for
most problems; c) can deal with cost functions with arbitrary
degrees of non-linearity, discontinuity, and randomness; d) can
process arbitrary boundary conditions and constraints imposed
on these cost functions.
However, the general SA optimization can be quite slow.
Figures 2a and 2b show the completion time of SA for various
network sizes (25 nodes to 1000 nodes) and fixed cluster size
(25 nodes). The number of clusters to be generated varies based
on the network size and Cluster size (7) has been taken as the
cost function.

0

500

1000

1500

10
0

30
0

50
0

70
0

90
0# Nodes

Ti
m

e
(s

)

0
20
40
60
80

100 200 300 400# NodesTi
m

e(
s)

Figure 2. Convergence Time vs. Number of Nodes. (Cost Function= (6),

Uniform Transition Probs)

It can be observed that the completion time of the general
SA optimization increases significantly as the network size
increases. The completion time is in the order of 50s for
network sizes of 300 nodes; this time is increased to 400s for
network sizes of 1000 nodes. Thus, we can conclude it need
either a) a small networks (e.g. few hundreds of nodes), or b)

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE3866

large networks with low rate of topology changes (e.g., sensor
networks where we have none or very slow movement of the
nodes). In order to SA to be useful in large dynamic
environments, we propose enhancement to the general SA
optimization to produce good clustering maps in a much
shorter period of time.

IV. IMPROVING THE SIMULATED ANNEALING ALGORITHM
FOR CLUSTERING

The following sections describe some of the enhancements
that we propose to decrease SA’s computational time while
keeping its optimality. We focus on three functions from figure
1: a) the function that evaluates the frozen state (stop
function), b) the cooling scheme (cooling function) and; c)
algorithms that generate new clusters at each iteration of SA
(reclustering function).

Figure 3. (left) Opt. Energy vs. StopRepeats , (right) Time vs. StopRepeats
(Nodes=100,Clusters=5) (Cost Function=(6))

A. Improving the Stop Function
 In our implementation, SA terminates when the same

optimum cost value E* is observed for a continuous number of
iterations, called StopRepeats. Figure 3 (left) shows E* as a
function of the StopRepeats parameter for 5 different 100 node
networks. We can observe that in all scenarios we get similar
E* values for values of StopRepeats larger than 100. Therefore,
the optimality of the algorithm is the same whether the
algorithm is stopped using a number of StopRepeats equal to
100 or equal to 10000. The smaller the number of StopRepeats,
the faster the completion time of the algorithm (fig. 3 right).

B. Improving the Cooling Functions
The speed of the SA algorithm depends on the cooling

schedule used to lower down the temperature at each iteration.
The two most popular cooling schedules are:

• Logarithmic Cooling Schedule : Tt=T0/(1+lnt)
• Geometric Cooling Schedule : Tt=αtT0

Tt, T0 are the new and initial temperatures, respectively and t is
the number of iterations.

Figure 4 shows the effect the cooling schedule has on the
progress (value of cost function) and the speed (number of
iterations) of SA on a network of 100 nodes.

It can be observed that a geometric cooling schedule
decides faster on the clustering map than a logarithmic cooling
schedule. Therefore, it is better suited to a dynamic
environment. However, the clustering map obtained with the
geometric cooling scheme may not be as optimal as the one

obtained with the logarithmic cooling scheme. Nevertheless, as
figure 6 (right) shows this is not necessarily true in every case.

Figure 4. Optimal Energy vs. Number of Iterations vs. Cooling Schedule

C. Improving the Reclustering Function
We can further improve the convergence time of the SA if

we bind the state transition probabilities, used for the
generation of new clustering maps, to the cost function. Given
a cluster map C, a new clustering map C’ is generated by
selecting a node from a cluster (“from” cluster) and moving it
to a different cluster (“to” cluster). In figure 5 we show the
convergence time of SA for two different clustering map
generation schemes:

1) Initially, for simplicity and generality, we use uniform
probabilities to select nodes in the “from” and “to” cluster.

2) We customized the transition probabilities to the cost
function. For example, for a cost function that aims for
balanced size clusters, we assigned higher probabilities to
those clusters with larger cluster size in order to select the
“from” cluster and higher probabilities to those clusters
with smaller size to select the “to” clusters. This approach
utilizes the following state transition probabilities:
• ()"from" cluster

(Total Number Of Nodes)
iC

P i = (11)

• () (Total Number Of Nodes)-
"to" cluster

(Number of Clusters - 1)x(Total Number Of Nodes)
iC

P i = (12)

Figure 5 compares the completion time of the SA algorithm
applying uniform and non-uniform state transition probabilities
described by (11) and (12) for a network of 200 nodes.

0

500

1000

1500

10
0

30
0

50
0

70
0

90
0# NodesTi

m
e

(s
)

Uniform Trans Probs

Non-Uniform Trans Probs

0

10

20

30

100 200 300# NodesTi
m

e
(s

)

Uniform Trans Probs

Non-Uniform Trans Probs

Figure 5. Convergence Time: Uniform vs. Non-uniform probabilities
Uniform vs. Non-Uniform Trans Probs (Cost Function=(6))

Thus, where the search space is large (e.g., small number of
generated clusters imposes larger number of possible solutions
using non-uniform probabilities improves the speed of the
algorithm up to 100%. With smaller search space, however, the
application of non-uniform state transition probabilities does
not improve the speed of the algorithm compared to the
uniform probabilities. As our main objective is the

O
pt

im
al
 E

ne
rg

y

Number of Iterations

0

1 l nt
TT

t
=

+

0
t

tT a T=

0
t

tT a T=

0

1 l nt
TT

t
=

+
END

END

Optimal Energy vs. Number of Iterations vs. Cooling Schedule

O
pt

im
al
 E

ne
rg

y

Number of Iterations

0

1 l nt
TT

t
=

+

0
t

tT a T=

0
t

tT a T=

0

1 l nt
TT

t
=

+
END

END

Optimal Energy vs. Number of Iterations vs. Cooling Schedule

0
2
4
6
8

10
0

20
00

40
00

60
00

80
00

10
00

0
StopRepeats

Ti
m

e
(s

)

0
0.2
0.4
0.6
0.8

1

10
0

20
00

40
00

60
00

80
00

10
00

0
StopRepeatsO

pt
im

al
 E

ne
rg

y

N1 N2 N3 N4 N5

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE3867

improvement of the speed of the SA algorithm when we have
large search space, state transition probabilities customization
approach is desirable.

D. Summary of SA Options for Clustering
Since the dynamics change the topology, we do not want

the optimal clustering map but a good quality clustering map as
fast as possible. Thus, we chose a geometric cooling schedule
since it gives good quality clustering maps fast (even though in
some cases may not be as good as the results we get from the
logarithmic cooling schedule). We also set the StopRepeats to
the lowest value without significantly affecting the protocol
optimality and take into account the cost functions in the
generation of new clusters.

V. EVALUATION OF COST FUNCTIONS IN DYNAMIC
ENVIRONMENTS

This section evaluates the clustering maps that the SA
algorithm generates with the application of the cost functions
described in section 2. In order to test the proposed cost
functions and evaluate the performance of SA algorithm we
require a number of networks (connected graphs). For the
construction of the inputs we implemented software that
produces random connected graphs given the number of nodes,
their transmission range and the area. With this set of input
parameters we can control the density of the network. Figure 6
shows some samples of the networks. The top plot shows the
clustering map based on the balanced cluster size (equation (6))
for a network of 100 nodes and 10 clusters.

Figure 6. Generating 10 clusters from 100 nodes: (top) with Balanced size

clusters, (bottom) minizing the number of Border Routers.

Each closed curve represents a different cluster. By
measuring the number of nodes that each cluster has we
observe that we have perfectly balanced clusters (e.g., each

cluster consist of exactly 10 nodes (10nodes x 10clusters =
100nodes)). However, the clusters overlap.

If we do not want such overlap among clusters, we utilize
the metric that minimizes and balances the number of border
routers. The bottom of Figure 6b shows the clustering map for
equation (9). The results show that we kept the balanced
clusters (e.g., 10 nodes per cluster for 10 generated clusters),
but with more isolated and topologically defined clusters.

VI. CONCLUSIONS
This paper proposes some new cost functions and an

optimization algorithm for network partitioning based on
Simulated Annealing. We show that simple “intuitive” cost
functions, such as minimizing the average domain diameter, do
not produce good domains; rather we need complex functions
(e.g., equation 9) produce good results. We also show that
algorithms that find the optimal configuration are too slow to
be useful in a large network with rapidly changing topology,
but a modified simulated annealing (SA) algorithm, produces
good quality domains quickly. Specifically we use SA with
geometric cooling schedule, low StopRepeat value and
generate new clusters based on the cost functions.

We have to evaluate the overhead that the centralized
approach imposes on the network. Since we deal with mobile
networks, the generation of an effective clustering map it is a
solution for a limited time window (e.g., depending on the
network dynamics) and it cannot provide us with a complete
solution for the lifetime of the network. To achieve the
maintenance part of the clustering and due to the centralized
nature of SA we are currently looking ways to bind the SA
with localized algorithms (e.g., distributed heuristics). Finally
we think it is important to look beyond topology for input into
the global optimization. For example, investigate the use of
link quality or a node’s mobility characteristicsii.

REFERENCES
[1] K. Manousakis, J. McAuley, R. Morera, J. Baras, “Routing Domain

Autoconfiguration for More Efficient and Rapidly Deployable Mobile
Networks,” Army Science Conference 2002, Orlando, FL

[2] R. Lin and M. Gerla, “Adaptive Clustering for Mobile Wireless
Networks,” IEEE Journal on Selected Areas in Communications, pages
1265-1275, September 1997

[3] D. Baker, A. Ephremides, and J. Flynn “The design and simulation of a
mobile radio network with distributed control,” IEEE Journal on
Selected Areas in Communications, SAC-2(1):226--237, 1984

[4] M. Chatterjee, S. K. Das, D. Turgut, “WCA: A Weighted Clustering
Algorithm for Mobile Ad hoc Networks, “ Journal of Cluster Computing
(Special Issue on Mobile Ad hoc Networks), Vol. 5, No. 2, April 2002,
pp. 193-204

[5] S. Basagni, “Distributed and Mobility-Adaptive Clustering for
Multimedia Support in Multi-Hop Wireless Networks,” Proceedings of
Vehicular Technology Conference, VTC 1999-Fall, Vol. 2, pp. 889-893

[6] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Optimization by
Simulated Annealing, Science 220 (13 May 1983), 671-680

[7] D. S. Johnson and L. A. McGeoch, “The Traveling Salesman Problem:
A Case Study in Local Optimization,” in E. H. Aarts and J. K. Lenstra
(eds.), “Local Search in Combinatorial Optimization,” John Wiley and
Sons, Ltd., pp. 215-310, 1997

ii The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied of the Army Research Laboratory or the U.S.
Government

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE3868

	footer1:

