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Abstract— This paper presents a mathematical technique for comput- evolve deterministically between the occurrence of ‘failure
ing the stationary distribution of Markov processes that evolve determin- events', with each inter-failure duration dependent only on the

istically between arbitrarily distributed ‘failure events’. The key innova- : . .
tion in this paper is the use of a state-dependent time re-scaling technique, process state since the last failure event (and mdependent of all

such that the re-scaled process can be described by a Poisson-interruptedast and future failure events). We do not impose any specific
stochastic differential equation. This technique is first applied to compute djstribution on the inter-failure duration. This stochastic model

the statlonary_ WIndOW distribution of a_TCP flow performing idealized clas- applies to TCP behavior when it is abstracted into a continuous
sical congestion avoidance under variable, but state-dependent, packet loss,

and subsequently, to study the distribution of a TCP flow performing gener- Cycle of ‘congestion avoidance’, packet loss/marking and ‘fast
alized congestion avoidance. We show how the stochastic differential equarecovery’ [3]. We disregard the details of TCP timeouts and fast

tion can be solved by a rapidly convergent numerical technique to obtain recovery and assume an idealized behavior, whereby a conges-

the stationary distribution in the re-scaled (subjective) time, and present
the re-scalings needed to eventually obtain the distribution of the original

tion notification that occurs when the congestion window is W

Markov process. We demonstrate how this analysis can be used to com-Maximum Segment Sizes (M SSs) instantaneously reduces the

pute the window distribution of a TCP flow interacting with a RED, ERD
or ECN queue, with or without minimally assured throughput guarantees.

Keywords—Markov processes, TCP, window distribution, rescaling, con-
gestion avoidance, variable, loss, marking, RED, ECN.

I. INTRODUCTION

In this paper, we analyze the stationary distribution of a class
of feedback-controlled Markov processes, where the feedback
events occur with a random but state-dependent probability. In
other words, the state transitions of the process occur with a
state-dependent probability, but are conditionally independent
of past and futuretransition events. This research was motivated
by adesireto study the stationary distribution of TCP (the Trans-
mission Control Protocol), which is, by far, the most dominant
adaptive transport protocol used to regulate Internet traffic. In
the stationary phase, TCP regulates the injection of new pack-
ets using a ‘congestion avoidance’ agorithm [1], whereby the
congestion window (cwnd) is increased only on successful re-
ception of an ‘acknowledgment’ packet (positive feedback) and
decreased on determination of a missing acknowledgment (neg-
ative feedback). Internet routers provide this feedback through
either randomized packet drops or randomized packet marking
techniques, with the feedback rate (dropping/marking probabil-
ity) afunction, directly, of the router queue occupancy, and, in-
directly, of the congestion window size. Our analytical contri-
butions can thus be viewed as an extension to earlier work on
TCP analysis (e.g., [2]), where the TCP congestion window is
computed under the assumption of a constant feedback rate.

We consider one-dimensional Markovian processes that
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congestion window (and the number of unacknowledged pack-
ets) to [ X] MSSs. The dynamics of TCP window evolution can
then be captured by a discrete-time Markov process with state-
dependent transition probabilities. To further demonstrate the
utility of our mathematical technique, we also consider a more
genera class of TCP-like generalized congestion avoidance al-
gorithms. This is a parametric generalization of conventional
TCP congestion avoidance and belongs to the class of binomial
congestion control algorithms that have been studied recently
[4]. More importantly, recent research (e.g., [5]) has demon-
strated how such parametrized modifications to TCP behavior
can lead to higher network utilization and lower variation in
gueue sizes in the emerging QoS-aware and ECN-capable In-
ternet. Under generalized congestion avoidance, TCP increases
the cwnd from its current value W by ¢, W on receiving an
acknowledgment without congestion indication (packet drop or
marking) and decreases it by c,WW# on receiving an acknowl-
edgment containing a congestion indicator. Here «, 3, ¢ and
co are constants that parametrize the algorithm; clearly, choos-
inga=-1,8=1,c; = 1and ¢, = 0.5 resultsin the classical
(TCP) congestion avoidance algorithm.

While the TCP window evolution belongs to the class of
discrete-space (countably infinite), discrete-time processes, our
analytical technique applies to the more general case of a
continuous-time, continuous-space process W (¢). The key in-
novation in our analysis is the employment of state-dependent
rescaling in both the time and space axes. In particular, we
study the properties of anew process Y (7), derived from W (),
where the time index 7 is a non-linear function of ¢. By using
an appropriate time rescaling function, the ‘points of failure
of the process Y (7) become realizations of a Poisson process,
thereby alowing us to relate the steady-state probabilities via a
Kolmogorov equation. The differential equation is then solved



through a novel iterative numerical technique, which can be
shown to exhibit rapid and guaranteed numerical convergence.

For ease of exposition, we shall usually restrict our formu-
lation and notations to the case of TCP congestion avoidance
(ideal or generalized), taking care to point out the modifica-
tions needed for more generic stochastic processes. Accord-
ingly, we consider the stochastic process ()52, where W,
stands for the congestion window just after the n*" acknowledg-
ment packet ! has arrived at the source. The resulting discrete-
time Markov process exhibits the following conditional proba-
bilities:

P{W71,+1 =w+ Clwa|Wn = w} =1 _p(w) (1)

)

where p(w) is the congestion notification probability when the
congestion window is w. (Thetime index n in the above equa-
tions is referred to as ack time in this paper, since it increases
only with the receipt of acknowledgments.) Inthe TCP case, the
‘points of failure’ of the processes W (¢) and Y () correspond
to the recei pt of congestion feedback from the routersin the traf-
fic path. Such feedback is usually provided through either ran-
domized packet dropping (e.g., the Randomized Early Detection
(RED) [6]) or through explicit packet marking (e.g., the Explicit
Congestion Notification (ECN) mechanism[7]). The exact feed-
back mechanism is unimportant for our analysis, which consid-
ers TCP response to abstract congestion notifications and does
not distinguish between packet dropping and marking mecha
nisms. We shall, however, provide simulation results with both
dropping and marking based service models to evaluate the ac-
curacy of our analytical technique.

Therest of the paper is organized asfollows. In section 11, we
provide asurvey of related work and al so discuss the applicabil -
ity of our model to TCP traffic. In section 111, we describe the
time and space rescalings, as applied to both TCP performing
classical congestion avoidance, and to a more generic class of
Markov processes. In section 1V, we obtain the resulting Kol-
mogorov equation for this re-scaled process, and derive the it-
erative technique for rapidly solving this differential equation.
Section V provides numerical examples analyzing the window
behavior of TCP classical congestion avoidancewith Early Ran-
dom Drop and Random Early Detection queues and evaluates
the effectiveness of our numerical techniquesin predicting TCP
behavior. While section VI shows how the numerical technique
applies to the more general case of a TCP process perform-
ing generalized (as opposed to classical) congestion avoidance,
section VII applies this analysis to the interaction of a gener-
alized TCP flow with an ORED [8] buffer under the Assured
Service[9] model. Finally, section VIII concludes the paper.

P{W7L+1 =w — ng’a|Wn = w} = p(w)7

Il. RELATED WORK AND MODEL APPLICABILITY

There has been afairly large body of literature analyzing the
dynamics of TCP congestion control. All of the early papers,

LIn the case of packet drop, where congestion is indicated by the absence
of an acknowledgment, we can conceptually assume the arrival of a ‘ phantom’
negative acknowledgment.

however, assume a constant drop or marking probability. The
‘square-root’ formula, which states that the average window of
a persistent TCP connection if of the order ,/p, and which ig-
nores the effects of TCP timeouts and fast recovery, has been
rigorously derived in [2] and, less rigorously, in [10] and [11]
(the last publication also considers modificationsto the formula
resulting from losses of acknowledgment packets). By consid-
ering the effects of fast recovery and timeouts in greater detail
for various TCP versions, [12], [13] provide better estimates of
throughput (especially at larger |oss probabilities). Among these
papers, only [2] derives the stationary window distribution of
the TCP flow, albeit for aconstant notification probability p. [2]
employs a scaling technique, wherethetime axisisrescaled lin-
early by a factor p, and the state space is rescaled linearly by
afactor \/p, resulting in a rescaled process W (t) = \/pW) ¢ .
(We call the time index generated by the rescaling subjective
time) We shall aso employ similar rescalings in this paper.
While our space rescaling will till be linear, the variable loss
probability of our model requires the time rescaling to be non-
linear, as explained in Section 111.

Severa recent research efforts have also explored the use of
differential equations to model the dynamics of TCP window
evolution. By treating the congestion notification events as a
Poisson process with rate \, [14] treats the window evolution
of TCP through a stochastic differential equation (much like we
do). Thisdifferential equation can then be solved to derive vari-
ous momentsof thewindow size distribution. Moreover, thisap-
proach can explicitly account for timeout events and restrictions
on the maximum window size. Additionally, [15] extends this
analytical technique based on Poisson dropsto a closed system,
where the Poisson rate is not constant, but rather, \(p), afunc-
tion of the TCP instantaneousrate p. However, the Poisson |oss
assumption is justified only through a limiting assumption that
holdswhen aflow traverses a very large number of queues, asit-
uation unlikely to be observedin practice. In contrast, our analy-
sisstartswith an explicit state-dependent congestion notification
model and introduces a time-rescaling that rigorously generates
an equivaent Poisson driven Stochastic Differential Equation
model, that holds theoretically for any number of queues. An-
other interesting and mathematically rigorous approach for an-
alyzing TCP dynamics employs the use of ‘max-plus’ algebra
to study the dynamic evolution of discrete-time processes. This
approach was used, for examplein [16], to study the dynamical
behavior of TCP Tahoe and Reno through a linear dynamical
system, and derive formulas for TCP throughput in the pres-
ence of multiple bottlenecks. However, the algebra holds when
losses (in general, congestion feedback events) are generated ei-
ther deterministically (tail-drop buffers), or occur as purei.i.d.
events (no correlation to the flow's window size). Finally, [17]
analyzes the window dynamics of TCP under the assumption of
a stationary, but otherwise general, feedback process. (In con-
trast, our analysis is more restrictive, since it applies only to
independent feedback events). While [17] proves that the win-
dow distribution has a stationary solution that can be expressed
as an infinite sum of independent random variables, it concen-
trates on deriving only the first two moments, rather than the



entire distribution.

To evaluate the accuracy of our mathematical technique, we
shall compare the analytical model against simulation studies
performed with popular TCP versions (Reno and NewReno).
The individua TCP flow is subject to packet drops performed
by a router buffer according to the popular Random Early De-
tection (RED) or Early Random Drop (ERD) [19] algorithms. In
an ERD buffer, the drop probability is a function of the instan-
taneous buffer occupancy; in aRED buffer, the drop probability
isafunction of the average queue length. We shall demonstrate
fairly good agreement with simulation results for both the ERD
and, surprisingly enough, the RED case, even though RED’s use
of an exponentially-weighted moving average (EWMA) for the
gueue occupancy Violates our assumption of memoryless loss
events.

To further study the applicability of our analysis to general-
ized TCP congestion avoidance, we shall also analyze the in-
teraction of a generalized TCP flow with a router buffer under
the more complicated Assured Service [9] model. Under this
model, a TCP flow is associated with a minimum assured rate
and is subject to congestion notification only when it exceeds
this rate. We consider the interaction with an ORED buffer,
whichisdescribed in [8], and which essentially randomly marks
packets (similar to ECN), but only if they have been tagged as
non-conformant at the network edge. The reasonable accuracy
of our analytical model demonstrates the practical utility of our
mathematical technique.

A few words arein order about the applicability of thisanaly-
sisto TCP behavior. Our Markovian model of process evolution
ignores transients such as timeouts and fast recovery: both [12]
and [13], on the other hand, show the importance of timeouts
when packet loss rates are high. When congestion notification
is achieved via packet drops, our analysisis accurate as long as
the loss probabilities are relatively small (lessthan ~ 1 — 5%)
and the delay-bandwidth product (including the buffering de-
lay) high enough ( =~ 10 MSSs and above) to ensure that time-
outs are relatively rare events. When ECN is used to explicitly
signify congestion, we can safely ignore timeout-related tran-
sients since packet |osses are absent and treat the TCP window
evolution as a Markovian process. However, our mathemati-
cal technique is based on a limiting analysis (we make p | 0);
accordingly, our numerical results are more accurate when the
marking probabilities are not excessively large. The dispropor-
tionate impact of timeoutsin current TCP versionsis due to the
combined effects of coarse-grained timers and the integration
of loss recovery mechanisms with congestion control in current
TCP versions. When loss recovery is separated from adaptation
to congestion (as in SACK TCP), timeouts will begin to play a
relatively less important role and the range of loss probabilities
over which thismodel holds for TCP behavior will increase.

I1l. PROCESS MODEL AND RESCALINGS

In this section, we first describe the discrete-time model
for TCP classical congestion avoidance and provide the ap-
propriate time and space rescalings used to derive a more
amenabl e continuous-time, continuous-space process character-

ized by Poisson points of failure. After proving the properties
of interest of this continuoustime process, we show how amore
general Markov process with state-dependent transition proba-
bilities can similarly be rescaled to one that is characterized by
Poisson points of failure, and is thus amenable to analysisviaa
Kolmogorov equation.

A. The Model for TCP Behavior

The TCP sourceis assumed to send alarge datafilein thefor-
ward direction with the congestion window acting as the only
constraint on the transmission of packets. It is assumed that the
connection never goes into timeout, that the receive or adver-
tised window never limits the number of unacknowledged pack-
ets, that datais always sent in equal-sized segments (one MSS)
and that acknowledgments are never lost. The receiver gen-
erates an acknowledgment for every received packet (we shall
also extend the analysis to model the phenomenon of ‘delayed
acknowledgments'). Packet losses are assumed to be condition-
ally independent.

For the case of classical TCP congestion avoidance, equations
(1) and (2) reduceto:

1
P{W71,+1 =w+ E|Wn = w} =1 _p(w)a (3)

P{Wii1 = 5Wa = w} = p(w), )

wherep is the packet dropping probability 2. Our Markovianfor-
mulation holds when, given the current window size, the gen-
eration of congestion notification is conditionally independent
of past and future congestion events. Asin ([2]), we will ap-
proximate this process by a more amenable continuous-space,
continuous-time process.

Thetimeindex in equations(3) & (4) iscalled acktimeandis
is a positive-integer valued variable that increments by 1 when-
ever an acknowledgment packet arrives at the source. Ack time
increases linearly with clock time only when the window size
and round trip times are both constant. L et the cumul ative prob-
ability stationary distribution for this process under this ack time
be Fck () .

B. Time and State-space Rescaling

To derive a more amenable continuous-time, continuous-
valued random process from the process described by equations
(3) & (4), we rescale both the time and state-space axes. This
leads us to introduce the concept of subjective time, which is,
roughly speaking, related to ack time through an invertible map-
ping. For the case considered in [2], where the loss probability
was a constant p, the subjective time was derived from ack time
by linearly compressing the time scale by a factor p, by using
therelation dt supjective = p-dtacr. When the loss probability is
not constant but state-dependent, a state-dependent (non-linear)
scaling must be used.

2Unless otherwise stated, we shall use the terms* packet dropping’ and * packet
marking' interchangeably, since they are equivalent indicators of congestion, as
far asthisanalysisis concerned.



For the specific TCP process under consideration, our quan-
tized increment in subjectivetime ¢ is provided by the mapping

©)

where At is the (real-valued) increment in subjective time, An
is the (integer-valued) increment in ack time and p(,,) is the
loss probability associated with the value of the window W, at
ack time n. In other words, for a process defined under this
subjective time, time advances at a variablerate, as an increase
in the ack time index of 1 corresponds to a state-dependent in-
crease of p(W,,) in the subjective time index. Thus, t(N), the
subjective time immediately after sending packet number N, is
expressed ast(N) = I p(W;). AsO < p(W,,) < 1, tisa
real-valued sequence obtained by a contraction of the ack time
index. AS pinq. | 0, thelimiting subjective time index becomes
a continuous variable. We shall see that, for this specific case,
the process defined in subjective time has a failure rate that be-
comes Poisson and constant asymptotically, as the maximum
dropping probability paz | 0.

If W'(t) represents the process W,, in subjective time ¢ via
the transformation in equation (5), its sample path between the
events of packet failure can be modeled by the difference equa-
tion

At = p(W,)An

AW 1
At p(WHW’

Aspmaz | 0, the difference equation can be modeled by a cor-
responding differential equation with increasing accuracy. The
differential equation would however, in the limit, be ill-behaved
as the derivative goes to co as pinq. | 0. To obtain awell be-
haved process, we also need to rescale the state space of W'(t).

To rescae properly, we assume that 2 W) ¢y 3 , (i.e,

the ratio between the minimum and maximum loss probab|I|-
tiesis uniformly bounded away from 0). If we then rescale the
state-space of the process W' (¢) by the multiplicative constant
/Pmaz the resulting process, which we call W (t), obeys the
functional relationship

W(t) = VPmax W,

(6)

(")

arg max j : Zp(m) <t
=0

This continuous-time and continuous valued process W (¢) will
be the subject of our study and analysis.

Equation (5) impliesthat aloss probability of zero (p(W,,) =
0) resultsin anincreasein ack time but no increasein subjective
time. Subjective time thus loses information about the process
behavior during those ack times when the system evolves deter-
ministically without loss; the mapping in equation (5) is non-
invertible if p(17,,) is 0. Later in the paper, we shall see how to

wheren = n(t) =

3The above requirement may, in several cases, be more stringent than practi-
cally necessary. For example, when the variation of loss probability with win-
dow size is very gradual, the bulk of the distribution mass will often lie around
some small value of p, say p*. We can then use \/p* as our space-rescaling
factor; for the rescaled process to be well-behaved, we then merely need” )

to be bounded away from 0.

correct the stationary distribution of the process for portions of
the state-space where the loss probability equals 0; for the time
being, assumethat p(1W,,) # 0 in theregion of interest.

Theorem1: AS pa. | 0, the process defined by equations
(3), (4) & (7), converges (path-wise) to a processwhose window,
W (t), behaves as follows:

There is a Poisson process with intensity 1, the points of which
are denoted by (7,,)5% ;. In between the points of this Poisson
process, the window, W evolves according to the equation

dW pmam

2L fmar 8
& oW ®

At the points of the realization of the Poisson process, we have
W(rt) = gW(r").

Proof:
The proof of the differential equation describing the window
evolution between failure eventsistrivial and obtained by taking
appropriate limits in equations (3), (5) & (6). The relationship
at an instant of failure also follows easily from equations (4)
and (6). Note that the derivative in equation (8) is always well-
defined by virtue of our assumption that p(1W ) > 0 for the
interval under consideration. The proof that the instants of fail-
ure become a redlization of a Poisson process of intensity 1 is
providedin Appendix |. It consists of showing that as p 4. | 0,
the number of packet transmission eventsin any finiteinterval T
becomesinfinitely large and the probability of |oss of each trans-
mitted packet is such that Prob( no loss in an interval T) =
e T, &
The process defined in Theorem 1 is an approximation of the
re-scaled ‘ TCP' process; the approximation becomes asymptot-
icaly accurate as the loss probabilities become smaller. For a
given loss probability function p(17), we analyze the rescaled
‘TCP process by assuming that it exhibits the behavior of the
limiting process outlined by Theorem 1. In other words, even
for afinite loss probability, we assume that W (¢) is described
by the differential equation (8), with an i.i.d and exponential
distribution of times between packet drops. We can thus expect
the numerical analysis outlined later to predict TCP window be-
havior more accurately as p ... becomes smaller.

C. Distribution in (Continuous) Ack Time

We shall see how to compute F',,;; (w), the stationary cumu-
lative distribution of 1 () in subjectivetime, later in section I11.
We now consider how to correct this distribution for the state-
space and time rescalings, introduced in equation (7), assuming
Foupj(w) isalready known.

The state-space scaling results in a simple linear transfor-
mation of the probability distribution. F,;(w) is corrected
first to obtain F(w), the cumulative stationary distribution in
subjective time but without space-rescaling by the relationship
F (w) = E@ubj( pmaacw)-

Our desired distribution F,.;(w) can then be obtained by
noting that the state-dependent rescaling of subjective time (in



equation (5)) introduces a sampling non-uniformity in the pro-
cess W (t). To seethis non-uniformity, note that an acknowledg-
ment arriving when the window is w occupiesan interval of 1 in
ack time but correspondsto an interval p(w) in subjective time:
auniformly distributed sampling on the subjectivetime axis cor-
responds to a non-uniform sampling (with non-uniformity pro-
portional to p(w)) in the ack time frame. Aslong as the process
W (t) isergodic, this sampling bias correspondsto a completely
equivalent non-uniformity in the stationary distribution.

The sampling non-uniformity due to time-scaling is cor-
rected, to obtain F,.,(w), by dividing the probability density
in subjective time, dFs(w), by the appropriate quantity p(w).
Thisis achieved by the transformation

(9)

D. A Generalized Process

Theanalysisused to derivethe stationary distribution of 1V (¢)
is applicable to a more general class of processes. We now
present a generalized notion of subjective time by consider-
ing a continuous-time stochastic process, X (¢), with a state-
dependent failure rate \(z). We can now derive another process
Y (7) from X (¢) such that an increase of dt in the time index ¢
of X (t) corresponds to an increment of \(X (¢))dt in the time
index 7 of Y (7). A realization of the processY” will thusassume
the same state-space values as the corresponding realization of
X but at different instants of time. Subjective time can also be
though of as a history-and-state dependent rescaling of the base
(ack) time index* The importance of the processy’ (1) lies in
the fact that Y () will now have a constant failure rate in its
own notion of time (proved in Appendix ). The time index,
7, of the process Y () is then known as subjective time in ref-
erence to the time index ¢ of the process X (¢) and the two are
related by the differential relation

dr = XX (t))dt (10
Subjectivetime can a so be considered to be avariabl e stretching
(or contraction) of the time index.

We can thus see that any arbitrary process with a state-
dependent failure rate can be reduced to a process with a con-
stant Poisson failure rate by moving to an appropriate subjec-
tive time. Thus, we do not lose generality by considering only
processes with constant failure rates. Accordingly, we can then
consider a general process W (t), described by the differential
equation

aw 1
dt— q(W)
in between the instants of failure of a Poisson process with rate
A; let ¢ be a well-behaved function (finitely many discontinu-
ities) such that ¢(w) > 0V w. At the instants of failure of

(11)

4Readers familiar with Weighted Fair Queuing (WFQ) ([20]) may benefit
from realizing that our subjective time formulation is analogous to that the defi-
nition of virtual time in WFQ); both attempt a state-dependent rescaling of time
so that the process of interest has an invariant behavior in the new time scale.

the Poisson process, the process evolutionisgivenby W (¢t ) =
AW (t™)), where A(w) : [0,00) — [0, 00) isastrictly increas-
ing function of w such that A(w) < w, Yw > 0, A(0) = 0.
Since A is strictly increasing, it has an inverse function a(w),
such that a(A(w)) = w and a(w) > w, Yw > 0. For the TCP-
specific case at hand, we have A(w) = fw (sothat a(z) = 2x),
the intensity A of the Poisson processis 1 and the rate function
a(w) = Xzm=

Pmazx

In the next section, we shall formulate and solve the Kol-
mogorov equation for this generalized process W (t).

IV. THE STATIONARY KOLMOGOROV EQUATION AND ITS
SOLUTION

In this section we obtain the stationary distribution of the pro-
cess, definedin section 111.D, whose behavior is described by the
equation 421 — 7y in between the points of a Poisson
process of rate A. At the points of the Poisson process, W ()
isobtained by W(t+) = A(W(t7)); let a(x) be the inverse
function of A(x).

Theorem2: The stationary cumulative distribution F'.s; ()
of the processin section I11.D satisfies the differential equation

dFsubj ((E)

WAL — Nw) (P (a(a)) -

Fsubj ((E)) (12)

Proof:

If Fyupj(z,t) isthe cumulative distribution function at (subjec-
tive) time ¢, then the distributions at times ¢ and ¢ + At can be
related as

At
Fsu j $+—,
W @)

Fsubj ((E, t) + )\At(Fsubj (a(m)) — Fsubj ((L’))

Thefirst term in the RHS of the above equation asserts that the
process cannot increase by more than % in an interval of time
At whilethe second term considersthe probability of loss events
that would cause the process value to reduce below = at time
t + At. Sincethe stationary distribution Fs,.; («) isinvariant in

t, we get the resulting differential equation

t+ At) =

dFsubj (J))

WL — Nw) (P (a(a)) -

Fowj(z))  (13)
¢
We were unable to obtain a closed-form analytical solution

for this differential equation. We however provide an open-form

analytical expression for Fly,; () that translates into a rapidly
converging numerical technique for evaluating the cumulative
distribution. In passing, we note that the approximation of the

TCP process results in the differential equation

dFsubj (J))

e = q(x)(Fsubj (2([}) - Fsubj ((IJ)),

(14)

which will be used in the numerical examples to be presented
later.



A. Solution of the Equation
Let G be the complementary distribution function defined by

therelation G(z) = 1 — Fyup;(x). Equation (12) is equivalent
to the equation
dG(x
A | M@)G@) = MG @) (9)
with the boundary conditions G(0) = 1, G(c0) = 0. Let
Q(z) = [ A\g(u)du and define G(z) = H(z)e~ ) where

H(z) is an arbitrary function (to be evaluated). H(x) is then
seen to obey the differential equation

1) = 1) - [ o)

Now, suppose that lim ., H(z) exists and is equal to H. H
will exist only if the tail of the complementary distribution de-
caysas e~ ?(*), By evaluating the behavior of equation (15) for
very largex (where G(a(x)) can be considered to be 0 with neg-
ligible error), we can easily see that this phenomenon of expo-
nential decay isindeed true. Now, by letting z T oo in equation
(16) and noting that G'(a(u)) = e ~?@(W) H (a(u)) , we have

Q(u)G

(a(u))du — (16)

H(z)=H -\ / h q(u)eQW=QE) i (g(u))du  (17)

with the boundary conditions H(0) = 1 and H (<) = H.

By defining J(u) as J(u) = Mq(u)eQW-Qaw) —
a(w)
Aq(u)e” /. 4(P)dr  equation (17) reduces to
g —/ J(u)H (a(u))du (18)
By iterated expansion, H (x) can be shown to obey the relation
k—fold
x):ﬁZ(—nk/ /
k=0 u>x ug>pug—1
J(ur) ... J(ug)duy . .. duy (29

Appendix Il provides aproof that the aboveinfinite sum indeed
convergesto alimit when the function ¢(z) isnon-decreasingin
x; this condition holds for the TCP process whenever the drop
probability is a non-decreasing function of the window size.

B. Numerical Computation

Repeated substitution in equation (18) offers a numerical
technique for evaluating H(x). As H(x) tends to a limit as
x ] oo, it can be treated as a constant beyond a certain value
Tupper (Chosen such that the resulting error in computing H (x)
is at most a small value €). We can then obtain an approxima-
tion for H(x) by setting the value of H(x) beyond z ,pper tO
be a constant and computing H (z) between (0, z ypper ). After
the algorithm converges, we can divide by H(0) to satisfy the
boundary conditions H (0) = 1, H(co) = H.

The complete numerical procedurefor computing F'eyp; () is
asfollows:

1. Chooseasmall positive constant e (¢ > 0), whichindicates
the accuracy of the computation.

2. Find zpper suchthat [ J(u) du <e.

3. Let Bo(z) = 1 for dl z and let B;(z) = 1,
Lupper Vi

4. Also compute K (z f J(u) du for A(zypper) <
T < Typper. DENOtE K(A(a:uppw)) by .

5. For al values of i, let B;(x) = 1 —
A(xupper) S X S xupper-

6. Repeat the following iteration in the range (0, A(z upper))
until the function converges below a specified bound:

Ve >

K(z), for

A(Tupper)
Bila)=1- [ J(u) Bi_1(Bu) du — C.

7. Let thefinal solution be denoted by B(x).

8. Renormdize B(z) = g%’g)) to satisfy the necessary bound-
ary conditions. B(z) is then the numerical estimate for
H(x).

9. The complementary probability distribution is then ob-
tained as

G(z) = B(z)e @@

10. Compute Fyp;(x) from Fyp,(x) = 1 — G(z).

(20)

C. Correcting for Lossless Evolution

Asnoted in section 11.A, the rescaled TCP process in subjec-
tive time cannot capture the dynamics of the window evolution
when the loss probability is 0 (as subjective time freezes during
these epochs). From a sample path point of view, the infinite
derivative in equation (8) (Proposition 1) and the zero time in-
crement in egquation (5) imply that whenever the TCP process (in
subjectivetime) enters an interval in the state-space correspond-
ing to 0 loss, it instantaneously jumps from the lower to the up-
per end of theinterval. In this subsection, we show how F',,.; ()
for the TCP process, obtained from the mapping in equation (9),
can be corrected to incorporate the dynamics of the lossless evo-
[ution; the corresponding correction for the generalized process
isthen straightforward.

The correction for the density f..x(z) in ack time (after the
correction for state-space rescaling has been completed) is com-
puted by the level crossing principle which equates the rate at
which the process evolves to the right of avalue x to the rate at
which the process transitions to the left. For the TCP process,
thisresultsin the equality

2x
fua@)y = [ pa)dFuon(u). 2y

This follows by noting that at a point z, TCP evolves to the
right at arate % while it moves to the left at the rate governed
by the loss rate in the interval (x,2z). By first obtaining the
values of F,.,(x) (up to ascaling constant) in the regions with
non-zero loss probability, we can correct the solution for regions



with zero loss probability using the equation (21)5 (If Fj,cx(u)
inthe RHS of equation (21) is unknown for any w, it follows that
p(u) = 0 aso; the unknown region may thus be left out of the
computation.)

The numerical recipe for correcting the distribution for the
lossdessregionis:

1. For the region(s) where p(z) = 0, compute the density

fack(z) using the level crossing relation

2x
facklz) =« / (1) faop () (22)

2. Renormalize fock(x) by [ fack(u)du over theentire state-
spaceto ensure awell formed probability distribution func-

tion focr ().

V. RESULTS FOR CLASSICAL CONGESTION AVOIDANCE

We now comparethe analytical results of the previous section
with those obtained via simulations. The simulations were car-
ried out with the TCP Reno and NewReno versions in the ns-2
[22] simulator package. Although these versions differ in their
fast recovery mechanisms and in the frequency of timeouts, the
performance of the two versions was found to be almost identi-
cal for the relatively low loss environments studied in our simu-
lations. To obtain adequate statistical confidence, simulation re-
sults were obtained by averaging over runs with multiple seeds;
each run comprised at least 10° packet transmissions. While the
entire simulation process would take ~ 10 — 15 minutes, the
numerical computation over a fairly fine grid (~ 1000 points)
took only about 30 secs (on atypical workstation).

A. TCP with Smple Sate-Dependent Loss

The results in Fig.1 correspond to the case when the packet
drop probability depends directly on the window size. We
achieve this effect by passing a TCP connection through a sin-
gle queue with negligiblelink propagation and transmission de-
lay (al outstanding packets are thus effectively resident in the
gueue), and independently dropping each arriving packet with
a probability that varies with the queue occupancy. The drop
probability in this example increases linearly with queue occu-
pancy. It can be seen that the simulated behavior offers excel-
lent agreement with the numerical prediction in this example.
For comparison purposes, we include the distribution predicted
by the ‘square-root formula in ([2]) assuming a constant drop
probability; the constant value of the drop probability was taken
to be the drop probability corresponding to the mean TCP win-
dow size obtained viasimulation. As expected, the‘ square-root’

5The level-crossing equation (21) is actually valid for the entire range of
the TCP process state-space (and not just where p(z) is 0). It can easily be
seen that the equation (14) (in subjective time) is equivalent to equation (21)
(in ack time) by noting that the following set of relations: p(z)dFycr(z) =
Kqu(iE), fack(m) = %;()x)' F@(l’) = subj(\/mx); and fg(ﬂ)) =
/Pmaz fsubj (v/Pmaz), Where K is a normalizing constant. The elaborate
rescalings and computations in subjective time in this paper are necessary sim-
ply because there does not appear to be a simple way of solving equation (21)
directly over the entire state space! Another way of looking at the subjective
time formulation is therefore to think of it merely as a change of measure that
replaces equation (21) with the more tractable version in equation (14).

approximation predicts a much larger variation in the window
size than the true distribution.
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Figure 1: TCP Window Evolution and State-Dependent L oss

B. Predicting TCP behavior with Queue Management Tech-
niques

One of the goals of our analysis is to predict the window
distribution of a persistent TCP flow when it interacts with
router queue management mechanisms like Early RandomDrop
(ERD) and Random Early Detection (RED), where the packet
drop probahility is not constant but varies with the queue oc-
cupancy. In the present paper, we consider the case where the
router port buffers only a single flow; approximate techniques
for determining the window distribution for multiple TCP flows
were presented in [21].

While both ERD and RED involve variable drop probabili-
ties that depend on the queue occupancy, they have significant
differences (discussed in Appendix Il), of which the two most
important are:

o Thedrop probability in RED is dependent on an EWMA of
the queue occupancy, while the drop probability in ERD is
afunction of the instantaneous queue length.

o RED uses drop-biasing to generate an inter-drop gap that
is uniformly distributed; ERD drops each packet with an
independent drop probability, resulting in inter-drop gaps
that are geometrically distributed.

These differences make RED much harder to model than ERD:
the use of averaged queue occupancies to determine drop prob-
abilities destroys the state-dependent |oss model (the drop prob-
ability is then afunction of the past state behavior), while drop-
biasing negatesthe assumption of independent packet drops. We
circumvent these problems by (simplistically) assuming that the
drop probability depends only on the instantaneous queuelength
and that each packet is dropped independently. We thus ignore
the effect of queue averaging in RED; we shall however present
asimple correction to account for the effect of drop-biasing.



B.1 Relating the Loss Probability to Queue Occupancy

Asalready stated, we assumethat theloss probability is deter-
mined by the instantaneous queue occupancy (for both RED and
ERD); the loss probability for a given TCP window is derived
by relating the queue occupancy to the TCP window. Neglect-
ing the periods of fast recovery, the number of unacknowledged
packetsin flight, when thewindow isW,,, equals | W,, |, orinan
approximate sense, ,,. If B (pkts/sec) isthe service rate of the
(bottleneck) queue and the round-trip delay (ignoring the queu-
ing delay) is RT'T (sec), then B.RT'T packets are necessary
to fill the transmission pipe. Assuming that this pipe is always
full®, the occupancy of the queueis given by the residual number
of unacknowledged packets, so that we have

Q, =W, — B.RTT (23)
For our experiments, the loss function is given by the tradi-
tional model of RED behavior, i.e., p(Q) = 0 for Q < min,
p(Q) = Pmaz fOr Q > max,, and p(Q) = %pmum
for ming, < Q < maxy,. Theloss probability as a function of
the window sizeis then given by p(W — B.RTT)”

While the above model cannot capture the queue averaging
function of RED, we can make a simple correction to approxi-
mate the effect of drop biasing in our model. We note that for
a given value of drop probability p, the uniform distribution of
inter-drop gaps in RED implies that the average gap is 5; the
geometric distribution of gaps (resulting from an independent
loss model) implies an average gap of +. For the RED simula-
tions, we accordingly modify our analytical drop function such
that our average agrees with that of RED, i.e., for agiven queue

occupancy ¢, wWe make prodet (¢) = 2prea(q).

B.2 Experimental Results

Illustrative results of our validation experiments are provided
infigures 2 and 3, which plot the numerically predicted cumula
tive distribution of the TCP window against that obtained from
simulations. Figure 2 shows that our numerical analysis pro-
vides an excellent match with simulation when the queue im-
plements the ERD algorithm. The distribution predicted by the
square-root formula is also provided for comparison. Figure
3 consists of two graphs, the top one for a RED queue with
B.RTT = 0 and the bottom one with B.RTT = 5. Thetop
graph isolates the effect of approximating the RED averaging
process from the performance obtained when this approximation
is combined with the assumption of a full pipe (equation (23)).
The two graphs show, somewhat surprisingly, that the numer-
ical predictions (with the correction for drop biasing) provide
fairly close agreement with the simulated distribution when the
gueue implements RED. The closeness of the fit is somewhat

6This assumption holds only if the buffer never underflows (which, in turn,
can hold only if the time taken by the buffer to drain miry;, packets is longer
than RT'T).

"Note that the ack arriving at the source at time n (when the window is 147,)
corresponds to a packet generated a round-trip time earlier when the window
was W, ; the loss probability of the packet acked at » should thus be p(11},/).
However, as cwnd increases by a maximum of 1 segment in a round-trip time
W, = Wy, sothat the loss probability of the packet acked at n can be assumed
to be p(W,,) with negligible error.

unexpected since the averaging effect in RED queues typically
last over 500 packets; we expected this memory to significantly
degrade the accuracy of our modeling.

C. Incorporating Delayed Acknowl edgments

Our model of TCP window evolution has so far assumed that
TCP receivers generate an acknowledgment for every arriving
packet. Many implementations, however, use delayed acknowl-
edgmentsto slow therate of window expansion or alleviate con-
gestion on the reverse link. We can model this artifact by not-
ing that if the receiver sends one ack for every K packets re-
ceived, then the TCP window grows from W to W + - for
every K packetstransmitted. An approximation to this behavior
is achieved by supposing that the TCP window grows by only
1/K* of its value for every packet transmitted i.e., by modify-
ing the window evolution equationto W,, 1 = W,, + ﬁ

Numerical results verify the effectiveness of this correctionin
accounting for the phenomenon of delayed acknowledgments.
The graphsin figure 3 contain the compari sons between analysis
and simulations when a TCP connection performing delayed ac-
knowledgmentsis combined with the RED queue management
algorithm, while figure 4 shows the comparisons when a TCP
performing delayed acknowledgments interacts with the ERD
gueue management algorithm. For the ERD queue, we also pro-
vide the theoretical distribution obtained by applying the cor-
rection for delayed acknowledgmentsin the square-root formula

12].
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VI. MODELING THE GENERALIZED CONGESTION
AVOIDANCE ALGORITHM

Having demonstrated the accuracy of our anaysis for the
case of classical congestion avoidance, we now extend the tech-
nique to analyze the generalized congestion avoidance algo-
rithm. Such an analysiswill help usto study the implications of
changes in TCP's current congestion avoidance algorithm. We
shall shortly see that our extended technique is applicable only
when 8 = 0. While a theoretical constraint, this condition is
practically not very important since al suggested modifications
to TCP congestion avoidance advocate multiplicative-decrease
(B =0).

By ignoring transients related to fast recovery and timeouts,
the window evolution under generalized congestion avoidanceis
aMarkov process with the following conditional probabilities:

P{Wpi1 =w+cqu|W, =w} =1—-pw) (24)

P{W,i1 = w — caw®|W,, = w} = p(w). (25)

As in section II.A, we proceed by scaling the process
(W,)52_, in both the state-space and time axis. For the general-
ized case, we use the following state and subjective-time map-

pings:

1

X (t) = pmarWn (26)
At = p(W,,)An (27)

Asin the classical congestion avoidance, the state-space rescal -
ing is a constant, while the time-rescaling is state-dependent.

Proposition 1: It can be shown (using arguments similar to
Proposition 1), that as p,ua. | 0, the process X (t), defined
by equations (26) and (27) converges (path-wise) to a process
whose window X (t) behaves as follows:

Thereis a Poisson process with intensity 1, with points denoted
by (7.)524. In between the points of this Poisson process, X
evolves according to the equation

dXx - C1 * Pmaz * X%
adt — p(2)

T—a
Pmax

(28)

At the points of the realization of the Poisson process®, we have
X(rT) = X(17) % (1 — ¢2)

O
Let ¢(X) denote the inverse of the RHS of equation (8). Itis

then easy to see that the process X (¢) defined by Proposition 3
isidentical to the process W (t), presented in section I1.D, under
the following mappings:

AW)=(1—co)x W

8]t isat apoint 7 of the Poisson process that the condition 8 = 1 isrequired.
If B # 1, then X (r1) becomes ill-defined as pyq2 (and by implication, p(.))
tendsto 0.



Accordingly, we can now apply the elaborate numerical pro-
cedure presented in section |11 to derive the stationary distribu-
tion of X (¢). After computing this stationary distribution, we
simply reverse the space and time-scalings employed (asin sec-
tion11.B) to obtain Fy,.x(. . .), the distribution of the generalized
TCP window in ack time.

VIl. RESULTS FOR GENERALIZED CONGESTION
AVOIDANCE

We now discuss a practical application of this generalized
analysis. In particular, we determine the window distribution of
asingle generalized TCP flow under the Assured Service Model
when it interacts with a single bottleneck queue. The Assured
Service model [9] describes a framework for differential band-
width sharing, where each flow (user) is guaranteed aminimum
or assured rate as part of their service profile. Adequate capac-
ity provisioning is assumed to ensure that packets from a flow
experience minimal congestive losses/ marking as long as its
transmission ratelies within this assured rate. Flows are allowed
to inject additional (opportunistic) packets beyond this assured
rate; such packets are treated as best-effort and have lower pri-
ority. To enable network buffers to differentiate between such
packets, [9] proposes a tagging mechanism at the network edge.
Packets which stay within the profiled rate are tagged asin pack-
ets while packets that violate the profile are tagged as out pack-
ets; mechanisms such as a leaky bucket [23] or modifications
thereof [9] may be used to implement the tagging operation. In
packets are provided preferential treatment in network buffers
viathe RIO (RED with In/Out) discard algorithm; RIO is simi-
lar to RED except that it uses different thresholds for in and out
packets to ensure that out (opportunistic) packets were dropped
before in packets. We assume that out bottleneck queue uses the
ORED huffer management algorithm; ORED is similar to RIO
but differsin two respects:

o ORED marks out packetsinstead of dropping them.

o ORED does not signal congestion notification for in pack-
ets, except when the buffer overflows and packets are
dropped.

A. Mathematical Model

The persistent TCP is assumed to have a round-trip time of
RTT secs and a maximum segment size (MSS) of M bytes.
It interacts with an ORED buffer serving alink of capacity B
M SSs/sec and is subject to an assured rate of R MSSs/sec. Our
analysis assumes that *

B> R. (29
The marking function of the ORED buffer (for out packets) is
given by thetraditional linear moddl: f(Q) = 0for Q@ < min,

f(Q) = Pmaxzx for Q > maxp and f(Q) — Q—mingy,

maxthfminth pmaac

91f B < R, then ECN marking will occur even though the TCP flow obtains

less than its assured rate. This is clearly a violation of the Assured Service
model.
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for ming, < Q < max,, where ming, and maxy, are ex-
pressed in MSSs. Let @ and W represent the ORED buffer oc-
cupancy and the TCP window size respectively.

If, as before, we assume that buffer underflow never occurs,
it is clear that the TCP average transmission rate will be equal
to the link capacity B. The probability of a packet being tagged
by a conditioner at the edge, ~, is then independent of W and
@, and is simply given by the fraction by which the capacity
exceeds the profiled rate

(30)

Also, as before, our assumption of no buffer underflow (for the
bottleneck queue) implies that

W =Q+Bx*RTT (31)

Now consider the evolution of the TCP generalized window.
It is easy to see that although packets will be tagged as out as
soon as the TCP throughput exceeds R, they will not be marked
(ECN hit set) until the window has expanded to ensure that the
gueue occupancy exceeds miny; this, of course, occursonly af-
ter the throughput has reached the bottleneck bandwidth B and
thewindow size has exceeded B « RTT + min.p. Accordingly,
a reasonably accurate model of the marking probability p(W),
as afunction of the window size W, is given by the equations

p(W) = 0 for W < ming, + B.RTT,
= ~x*xf(W—B.RTT) for W < maz, + B.RTT
= Y *DPmaz for W > maxy, + B.RTT, (32
where v = 222, Having obtained an expression for p(W)

in equations (24) and (25), we can then obtain the stationary
window distribution of the TCP process using the mappingsin
section Section V.

B. Results
Toillustrate the accuracy of our analysis, wetakethe classical
congestion avoidance parameters (¢« = —1, 8 =1,¢; = 1 and

co = 0.5) as a baseline parameter set and vary each of the three
parameters «, ¢; and ¢y in turn. A set of typical results are
provided here, for the following network parameters. an MSS
of 512 bytes, nominal RT'T of 13.66 msec, an assured rate of
0.75 Mbps and an ORED queue with a service rate of 3 Mbps
(the bandwidth-delay product is thus 5 segments), min ., = 15,
maxy, = 95 and pree = 0.02.

Figure 5 shows the simulated and theoretical mean and vari-
ance of the window size of the TCP flow as a function of «
and attests to the accuracy of our analysis. To further demon-
strate the accuracy of our numerical technique, we also include
a plot comparing the predicted and simulated window distri-
bution for « = —1.0. We see that an increase in « not only
increases the mean window size but aso the the coefficient of
variation (defined as %W) Note also that our tech-
nigue becomes less accurate as « increases. A larger «impliesa
larger mean queue occupancy and hence alarger average mark-
ing probability; accordingly, our mathematical approximation,



which is clearly based on the limiting process as p 4. | 0, will
be progressively less applicable.
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We have similar studied the window statistics and distribution
by varying ¢, and verified the accuracy of our technique. The
figures do not provide any great insight and are thus omitted
here. In general, we find that increasing ¢, increases not just the
mean but the coefficient of variation as well. ([24] showed that
the coefficient of variation would ideally be independent of ¢ if
the marking probability was constant.)

Figure 6 showsthe plots of the TCP window statistics (aswell
as the simulated and theoretical distributions for co = 0.2 and
ce = 0.4) when the decrease coefficient, c», is varied. (Note
that [24] showed that the coefficient of variation is proportional

to ,/——, when the marking probability is constant.) The fig-

1—co’
ures clearly indicate the accuracy of our technique for comput-
ing the window distribution for various val ues of the generalized
congestion avoidance parameter set. We also note that as ¢ is
decreased from its current value of 0.5, the mean window size
increases but the variance decreases, i.e., the coefficient of vari-
ation decreases rapidly. [5] contains an elaborate discussion on
preferred changes in the parameter ¢o and shows how a higher
value of ¢, (less aggressive decrease) can be leveraged to pro-
vide better TCP dynamicsin ECN-enabled environments.
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VIIl. CONCLUSION

In this paper, we presented a technique for analyzing and
predicting the window distribution of a persistent TCP connec-
tion subject to randomized congestion notification with a vari-
able, but state-dependent, notification probability. The main
contribution of this paper is the state-dependent time-rescaling
technique, which allows us to convert the discrete-time Marko-
vian TCP process to a process that can be described by a
Poisson-driven stochastic differential equation (SDE). This re-
scaling technique is generic enough to be applied to any arbi-
trary continuous-space, continuous-time Markov process that is
subject to a stationary failure process.

We first considered the case of classical TCP congestion
avoidance and subseguently extend the techniqueto consider the
broader class of generalized congestion avoidance algorithms,
where for every incoming acknowledgment, the TCP flow in-
creases its window by ¢; W in the absence of congestion and
decreases its window by ¢, W7 in the presence of congestion.
By studying the process in subjective time (which is a history-
dependent rescaling of the time index), we can describe its evo-
lution using a Poisson-driven SDE. We have also presented a
rapidly and provably convergent numerical technique for solv-
ing this SDE, as well as the space and time re-scalings needed
to eventually obtain the stationary distribution of the original
Markov process.
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Comparisons with simulation results suggest that this tech-
nique is fairly accurate in predicting the distribution and other
statistics of the congestion window. Moreover, the numerical
technique takes O(secs) to converge on a general purpose com-
puter, as opposed to the O(mins) needed to obtain simulation-
based results with acceptable confidenceintervals. In particular,
we find that this analysis can be used to predict the window be-
havior of a single persistent TCP flow interacting with buffer
management algorithms such as ERD and RED. While the ac-
curacy of the predictions was expected for ERD, the fit for the
case of RED was surprisingly good. When congestion notifica-
tion occurs via randomized packet drops, the analysis is more
accurate when the loss probabilities are low and timeouts are
relatively rare events.

Further simulations involving generalized congestion avoid-
ance have a so demonstrate the accuracy and applicability of our
technique under the Assured Service model, wherethe TCP flow
is provided a minimum bandwidth guarantee. We can thus use
thisanalytical techniqueto study how changesin thealgorithmic
parameters affect the window distribution. We have found that
decreasing ¢, (which may be possible if ECN-capable routers
provide stronger feedback) appears to be an attractive modifi-
cation, since it appreciably lowers the coefficient of variation
of the window size. This observation was aso reported using
alternative studies and analysesin [5].

[21] combines the analysis presented here with a fixed-point
based computation of mean window sizesto approximately eval-
uate the congestion window distribution in the presence of mul-
tiple TCP flows. Since this numerical technique is much faster
than simulation-based studies, it appears promising as a tech-
nique to model TCP window behavior with much lower over-
head, especialy in hybrid and large-scale simulations. More-
over, the time-rescaling technique appears to be a powerful tool
that can be applied to the study of Markov processes across a
large number of disciplines.

APPENDICES
I. POISSON NATURE OF PACKET DROP EVENTS

We prove here that the subjective time formulation results in
an inter-lossinterval that is exponentially distributed with mean
1 and is independent of past and future intervals. For the TCP
process under consideration, this property is asymptotically true
as the lossy/marking probabilities tend towards 0.

Let X; be the random variable denoting the subjective time
interval between the (i — 1)"" and i*" packet loss. Let us find
the probability P{X,; > T'}, i.e., the probability at |east subjec-
tivetime T elapses betweenthe (i — 1)"" packet lossand thei*"
packet loss. We renumber the packets: packet 5, j = (1,2,...)
denotes the j*" packet after the one that corresponds to the ;"
loss. Since the congestion window is increasing after the i
loss, there exists with probability 1 a (random!) N such that

p1+pe+--+pn <T <pr+p2r+--+DNy1-

The probabilities p; are also random.



The probability of interest is that none of the first N packets
arelost. Since N israndom, this probability equals

ZP{N—n} H (1—pj).

n=1

(1.2)

As long as (with probability one) max{p;,1 < j < n}is
almost zero, the expression (1.1) is close to

i P{N =n}e 2 iami,

n=1

(1.2)

Since0 < T — Z;V:lpj < pN+1, We seethat aslong as

max{p;, 1 <j<N+1}] |0 (1.3)
the RHS of equation (1.2 equals
e"xY P{N=n}=eT" (1.4)

n=1

Hence, P{X; > T} — e T

Since the above proof is aso independent of the size of the
packet that caused the i*" packet loss, we see that if condition
(1.3) holds!?, the inter-loss intervals (in subjective time) are not
only exponentially distributed, but also independent of past and
future intervals. This establishes the fact that the loss events
are realizations of a Poisson process of intensity 1 in subjective
time. &

Il. DIFFERENCES BETWEEN ERD AND RED

Inthis appendix, we discussthe differencesbetween the Early
Random Drop (ERD) and the Random Early Detection (RED)
algorithms, which are important in understanding the applica-
bility of our loss model. The important differences are:

o RED operates on the average (and not the instantaneous)

gueue length. The drop probability, p, is thus a function of
the weighted average (Q 4.,4) Of the queue occupancy i.e., p
is afunction not just of @,, but of (Q,,, Qn—1,Qn—2,...)
with an exponential decay. () 4.4 closely mirrorstheinstan-
taneous occupancy only if the queue varies slowly.

« To prevent large inter-drop durations, RED increases the
drop probability for every accepted packet. (This prop-
erty, which we call drop-biasing, is achieved by using a
variable, ent, which increases with every successive ac-
cepted packet; the true dropping probability is then given

(@) This results in an inter-drop period that is

uniformly distributed between (1, ..., | ;45y]), asopposed
to the independent drop model in ERD which resultsin ge-
ometrically distributed inter-drop periods.

« Some RED implementations have a sharp discontinuity in

drop probability: when the average queue exceeds max ;5,
10Note that the condition (1.3) may hold even if pna. isnot small. All we

really need isthe congestion window almost always stays small enough for p(w)
to be small.
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p(Q) becomes 1 so that al incoming packets are deter-
ministically dropped. This contrasts with our assumption
that random drop occurs throughout the entire range of
the buffer occupancy. Our analysis applies to such RED
gueues only if the TCP process almost never builds up
gueues that exceed maxp,.

I11. PROOF OF CONVERGENCE OF H (z)

Toseethat H(x) in equation (19) indeed convergesto alimit,
let us define C(z) by C(z) = [;° J(u)du. Now, assume that
there existsa g > 1, such that A(z ) g FVa(e, a(z) =
Bz).Thisis a stronger requirement than A(z) < x; in the case
of the TCP model, 5 = 2. Now since ¢(u) is a non-decreasing
function of u,

a(u) Bu 5,“_“ Bu
/u q(p)de/u q(p)dp > Bu /0 q(p)dp

S0 that

a(u) _ Bu
[ o z% adp)dp  (N15)

0

Hence, C(z) < A [ q(u)e 797" du wherey = 21, Thus,
Cx) < A / h q(Bu)e™ 7P gy (111.6)

< AM1—7) /oo q(u)e "M gy (111.7)

< M=) o (1118

gl

This showsthat C(x) is upper bounded by C(0). (Note that for
the case of TCP, 8 = 2 and A = 1, so that C'(0) = 1; in other
cases, C(0) is some finite value.) Now, consider a random vari-
ablewith density f(z) = g{f} andlet X1, X, ..., X, bekiid

realizations of thisrandomvariableandlet X (1), X2y, ..., X

be the order statistic. Then,
k—fold
/ / J(x1) ... J(xg)dxg...dey =
T1>T rp>a(Tr—1)
{C(2)}*
T,
Prob(X;y > a(Xj_1)) for je(2,...,k)|X; >z, V j).
(111.9)

Hence, if we denote the sum of the first [ terms in the RHS of
equation (19) as H,(x), we see that

| H(x) — Hy( gf{i (111.10)

which provesthat H(x) isindeed convergent.
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