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A ~ T ~ U C T -  The paper analyzes how using a longer memory of the past 
queue occupancy in computing the average queue occupancy affects the 
stability and variability of a RED queue. Extensive simulation studies with 
both persistent and Web TCP sources are used to study the variance of the 
RED queue as a function of the memory of the averaging process. Our re- 
sults show that there is very little performance improvement (and in fact, 
possibly significant performance degradation) if the length of memory is 
increased beyond a very small value. Contrary to current practice, our re- 
sults show that a longer memory reduces the negative correlation typically 
observed among the windows of the constituent TCP flows, and hence, sug- 
gest the use of the instantaneous queue occupancy in practical RED queucts. 

I. INTRODUCTION 
Mechanisms such as RED [I]  and ECN [2], which provide 

randomized and early notification of congestion, have been rec- 
ommended [3] as congestion control techniques in the Internet, 
especially for TCP traffic. Algorithms such as RED and ECN 
primarily attempt to reduce buffer underflow and consequent 
under-utilization of link capacity by preventing the synchro- 
nized evolution of the TCP congestion windows. Techniques 
which reduce the variability in the queue occupancy without 
affecting the ability of such random notification buffers to ab- 
sorb transient bursts are recommended, as they indirectly reduce 
the probability of buffer underflow. Decreasing the variability 
also achieves an important secondary goal: reduction of jitter. 
Reduced jitter is beneficial, especially for real-time application 
traffic, such as Voice-over-IP, which might be multiplexed on 
the same queue. 

To minimize the bias against transient bursts, current im- 
plementations use an exponentially weighted moving average 
(EWMA) of the past queue occupancy in determining the drop- 
ping/ marking probability. Mathematically speaking, the drop- 
ping probability, p ( - )  is a function of the averaged queue oc- 
cupancy, Qavg; Qavg is computed for every incoming packet 
according to the iterative relationship: 

where superscript i refers to the arrival of the ith packet and 
refers to the instantaneous queue occupancy. cy is the 

weight (also called the smoothing factor or thefirgettingjuctor) 
and effectively determines the length of the memory used in the 
averaging process. 

In this paper, we investigate how the length of the memory 
(history of the past queue occupancy) in the droppingharking 
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process affects the stability and variability of thc queuc. Wc re- 
port on extensive simulations, which studied how the length of 
the memory in the EWMA process affected the variability of the 
queue occupancy under RED. In contrast to currently preferred 
values for a,  we find that random dropping queues provide bet- 
ter performance when little or no memory is used in the deter- 
mination of the packet drop probability. 

We first use persistent TCP sources to show how the use of a 
longer memory in the dropping process gradually increases the 
oscillatory behavior (and hence, the variability) of the queue oc- 
cupancy. We also demonstrate that an increase in the round-trip 
times of the TCP flows makes the queue occupancy less sta- 
ble and more prone to large variations. We subsequently use 
both persistent as well as Web-style TCP traffic sources to show 
that using a lower smoothing factor (weight) while computing 
the average queue occupancy (i.e., increasing the memory in- 
volved in the dropping process) never reduces the variability 
of the queue occupancy and often increases it. In particular, 
we demonstrate that increasing the memory of the averaging 
process leads to an appreciable increase in the queue variance 
for persistent TCP flows, and a significant, but less dramatic, 
increase in the queue variance for Web-type intermittent TCP 
flows. 

The simulation results in this paper thus corroborate analyt- 
ical results in [4], which modeled the dynamics of a random 
drop buffer using a Delaycd Ornstein-Uhlenbeck process. In 
this paper, we show how the change in the variance of the queue 
occupancy with increasing memory in the averaging process is 
really due to changes in the negative correlation among the con- 
gestion windows of the competing TCP flows, a phenomenon 
discussed in [5]. Our studies show that larger memory in the av- 
eraging process decreases this negative correlation, and thereby 
increases the queue variance without noticeably affecting either 
the overall drop probability or the distribution of the individual 
TCP windows. 

While our simulation studies involve only RED queues 
performing packet drops, the underlying explanation applies 
equally to ECN queues providing congestion feedback via 
packet marking. The results presented here would essentially 
apply to any randomized congestion notification mechanism. 

A. Related Work 

Randomized early congestion feedback for TCP was first pro- 
posed in [6], where the dropping probability was based on the 
instantaneous queue occupancy. The well known paper by Floyd 
and Jacobson [ 11 introduced Random Early Detection (RED), 
which continues to be thc most popular randomized congestion 
feedback mechanism currently deployed. Floyd and Jacobson 
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[ 11 qualitatively motivates the use of an exponentially-smoothed 
average queue occupancy (as specified in equation 1) and em- 
ploys a technique to generate a uniform distribution for thc gap 
between successive packet drops. Very few results, however, ex- 
ist on the appropriate choice of the weight, a, as well as other 
RED parameters. Studies have shown how adaptivc algorithms 
lor modifying RED’s drop thresholds can improve the perfor- 
mance of RED over wide variations in the offered load and the 
number of active flows. For example, SRED [7] modifies the 
drop probability based on the number of active flows, while 
BLUE [8] adapts the dropping probability based on buffer over- 
flow and link idle events. Few results, however, exist on the de- 
termination of the appropriate length of the exponential memory 
in RED’s dropping process. Note that the results of this paper 
complement approaches such as SRED and BLUE; our recom- 
mendations on the appropriate choice of CY apply not just to the 
basic RED algorithm but to its adaptive variants as well. 

Ott [4] presented a mathematical model to approximate the 
behavior of a queue buffering TCP traffic. The model uses a 
diffusion approximation for the variation in the occupancy of a 
REDECN queue, when shared by many persistent TCP sources. 
After incorporating the effects of round-trip delays in the TCP 
feedback loop and the EWMA mechanism in the buffer, the dif- 
fusion model was found to be a delayed Ornstein-Uhlenbeck 
process with exponential smoothing. Stochastic stability algo- 
rithms from control theory were then applied to show that, un- 
der sufficiently large delays in the feedback loop, the approx- 
imated queue behavior would become unstable, even if expo- 
nential smoothing was absent. More importantly, exponential 
smoothing never improves the stability of the diffusion process, 
and in many cases, can actually drive a stable process into un- 
stable behavior. We shall use our simulations to validate these 
mathematical conclusions. 

[SI showed how the congestion windows of different TCP 
flows sharing the same bottleneck buffer exhibit negative cor- 
relation; such negative correlation explains why the variance of 
the queue is smaller than the sum of the individual variances. [9] 
shows how this negative correlation can be exploited by ‘drop- 
biasing’ strategies that alter the distribution of packet drops to 
further reduce the variability of the queue occupancy. Our sim- 
ulations will use all the 5 drop-biasing strategies presented in 
[Y] to show how the use of excessive memory in the dropping 
process degrades the queue variability in all instances. 

11. MATHEMATICAL MODELS FOR QUEUE A N D  SOURCE 
BEHAVIOR 

In this section, we mathematically represent the process of 
determining the packet drop probability in a RED buffer and the 
source models for TCP traffic used in our simulations. We also 
present the set of metrics used to determine how changes in CY 

impact the ability of the RED queue to handle bursty traffic. 

by P ( Q ) .  
For our simulations, we use the standard linear model for the 

drop function, so that: 

dQ) = 0 V Q < minth 
= 1  V Q > maxth (2) 

where maxth and minth are the maximum and minimum drop 
thresholds and pmas is the maximum packet drop probability. 

As shown in equation (I), RED uses an EWMA-based esti- 
mation of the avcraged queue occupancy, Qaug, in evaluating 
the drop function. Implementors can vary the length of memory 
used in the dropping process by varying the weight a. A smaller 
CY implies a relatively larger memory in the EWMA process, i.e., 
a greater impact of the past queue occupancy on the current drop 
probability. Notc that if the weight a = 1, the drop function de- 
pends only the instantaneous queue occupancy; as CY & 0, the 
memory of the averaging process increases. As a first approxi- 
mation, the length ofthe memory in the averaging process can he 
expressed as $. Accordingly, by varying a within the interval 
(0,1], we can obtain the entire range of memory in the dropping 
process’. 

The drop function p ( Q )  essentially determines the mean drop 
probability associated with a specific queue occupancy: if the 
queue occupancy was to remain constant at Q, one out of every 
Lth packet would be dropped on average. Different forms of 
P ( Q )  
‘drop-biasing’ can be used to alter the distributiori of the inter- 
drop gap, as long as the mean gap stays unchanged. Five dif- 
ferent forms of drop-biasing strategies are studied in [9]; we 
use all the 5 drop-biasing strategies to demonstrate that our ob- 
servations on the role of memory in the averaging process are 
independent of’ the choice of the drop-biasing strategy. 

B. TCP Source Models and Simulation Parameters 

We use the TCP New Reno version present in the ns-2 [ 101 
simulator for our simulations. Two separate source models 
(which emphasize different phases of TCP’s congestion control 
algorithm) for TCP traffic were used in our simulations. The 
conventional persistent source model assumes infinite-sized file 
transfers; the sender’s congestion window is the only constraint 
on the injection of new data packets. Under conditions of mod- 
erately low loss, the congestion avoidance algorithm [ 111 is then 
the primary flow control mechanism. 

The Web TCP source model mimics the effects of Web-based 
TCP transactions and involves the transfer of finite-sized files. 
The model is based on [ 121 and consists of a cycle of a single 
Web transaction (each consisting of multiple filc transfers) al- 
ternating with inactive of-periods (when no data transfer takes 
place). Each file transfer occurs sequentially and on a distinct 
TCP connection. Since most files are only a few KBytes in size, 
most files are transferred using TCP‘s initial slow-start algo- 
rithm. More importantly, given the on-off nature of the sources, 

‘If an instantaneous queue occupancy is used (no memory), Q is the same as 
Qcor,; if exponential averaging is prescnt, Q is identical to Qavg. the averaged 
queue occupancy. 

2When a = 1, we der to the queue as as an ERD queue to indicare the 
use of the instantaneous queue occupancy in the packet dropping process. 

A. Model for Random Dr0ppin.g Queue Behavior 

me dropping probability in RED queues is a function of the 
rdevant buffer occupancy, denoted by &I. The drop function 
determines the base packet dropping probability and is denoted 
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the number of active TCP connections fluctuates rapidly; since 
the occupancy of the RED queue is dependent on the number of 
active flows, the queue occupancy will fluctuate as well (71. Cur- 
rent Web transfer protocols (e.g., HTTP l .  l [ 131) use persistent 
TCP connections 3, whereby the same TCP connection is used 
for multiple transfers. This clearly results in a larger effective 
file size transferred by a single connection; the source behav- 
ior is then closer to that of persistent TCP sources. Results in 
section 1V show that the effects of memory in the EWMA pro- 
cess are more pronounced for persistent TCP sources than for 
our Web source model. Accordingly, the adoption of HTTP I .  1 
only serves to reinforce our observations on the behavior of the 
RED queue with Web TCP traffic. 

Due to space limitations, we only present results here for a 
network topology involving a single bottleneck random drop 
queue with a capacity (C) of 1.5 Mbps, a minth of 20 pack- 
ets, a "& of 200 packets, a p,,, of 0.05 and a maxlmum 
buffer size of 500 packets; results from other network specifi- 
cations are qualitatively similar and are not discussed here. All 
TCP and UDP connections have packet sizes of 512 bytes. To 
remove possible synchronization effects among different TCP 
flows, the round-trip times of the individual TCP flows were 
uniformly spaced over the interval (50,250)msec. To indicate 
the universality of our observations, we shall also occasionally 
present results where all the flows have similar round-trip times 
(25msec). The queue occupancy and TCP window sizes are 
sampled every 50msec to generate our statistics. The number of 
persistent TCP sources is varied between 2 - 15 while the num- 
ber of 'Web TCP' sources is varied between 30 - 120. Since the 
different drop-biasing strategies lead to different expressions for 
the mean inter-drop gap, we modified the maximum drop prob- 
abilities for each strategy (using the technique explained in [ 9 ] )  
to ensure that the mean queue occupancies were nearly the same 
for all drop-biasing strategies. 

C. Metrics for Bursty Losses 

To study how changes to the weight a affect the ability of 
RED to absorb bursty losses, we use a set of per-flow loss- 
related metrics and average over the individual flows to obtain 
an aggregate metric. 

The simplest such metric of packet losses is the runlength 
of packet drops, which represents the distribution of continuous 
bursts of losses. The runlength is, however, not a very suitable 
metric, since TCP flows rarely lose consecutive packets. More 
importantly, TCP behavior exhibits timeouts and performance 
degradation when multiple losses occur in a window; the losses 
need not be back to back. To study the presence of such ex- 
tended loss bursts, we study the distribution of the number of 
losses in a block (called cluster) of P consecutive packets. (In 
our studies, we chose P to be approximately half the reciprocal 
of the average packet loss rate. This ensures that, in the case of 
random and independent packet drops, the number of losses in 
a block is typically either 0 or 1.) To investigate the possible ex- 
istence of loss bursts of length larger than the block size P,  we 

31n the context of HTTP, the use of the word 'persistent' implies the use of 
a single TCP connection for multiple file transfen. This is dillerent from the 
earlier definition of persistent TCP source models, which refers to the transfer 
of infinitely large files over a single TCP flow. 

also determined, for each individual flow, the auto-covariance 
function C ( j ) ,  j = 0,1,. . . of the time-series formed by the 
number of packet drops in each consecutive cluster. In gcn- 
eral, a larger spread of the distribution of the number of packet 
losses per cluster or larger values of thc average auto-covariance 
C,,,(k) for IC = (1,2,. . .) indicates a lower ability to absorb 
transient bursts. 

111. EXPONENTIAL MEMORY A N D  QUEUE STABILITY 

Before studying the statistical behavior of a RED queue, we 
first present plots that enable us to directly understand the ef- 
fect of changing a on the queue dynamics. Analysis in [4] pre- 
dicts that, as the exponential smoothing of the delayed Ornstein- 
Uhlenbeck process increases (a becomes smaller), the queue be- 
havior becomes less stable. We can observe this behavior in the 
plots i n  figure I which shows how the RED queue occupancy 
varies (for 10 persistent sources) as the RTT is held constant 
(at 100 msec) and the (Y (EWMA memory increased). We can 
clearly see that smaller values of CY (longer memory) drive the 
queue occupancy into an oscillatory mode. 
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Figure 2: RED Queue Occupancy as Fn. of RTT 

Figure 2 plots the RED queue behavior (for a = 0.1 and 
50 persistent sources) as the RTT of the TCP flows is varied (a 
lower plot corresponds to a longer RTT). We can see that, for ex- 
ample, while the queue occupancy is relatively stable when the 
RTT is N 25msec, the queue exhibits oscillatory behavior when 
the RTT is - 2sec. This corroborates the theoretical analysis in 
141, which indicated that an increase in the delay in the feedback 
loop might drive a stable occupancy process into an unstable re- 
gion. The above figures show how specifying even moderately 
large memory in the EWMA process can lead to oscillatory bc- 
havior in the queue occupancy. The next section explains how 
this is really the result of changes in the negative correlation of 
the windows of different flows. 

Iv. EXPONENTIAL MEMORY AND QUEUE VARIABILITY 

In this section, we study how the variability of the queue OC- 
cupancy depends on the length of the memory in the averaging 
process. As a first approximation, the length of the memory can 
be expressed as $, where a is the weight. In this section, we 
keep N ,  the number of TCP connections, fixed and vary cu to 
isolate the dependence of the queue occupancy on the weight 
alone. 

When the instantaneous queue occupancy is used (a = l), 
[5 ]  showed the presence of negative correlation among the TCP 
windows. Negative correlation implies that the TCP window 
sizes tend to vary out-of-phase: when the window size of one 
flow is large, the other flows have smaller window sizes. In 
such a situation, the sum of the window sizes (and indirectly 
the buffer occupancy) at any instant would exhibit less variabil- 
ity. Mathematically speaking, we can observe the correlation 
behavior by comparing the variance of the sum of the window 
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sizes Var(CE=, Wi) against the sum of the individual vari- 
ances Var(W.).  When the windows are uncorrelatcd, the 
two are equal; for negativc correlation, the sum should exhibit 
lower variance ( Var(CE=,  Wi) < ELl Var(Wi)), while 
for positive correlation, the sum should exhibit larger variance 
( V ~ r ( z ~ = ~  Wi) > EL1 Var(Wi)). This follows from the 
general relationship 

N 

N 

2 5 -  

g 20 
U 5 1 5 -  
1 

Thus, the correlation can be indirectly observed by comparing 
ihe variance of the sum of the windows (or, almost equivalently, 
the variance of the queue occupancy, V a r ( Q ) )  with the sum of 
the variances of the individual windows, 

We first intuitively explain why a larger memory in the av- 
eraging process decreases this negative correlation among the 
TCP windows and hence, increases the variability of the queue 
occupancy. As a is decreased from 1 (increasing memory), 
Qavg becomes an increasingly low-pass filtered version of the 
queue occupancy; p ( Q u v g )  consequently changes more slowly. 
A slower change in Qavg increases the likelihood that the dif- 
ferent TCP connections will observe the same drop probabil- 
ity and hence, experience greater synchronization (at least in a 
stochastic sense) in their window evolution. An excessive mem- 
ory in the averaging process could thus defeat RED’S aim of 
de-synchronizing the window evolution of the different flows 
and effectively reduce the negative correlation observed among 
the competing TCP windows. While a small amount of mem- 
ory (use of very few samples of the past queue occupancy) can 
guard against transient bursts from individual sources, an exces- 
sive amount of memory can resurrect the possibility of synchro- 
nized losses and lower bandwidth utilization. We now provide 
the results that we have observed with Dersistent and Web TCP 

N Var(Wi). 
Bonleneck W- 1 5Mbps RTT=25< ,250mrec ~ 

PkiSm= 512 bytes 5 Pel~iStenl TCPs 
- 

connections. 

A. Persistent TCP 

Figure 3 shows the variation in the statistics of the RED queue 
occupancy with changing CY for 5 persistent TCP sources. We 
see that the variance of the queue occupancy seems to decrease 
extremely slightly (essentially stays constant) in some cases as 
CY decreases from 1 to 0.5, and then gradually increases (for 
all drop-biasing strategies) with a further increase in the mem- 
ory. We found this behavior to be consistent across all our 
simulations. The graph also shows that the average queue oc- 
cupancy is independent of the length of the cxponcntial mem- 
ory (as expected); this also demonstrates that our p,,, adjust- 
ment procedure was quite effective in making the mean queue 
occupancy independent of the choice of the drop-biasing tech- 
nique. The plot for the sum of the variance of the TCP windows 
cf, Var(Wi) reveals that the window variances of the TCP 
windows themselves stay fairly constant for different values of 
a. Accordingly, by comparing the variance of the queue occu- 
pancy with the sum of the variance of the TCP windows, wc can 
see that a longer memory in the averaging process decreases the 
extent to which the TCP windows are negatively correlated. 
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Figure 3:  Persistent TCP and RED Queue Dynamics 

Reducing CY beyond M 0.1 leads to an appreciable reduction 
in the negative correlation among the TCP connections; in fact, 
when a is reduced beyond 0.001 (not plotted here), the TCP 
windows become positively correlated (the queue variance ex- 
ceeds the sum of the variance of the TCP windows themselves)! 
In fact, for the Deterministic and Delayed Uniform drop-biasing 
strategies (which were shown in 191 to outperform the other 
drop-biasing alternativcs), CY = 1.0 seems to provide the most 
optimal weight setting. 
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As stated earlier, while lowering the queue variability is in- 
deed a laudable objective, we must be careful to ensure that 
this does not occur at the cost of a rapid increase in the bursti- 
ness of the packet losses. Accordingly, in figure 4, we plot the 
burstiness-related metrics for N = 5 as a function of the weight. 
We can see from the graphs that increasing the memory in the 
averaging process increases the variability of the queue occu- 
pancy variability without significantly improving the ability to 
decorrelate the packet drops. 
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Figure 4: Burstiness-Related Metrics for 
Persistent TCP and RED 

B. Web TCP 

Plots of the RED queue statistics with Web TCP sources also 
show similar behavior: the queue variance increases with an in- 
crease in memory (smaller a), even through the mean queue oc- 
cupancies remain fairly unchanged. We omit the plots here due 
to space constraints. In general, for similar mean queue occu- 
pancics, the variance is much higher for Web TCP sources than 

ates rapidly; as the number of active flows changes, the occu- 
pancy of the RED queuc also exhibits rapid variation. To isolate 
the portion of the queue variance that depends on the memory 
of the averaging process itself, we also oblained the conditional 
variance and mean of the queue occupancy, i.e., thc variance of 
the queue occupancy as a function of the number of active con- 
nections. Plots of the conditional queue occupancy statistics, 
as well as the probability distribution of the number of active 
flows, are provided in figure 5,  for the case of 70 Web TCP con- 
nections and the Deterministic drop-biasing strategy. We can 
see that the number of active connections lies between (10,30) 
most of the time; furthermore, there were never more than 45 
active connections present at any sampling instant. (The value 
of 0 for the mean and variance graphs for Nactive > 40 is sim- 
ply a place-holder indicating the absence of any samples.) Thc 
graphs of figure 5 clearly reveal that while the conditional means 
are about the same for each strategy, the conditional variances 
are very different for different values of the weight. Clearly, a 
larger memory in the dropping process leads to a significantly 
larger variance in the queue occupancy. This phenomenon can 
be observed more clearly for Web TCP sources if a mechanism, 
such as SRED, is used that reduces the sensitivity of queue oc- 
cupancy to the number of active sources. 
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Figure 5:  Conditional Plots for Web TCP and ERD persistent TCP sources. This occurs primarily because the num- 
ber of active connections in the Web TCP source model fluctu- 
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V. CONCLUSIONS 

While the use of memory (via an exponentially weighted 
moving average of the past qucue occupancy) has been sug- 
gested for RED, relatively few studies have investigated the op- 
timal length of this memory for TCP traffic. Based on our ex- 
tensive simulations with different drop-biasing strategies, we 
conclude that, generally speaking, therc is vcry little perfor- 
mance improvement (and in fact, possibly significant perfor- 
mance degradation) if the exponential weight a in the averag- 
ing process is decreased too much from 1. Our simulations also 
show that the use of a longer memory in the averaging process 
can often drive a stable occupancy process into oscillatory be- 
havior. Such oscillations can also result if the delay in the TCP 
feedback loop becomes too large. 

Our results indicate that a longer memory in the dropping 
process (smaller a)  increases the coefficient of variation of the 
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queue occupancy for both persistent and Web Tcp traffic. The 
relative increase in queue variance is more pronounced for per- 
sistent TCP traffic; this is primarily due to the inherent variation 
in the RED queue occupancy associated with rapid changes in 
the number of active flows in the Web traffic model. We used 
statistical techniques to indirectly demonstrate how memory in 
the averaging process reduces the negative correlation among 
competing TCP flows; this decrease leads to a larger variance in 
the queue occupancy. While the simulations reported here used 
a low-speed (1.5 Mbps) bottleneck additional simulations per- 
formed with faster links (e.g., 45 Mbps) reveal similar results. 
Our observations thus appear to apply, at least qualitatively, for 
buffers both at the network edges and in the backbone. However, 
for a given value of a, lhe coefficient of variation of the queue 
occupancy is lower at higher link speeds (due to the improved 
traffic aggregation). Accordingly, relatively speaking, the in- 
crease in queue variance with increasing memory is more sig- 
nificant (in terms of the actual increasc in delay jitter) at slower 
edge links than at faster backbone links. 

Published research on RED performance has often used a 
settings of around 0.001 - 0.002. We, however, find that set- 
ting a in the range 0.5 - 1 in the EWMA algorithm, especially 
for well-designed drop-biasing techniques, leads to a smoother 
queue variation and reduced jitter for buffered packets. This re- 
sult is of practical relevance to operators deploying RED-like 
algorithms in the internet. While an excessively small value of 
a may not be practically detrimental in backbone buffers, our 
studies indicate no justification for setting a to a very low value. 
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