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Abstract: A state space formulation of the distributed control of a 1-D vehicle platoon is considered.
The objective is to understand the effects of the underlying information exchange pattern between the
vehicles on the control performance of the platoon. The symmetric control case is considered where each
vehicle gives equal weight to all the information available to it in determining its control law. It is shown
that expander families of graphs when used as information patterns result in stability margins decaying
to zero at rate at most O(1/N); an improvement over the previously known O(1/N2) decay with nearest
neighbor type information patterns.
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1. INTRODUCTION

Distributed control of large vehicle platoons has been an active
area of research in the control community. In particular, the
one dimensional variant of the problem has received special
interest due to potential applications in increasing throughput
of Intelligent Vehicle/Highway Systems(IVHS) (see Varaiya
(1993)). The idea is that some lead vehicles in the platoon are
given desired trajectory information by a supervisory layer in
the IVHS and the whole platoon follows this desired trajectory
while maintaining prescribed safe inter vehicle spacing. The
constraint is that each vehicle in the platoon can use only
the local information available to it (for instance the sensed
distance from predecessor and follower) in determining its
(local) control action.

Several researchers have analyzed this scenario and we discuss
only some of the results here. A double integrator model for
individual vehicle dynamics is a common abstraction. Using
identical double integrator dynamics for all vehicles in the
platoon, Seiler et al. (2004) and Barooah and Hespanha (2005)
analyze the problem in the frequency domain. They consider
the cases where the local information available to a vehicle is
limited to the (sensed) relative distance from its predecessor
and from both predecessor and follower. For both cases they
conclude that the H∞ norm of the transfer function from distur-
bances acting on the vehicles to the spacing errors and of that
between the spacing errors grow without bounds in the size of
the platoon. In a similar setting, it is shown in Middleton and
Braslavsky (2010) that this is the case with a general LTI model
for the individual dynamics and local information restricted to
a fixed neighborhood of the individual.

The state space formulation of the problem was studied in Hao
et al. (2010). A more general notion of information pattern
is introduced with each vehicle receiving information from
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its neighbors on a D-dimensional lattice. By defining the sta-
bility margin in terms of the least damped eigenvalue of the
appropriate closed loop matrix, it is shown that the stability

margin decays to zero as O(1/N2/D), where N is the number
of vehicles in the platoon. For the case where only a few
vehicles (independent of size of platoon) are provided desired
trajectory information, this translates to the nearest neighbor
type information pattern with D being 1 yielding a decay of
O(1/N2). This result assumed what has come to be known as
symmetric control, where an agent weighs the information from
all its neighbors on the information graph equally. In a more
recent result Hao and Barooah (2012), the authors argue that by
introducing asymmetry in weighing the information between
the predecessor and the follower, the stability margin can be
bounded away from zero uniformly in N.

In Bamieh et al. (2012), the authors analyze the infinite dimen-
sional limiting case of the problem making use of tools from
infinite dimensional systems theory. They study the ‘rigidity of
the formation’ or coherence of the whole platoon by defining
it in terms of the variance of spacing errors when each vehicle
is subjected to additive white Gaussian disturbances. They con-
clude that in the one dimensional setting nearest neighbor type
information patterns inevitably lead to loss of coherence.

The general trend of the results is a conclusion about a cer-
tain inadequacy in control performance when the information
available to the individual is constrained to be of the nearest
neighbor type. While some (Middleton and Braslavsky (2010),
Hao et al. (2010)) have mentioned the possibility of using
more general information patterns, it does not seem that much
progress has been made in this direction. With technological
advances, precise and dynamic measurements of absolute posi-
tions of vehicles (eg. GPS) and their communication over inter-
vehicle communication networks (see Part 4, Chapter 13 Samad
and Annaswamy (2011) ) is practically possible. This gives the
control engineer the flexibility to choose from a wider class of
information patterns. However, such a choice must be made
being mindful of the demand imposed on the communication
network.
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The objective of this paper is to analyze the role of the under-
lying information pattern on the control performance of the 1-
D vehicle platooning problem. In section 2 we formulate the
problem in a state space setting similar to Hao et al. (2010)
with symmetric weighing of all the information while allowing
for an arbitrary graph serving as the information pattern. In sec-
tion 3 we derive a lower bound on the achievable performance
(stability margin) in terms of parameters of the information pat-
tern. In section 4 we introduce expander families or expander
graphs and argue that they strike the balance by providing better
control performance with tolerable communication overheads
when used as information patterns. Conclusions and directions
for future work are discussed in section 5.

NOTATION

The spectrum of matrix A is denoted by σ(A) and its ith row and

jth column element is denoted by A(i, j). A > 0 (≥ 0) denotes

A is symmetric positive (semi-) definite. The ith element of
vector p is denoted by p(i), the vector [1, . . . ,1]T ∈ R

N is
denoted by 1 and the N ×N identity matrix is denoted by IN .
The Kronecker delta function is denoted by δ (i, j). Given a
graph G = (V,E), N (i) denotes the adjacency list of vertex

i, deg(i) = |N (i)| is the degree of the ith vertex, AG ∈ R
|V |×|V |

denotes its (normalized) adjacency matrix given by

AG(i, j) =







1

deg(i)
if (i, j) ∈ E

0 otherwise

and the (normalized) Laplacian LG = I−AG. A family of graphs
is an infinite sequence of graphs {Gn}n∈N, Gn = (Vn,En), with
increasing number of vertices such that n → ∞ ⇒ |Vn| → ∞.

2. PROBLEM FORMULATION

Our goal is to understand the effect of the underlying informa-
tion pattern on the performance of the symmetric distributed
control algorithm for the 1-D vehicle platoon. To this end,
we assume identical vehicle dynamics and identical controller
parameters for every vehicle. Next, we quantify what we mean
by control performance by defining an appropriate stability
margin. This section closely follows the set up in Hao et al.
(2010).

2.1 System Model

We consider N vehicles indexed by i ∈ {1, . . . ,N}, each gov-
erned by double-integrator dynamics ẍi = ui, where xi and ui are
real valued functions of time (argument suppressed) denoting
the position and control input of the ith vehicle. The first vehicle
in the formation, i = 1, is given the desired/reference trajectory
information x1,d . Reference inter vehicle distances ∆i, j between
vehicle i and its nearest neighbors j ∈ {i−1, i+1} are specified
for i = 2, . . . ,N − 1. Since the formation is one dimensional,
such reference spacing between nearest neighbors in effect
specifies inter vehicle distance between any two vehicles i and
j, denoted by ∆i, j. Further, specifying x1,d specifies the refer-
ence trajectory xi,d = x1,d + ∆1, j for all vehicles i = 2, . . . ,N.
Note that vehicle 1 alone is given the reference trajectory input
x1,d . Such information is assumed to be given externally. For
example, in the case of an IVHS, the supervisory traffic control
system can command the reference trajectory to the platoon
leader.

Each vehicle is assumed to have sensing capabilities and can
measure relative distances and velocities to its nearest neigh-
bors i.e. can measure (xi−x j) and (ẋi− ẋ j) for j ∈ {i−1, i+1}
(the first and the last vehicle can measure relative distance and
velocity only from vehicles 2 and N − 1 respectively). Apart
from sensing, each vehicle is also capable of inter-vehicle com-
munication and can send and receive relative position and ve-
locity information instantaneously to and from other vehicles.
We construct an abstraction of all such inter-vehicle sensing and
communication and represent it by an undirected graph. Each
vehicle is represented by a vertex and an edge is drawn between
two vertices if the corresponding vehicles have access to their
relative spacing information. We call this graph the information
graph and denote the adjacency list of vertex i by N (i).

The control objective is to enable tracking of x1,d by vehicle
1 while the others follow maintaining the prescribed ∆i, j spac-
ings. In particular, we want to achieve this by means of a local
feedback law for every vehicle based on the local information
available to it. Consider the following feedback law

ui =
1

deg(i) ∑
j∈N (i)

[−k(xi − x j −∆i, j)−b(ẋi− ẋ j)] (1)

+ δ (1, i)[−k(x1 − x1,d)−b(ẋ1− ẋ1,d)].

Noting that the relative measurements can be written as xi −
x j−∆i, j = (xi−xi,d)−(x j −x j,d), we define z = [xT

1 −xT
1,d , ẋ

T
1 −

ẋT
1,d, . . . ,x

T
N − xT

N,d , ẋT
N − ẋT

N,d ]T . Substituting ui from (1) to the

double-integrator ẍi = ui and assuming ẍ1,d ≡ 0, we obtain the
following closed loop system

ż = (IN ⊗A1 +(L+ Dext)⊗A2)z (2)

where A1 =

[

0 1
0 0

]

, A2 =

[

0 0
−k −b

]

,

L ∈ R
N×N is the Laplacian of the information graph and Dext

is the diagonal matrix with Dext(i, i) = δ (1, i). We denote the
closed loop matrix by Acl = IN ⊗A1 +(L+ Dext)⊗A2.

2.2 Stability Margin

We consider the real part of the least damped eigenvalue of Acl

as a measure of stability of (2). The following was proved in
Hao et al. (2010).

Theorem 1. The spectrum of Acl is

σ(Acl) =
⋃

γ∈σ(L+Dext )

{σ(A1 + γA2)}

=
⋃

γ∈σ(L+Dext )

{

− γb

2

(

1±
√

1− 4k

γb2

)}

(3)

The proof relies on Schur’s triangulation theorem and proceeds
along the lines of using the unitary matrix U that puts U−1(L+
Dext)U into an upper triangular matrix, in the similarity trans-

formation (U−1 ⊗ I2)A(U ⊗ I2) which yields an upper block
diagonal matrix with (A1 +γA2) on the block diagonal for every
γ ∈ σ(L+ Dext).

As a consequence of the Perron Frobenius theorem (see Horn
and Johnson (1990)), it is known that the Laplacian of a con-
nected graph has a simple eigenvalue at zero and the corre-
sponding eigenvector is 1. Further, all other eigenvalues of the
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Laplacian of a connected undirected graph are strictly positive
and hence L ≥ 0.

Lemma 2. For a connected undirected graph with Laplacian L,
L+ Dext > 0 and hence 0 /∈ σ(L+ Dext).

Proof. L + Dext = L + e1eT
1 is positive semidefinite. For any

x ∈ R
N ,

xT [L+ e1eT
1 ]x = 0 ⇔ Lx = 0 and x(1) = 0.

Since the graph is connected, Lx = 0 ⇔ x ∈ col(1), where
col(1) denotes column span of 1. Now xT Lx = 0 ⇔ Lx = 0 ⇔
x ∈ col(1) which contradicts x(1) = 0 unless x = 0. We have
xT (L+Dext)x = 0⇒ x = 0 implying L+Dext > 0 and 0 /∈σ(L+
Dext).

From Theorem 1, the eigenvalues of Acl are the roots of the
polynomial ∏

γ∈σ(L+Dext )
(s2 + bγs + kγ) = 0. Since k,b > 0 and

from Lemma 2.1 all the elements in σ(L + Dext) are positive,
the real parts of all eigenvalues of Acl are strictly negative (i.e.
Acl is Hurwitz) and can be explicitly written as (3). Define

γmin = minσ(L+ Dext). (4)

We will be concerned about the asymptotic behavior of γmin

within a family of information graphs. Observe that as N → ∞,
the only possibility for an eigenvalue of Acl to converge to zero
is if γmin → 0 (since γmin = 0 ⇔ 0 ∈ σ(L+Dext)⇔ 0 ∈ σ(Acl)).
If γmin → 0, we can pick a sufficiently large N0 such that 1−

4k
γminb2 < 0 for all N > N0 and the real part of the corresponding

eigenvalue of Acl is given by γminb/2. And if γmin → 0, the
real parts of the least damped eigenvalues of Acl approach zero
in the limit. With this interpretation, we call γmin the stability
margin of (2).

3. STABILITY MARGIN AND THE INFORMATION
PATTERN

In order to understand the effect of the information pattern on
the stability margin we try to relate the spectral properties of
the information graph to the latter. In particular, we try to relate
γmin and λmin = min{σ(L) \ {0}}. What we have at hand is
essentially the problem of relating an eigenvalue of the sum
of two matrices to the eigenvalues of the summands which is
known to be difficult. It should be noted that we need something
tighter than some known inequalities regarding addition of
rank one positive semidefinite matrices to another semi-definite
matrix; for instance Theorem 4.3.4, pp. 182, Horn and Johnson
(1990) in this case gives 0 ≤ γmin ≤ λmin. We use the special
structure of the matrices involved in proving Theorem 4 which
provides bounds for the stability margin γmin in terms of λmin.
First a technical lemma.

Lemma 3. Let p(s) be a monic polynomial of degree N > 1
with real roots α1 ≥ α2 · · · ≥ αN > 0. Then p(s) is strictly
convex for N even and strictly concave for N odd in the interval
(−∞,αN).

The proof is based on the sign definiteness of the second
derivative of p(s) for s ∈ (−∞,αN).

Theorem 4. Let L be the normalized Laplacian of a connected
undirected graph G = (V,E) and Dext be a diagonal matrix with
Dext(i, i) = δ (1, i). Then γmin defined in (4), and the second
smallest eigenvalue of L, λmin, satisfy

λmin

4N
< γmin (5)

where N = |V |.

Proof. The idea is to perform some similarity transformations
on L + Dext to get it in a form where its characteristic polyno-
mial can be expressed in terms of the eigenvalues of L. Then
we use a first order Taylor approximation of the characteristic
polynomial at zero to obtain the desired lower bound.

From the spectral theorem, there exists an orthogonal matrix P
such that

PT LP =













λ1

λ2

. . .

λmin

0













=̇Λ

where λ1 ≥ λ2 ≥ ·· · ≥ λN−1 = λmin > 0 are the eigenvalues of
L. Let the set of vectors {ei}N

i=1 denote the natural basis of R
N .

Let the ith column of P be denoted by pi and that of PT by ri.
Since PT P = PPT = I, we have pT

i p j = rT
i r j = δ (i, j). Thus

PT LPeN = 0 ⇒ LpN = 0 ⇔ pN = 1√
N

1.

We prove a more general result by allowing Dext to be a rank
one matrix with any one of the diagonal elements being one
and the rest of the entries being zero. We can write Dext as
ekeT

k for some k; k = 1 corresponds to the Dext in the statement
of the theorem. Next, we perform the similarity transformation
PT (L+ Dext)P = Λ+ rkrT

k ,

PT (L+ Dext)P = Λ+

[ | | |
rk(1)rk rk(2)rk · · · rk(N)rk

| | |

]

.

Since pN = 1√
N

1, rk(N) = 1√
N

for any k. One can perform

elementary column operations jth column→ jth column− rk( j)
rk(N)

Nth column for all j ∈ {1, · · · ,N − 1}. Such an elementary
operation can be expressed as right multiplication by a matrix
T̃ given by

T̃ =













1
. . .

1

− rk(1)

rk(N)
· · · − rk(N −1)

rk(N)
1













.

Applying these column operations on PT (L+ Dext)P,

PT (L+ Dext)PT̃ =

[ | | |
λ1e1 · · · λmineN−1 rk(N)rk

| | |

]

.

Let Λ̃ be the (N−1)×(N−1) matrix obtained by removing the
last row and last column of Λ and r̃k be the (N−1) dimensional
column vector obtained by removing the last element of rk.
Then

T̃ =





IN−1 0

− 1

rk(N)
r̃T

k 1



 , T̃−1 =





IN−1 0
1

rk(N)
r̃T

k 1





and we can rewrite

PT (L+ Dext)PT̃ =

[

Λ̃ rk(N)r̃k

0 r2
k (N)

]

.

Left multiplying by T̃−1,
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T̃−1PT (L+ Dext)PT̃ =





Λ̃ rk(N)r̃k

1

rk(N)
r̃T

k Λ̃ 1



=̇L̂.

Since L̂ = (PT̃ )−1(L+Dext)(PT̃ ), the spectrum of L̂ is the same
as the spectrum of L+ Dext .

We now find the characteristic polynomial of L + Dext by
finding that of L̂. For some x̂ ∈ R

N , x̂ 6= 0, (sI − L̂)x̂ = 0 ⇒

(s−λ j)x̂( j) = rk(N)rk( j)x̂(N) for all j ∈ {1, · · · ,N −1}

and (s−1)x̂(N)−
N−1

∑
j=1

rk( j)

rk(N)
λ j x̂( j) = 0.

Substituting for x̂( j) for all j ∈ {1, · · · ,N − 1} in terms of
x̂(N)(6= 0), we obtain the characteristic polynomial for L+Dext

χ(s) =

[

N−1

∏
j=1

(s−λ j)

][

(s−1)−
N−1

∑
i=1

r2
k ( j)

s−λ j

]

.

Since L+Dext is symmetric positive definite, the roots of χ(s)=
0 are real and positive; the smallest being γmin. From Lemma 3,
for even (odd) N > 1, χ(s) is strictly convex (concave) in the
interval (−∞,γmin). For N even, χ(s) > 0 for s ∈ (−∞,γmin) and
the tangent at s = 0 is below the curve due to strict convexity
implying that in a plot of s vs. χ(s), the intercept of tangent
with the horizontal axis is a strict lower bound for γmin. A
similar argument can be made for the case where N is odd. The
derivative of χ(s) at s = 0 is

d

ds
χ(s)

∣

∣

∣

∣

s=0

= (−1)N−1

(

N−1

∏
j=1

λ j

)[

1

N

N−1

∑
j=1

1

λ j

+ 1 +
N−1

∑
j=1

r2
k ( j)

λ j

]

and the value of χ(s) at s = 0 is χ(0) = 1
N
(−1)N

(

N−1

∏
j=1

λ j

)

(we have used
N−1

∑
j=1

r2
k ( j) + r2

k (N) = 1 and rk(N) = 1√
N

for

simplifications). The equation of the tangent to χ(s) at s = 0 is
given by χT (s) = χ(0)+sχ ′(0). If N is even (odd), the intercept
with the vertical axis, χ(0), is positive (negative) and the slope
χ ′(0) is negative (positive) resulting in a positive horizontal
axis intercept. Solving for χT (s∗) = 0 gives s∗, a lower bound
to γmin.

0 < s∗ =
χ(0)

χ ′(0)
< γmin

⇒ 1

γmin

< N

[

1

N

N−1

∑
j=1

1

λ j

+ 1 +
N−1

∑
j=1

r2
k ( j)

λ j

]

(6)

≤ N

λmin

+ N +
N

λmin

N−1

∑
j=1

r2
k ( j)

≤ N

λmin

(2 + λmin).

The lower bound in (5) follows by noting that λi ≤ 2 for all i.

Remark. The lowerbound in (5) holds even with m > 1 (inde-
pendent of N) ‘lead’ vehicles each given reference trajectory
information externally which translates to Dext having m ones
on its diagonal and rest of the elements zero. This is a direct
consequence of splitting Dext as a sum of a rank one matrix
ekeT

k and a rank (m − 1) matrix Dext − ekeT
k for some k such

that Dext(k,k) = 1 and applying Weyl’s inequality to the sum
(L + ekeT

k ) + (Dext − ekeT
k ) where the smallest eigenvalue of

L+ ekeT
k satisfies the bounds in (5).

For a nearest neighbor type information graph, it has been
proved in Hao et al. (2010) that with a control law similar to
(1), the stability margin γmin decays to zero as O(1/N2). We
would like to improve upon the asymptotic rate by changing
the information graph. It is clear from the bounds in (5) that the
asymptotic behavior of γmin is closely related to the asymptotic
behavior of the second smallest eigenvalue of the Laplacian
λmin.

In terms of asymptotic behavior, λmin can either be bounded
away from zero or can approach zero with some rate. If λmin

is bounded away from zero for arbitrarily large N for a family
of graphs, we can conclude from (5), that γmin > O(1/N) with
such a family chosen as the information graph. Asymptotically,
a O(1/N) decay is strictly slower than the O(1/N2) resulting
from the nearest neighbor type information graphs and hence
is better as the stability margin approaches zero slower. A
question arises regarding which families of graphs satisfy the
property that λmin is bounded away from zero as N → ∞?

4. EXPANDER FAMILIES AS INFORMATION PATTERNS

We now define an expander family of graphs and briefly present
some results from graph theory relevant to the analysis of
expander families. We then discuss the use of members of
expander families as information graphs in the vehicle platoon
problem.

Definition 5. The edge expansion of a d-regular undirected
graph G = (V,E) is given by

h(G) = min
S⊂V,0<|S|≤|V |/2

|E(S,V \ S)|
d |S|

where E(S,V \ S) is the set of edges which are incident on a
vertex in S and V \ S.

Thus edge expansion is the minimum across all nontrivial cuts
(S,V \ S) of the ratio of the number of edges across a cut and
the number of vertices in the smaller set in the cut. Intuitively,
a graph with ‘large’ edge expansion can be interpreted as a
‘better connected’ graph as one has to remove a ‘large’ number
of edges to disconnect a ‘large’ enough component.

Definition 6. A family of d-regular graphs {Gn}n∈N is an ex-
pander family if for some ε > 0, h(Gn) > ε for all n.

Let us denote the adjacency matrix of Gn by An, |Vn| = N and
the eigenvalues of An by 1 = α1 ≥ α2 · · · ≥ αN . The following
inequality is attributed to Cheeger (see pp. 454, Theorem 2.4
Hoory et al. (2006))

1−α2

2
≤ h(G) ≤

√

2 · (1−α2). (7)

The eigenvalues of the corresponding Laplacian Ln and An get
related as λN−i+1 = 1−αi with α1 = 1 corresponding to the
zero eigenvalue of Ln and λmin = 1−α2. Substituting in (7) we
have

λmin

2
≤ h(G) ≤

√

2 ·λmin.

This leads to an equivalent characterization of expander fami-
lies as a family of graphs such that for some ε > 0, λmin > ε
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for all n. Note that in the discussion at the end of the previous
section, this was the sought after property for outperforming
nearest neighbor type information patterns.

Explicit constructions of expander families based on results
from different areas of mathematics have been known since
1970s. It is known that a random d-regular graph in the limit is
a good expander with high probability. A technique called zig-
zag product, which is related to the replacement product of two
graphs, has also been discovered which can be applied to con-
struct expander families. In general, it is rather easy to construct
expander graphs or modify graphs to become expanders (see
Hoory et al. (2006) and Krebs and Shaheen (2011)). Finding
the appropriate expander family to serve as the information
graph in the platoon problem will require further work and
will involve several implementation related considerations such
as physical or hop distance in the communication network be-
tween two neighbors on the information graphs etc. We do not
attempt to answer these questions in detail here. Instead, we
present an example applicable when the number of vehicles in
the platoon is a prime.

Fact 7. (pp. 453, §2.2, Hoory et al. (2006)) Let {pi}i∈N be an
infinite sequence of increasing primes. The 3-regular family of
graphs {Spi

}i∈N, Spi
= (Vi,Ei), with Vi = Zpi

and for every

a ∈ Vi, (a,a + 1),(a,a − 1) and (a,a−1) ∈ E is an expander
family (all operations are mod pi).

The motivation for picking this family of expanders is that the
edges (a,a− 1) and (a,a + 1) have a physical meaning as the
sensed distance between a vehicle and its immediate successor
and predecessor. In figure 1 we plot the sparsity pattern of a
member of this family using the Matlab function spy(·) where
the off diagonal elements are seen to be non zero.
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Fig. 1. Sparsity pattern of S29

Several known explicit constructions of expander families yield
multi-graphs i.e. graphs with multiple self loops and multiple
edges. It is worth mentioning at this point that all the analysis of
section 3 holds for information graphs that are possibly multi-
graphs. One has to account for these by modifying the nor-

malized adjacency matrix entries as A(i, j) = | j∈N (i)|
deg(i) , where

| j ∈ N (i)| is the multiplicity of j in the adjacency list of i.

We would like to make another feature of expander families
explicit. While expander families have good connectivity prop-
erties, due to the restriction of d-regularity in the definition
the number of edges are of order O(N). In contrast, a com-

plete graph has very good connectivity but at the ‘cost’ of
having a larger number of edges of the order O(N2). From an
implementation point of view, not only does using expanders
as information graphs improve control performance in terms
of stability margins, it also limits the amount of inter vehicle
communication required. For instance if a multi-hop wireless
network were used for such communication, the number of
messages at any given point of time would be at most O(N)
giving flexibility in designing such protocols.

This brings us to another issue in the choice of the expander
family. After making a choice for the information graph based
on such spectral considerations, a question arises as to which
vertex of the graph be assigned to which vehicle. Since any
assignment does not change the spectral properties of the in-
formation graph one can try to do this assignment so as to
reduce the inter-vehicle communication. If the communication
is over a multi-hop network it would be prudent to reduce the
hop count of the longest edge on the graph. This means finding
the permutation of the vertex assignment which results in the
least bandwidth adjacency matrix. This is the graph bandwidth
minimization problem which is known to be NP hard Feige
(2000). Several approximation algorithms are known and we
show the results of the Cuthill-McKee algorithm implemented
by the Matlab function symrcm(·) used to reduce the bandwidth
of S541 in Fig. 2.
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Fig. 2. Sparsity plots of (a) S541 and (b) bandwidth reduced S541

5. DISCUSSION AND CONCLUSIONS

We begin with some numerical illustrations. Fig. 3 shows an
experimental verification of the bound in (5) with the plot on
log scale along the vertical axis of γmin being strictly above
λmin/N against the first 150 primes as the number of vehicles
along the horizontal axis with the expander family Sn as the
information pattern. The nontrivial gap between the curves sug-
gests that the lowerbound is not tight and that our conclusion
of an at most O(1/N) decay rate for the stability margin may
be pessimistic i.e. the decay rate may be slower. In Fig. 4 we
compare the stability margin with expander as the information
pattern against the nearest neighbor type information pattern
along the same axis. Notice that the decay rate in the case
of the former is slower than the latter, providing validation to
our argument of using an expander as the information pattern.
The main goal of this paper is to bring forth the possibility of

more general, albeit simple, information patterns in the vehicle
platoon problem and present an analysis where different kind
of patterns can be compared. We have also tried to address the
issue of reducing the load on the communication network while
improving control performance. It is clear that optimizing a cost

IFAC NecSys'12
September 14-15, 2012. Santa Barbara, CA, USA

292



0 100 200 300 400 500 600 700 800 900
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

γmin
λmin/4N

Number of vehicles

Fig. 3. Plot of γmin and λmin/4N on log scale vs. number of
vehicles
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Fig. 4. Plot of stability margins on log scale with expanders
(exp) and nearest neighbor (nn) as information patterns vs.
number of vehicles

of communication over the set of all possible information pat-
terns is NP hard; instead we argue that expander families, due to
their sparsity, lower the demand on the communication network
while their spectral properties help improve control perfor-
mance. However, we have ignored the issue of implementing
non-nearest neighbor type information patterns, such as the
{Spi

} family, here. How can the relative distance and velocity
information between far away vehicles in the platoon be com-
municated? Current vehicle-to-vehicle wireless communication
technologies make the implementation of longer inter-vehicle
communication implementation straightforward. A promising
implementation approach is to use substantial quantization to
send the necessary information, thus implementing quantized
controls.

Several open questions remain. The result in this paper is
only valid for the symmetric control case. In Hao and Ba-
rooah (2012), it is shown that by introducing asymmetry in the
weights in (1), the stability margin can be bounded away from
zero for arbitrarily large N for nearest neighbor type informa-
tion patterns. The asymmetric case has to be analyzed for more
general information patterns.

The relation between information pattern and other important
metrics of control performance such as string stability has to
be investigated. For instance, consider the linear consensus
protocol ẋ = −Lx+w, where w is unit variance white Gaussian

noise, and the associated macroscopic metric deviation from
average Vdav = limt→∞ E[eT (t)e(t)] proposed in Bamieh et al.

(2012), where e(t) = x(t)− 1
N

N

∑
i=1

xi(t)1. Let J = 1
N

11T , then it

can be verified that Vdav = tr
∞
∫

0

(e−Lt(IN − J))T e−Lt(IN − J)dt

evaluates to
N−1

∑
j=1

1
2λ j

⇒ Vdav

N
≤ 1

2 λmin
. If an expander is used

as the information graph,
Vdav

N
is bounded above by a constant

independent of N while it has been shown to grow as O(N) for
nearest neighbor type information graph in Bamieh et al. (2012)
for the consensus problem. Similar macroscopic measures scale
as O(N3) for the 1-D platoon control problem with nearest
neighbor type information graphs and analogous results for
more general information patterns are open.

Another important question is the choice of the right expander
family for the platoon control problem. We will address some
of these questions in future work.
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