12th International Conference on Information Fusion
Seattle, WA, USA, July 6-9, 2009

A Composite Trust Model and its Application to Collaborative
Distributed Information Fusion

Ton Matei

John S. Baras

Tao Jiang

Institute for Systems Research
and Department of Electrical and Computer Engineering
University of Maryland
College Park, MD
{imatei,baras,tjiang } @umd.edu

Abstract — We consider the distributed state estimation of
a linear dynamic system, observed by various sensors, as a
problem in information fusion. We introduce a novel model
of trust, using weights on the graph links and nodes that
represent the sensor network. These weights can repre-
sent several interpretations of trustworthiness in sensor net-
works. We describe two algorithms that integrate distributed
Kalman filtering with these trust weights. We consider two
interpretations of these trust weights as information accu-
racy and reliability. We show that by appropriate use of
these weights the distributed estimation algorithm avoids
using information from untrusted sensors. Simulation exper-
iments further demonstrate the behavior of these algorithms.
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1 Introduction

Sensor networks consist of spatially distributed au-
tonomous sensors to cooperatively monitor physical or envi-
ronmental conditions. Sensors self-organize to derive appro-
priate inferences from the information gained in real-time.
Emerging technologies for sensing and pervasive comput-
ing have extended the scope of information fusion for dis-
tributed sensor networks from a simple merger of multiple
sensor inputs to fusion of data and knowledge from multiple
perspectives [11]. In other words, sensors in the emerging
sensor networks not only sense, disseminate and fuse infor-
mation, they also function as communication nodes, deci-
sion makers, application operators, etc.. Therefore, theories,
models, analysis and synthesis methods we propose to study
sensor networks must be hybrid and composite with consid-
erations of various domains.

The hybrid and composite characteristics of information
fusion in sensor networks pose more challenges on reach
accurate and reliable decisions. For instance, sensors make
use of wireless channels for communication. Wireless net-
works are typically plagued with unreliable communication:
link qualities can change over time, and (potentially delib-
erate) interference can complete block communication. In
sensor networks, these problems are exacerbated, since sen-
sors have limited storage, computing power and energy.
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One crucial question is: how a user can trust the informa-
tion provided by the sensor network? Our research efforts
are motivated by two key observations. First, due to the au-
tonomous and dynamic nature of sensor networks, uncer-
tainty of information accuracy has to be taken into consider-
ation. Second, sensor networks often operate unattended in
physically insecure environments, and are designed with an
emphasis on numbers and low cost which makes measures
such as tamper-proof hardware not cost effective. There-
fore, we cannot only resort to costly cryptography to design
secure sensor networks. In this paper, we propose a com-
posite trust model based on the valued directed graphs with
weighted nodes [15] as a methodology to improve the qual-
ity of information fusion. We further apply this trust model
to the distributed estimation problem to show how our trust
model can be effectively used in various problems arising in
sensor networks.

2 Problem formulation

We consider a sensor network with N sensors, indexed
by ¢. The network is used for the state estimation of a linear
random process given by:

x(k+1) = Az(k) + w(k), (1)
where z(k) € R™ is the state vector and w(k) € R™ is the
state noise, assumed Gaussian with zero mean and covari-
ance matrix (). The initial state o has a Gaussian distribu-
tion, with mean po and covariance matrix F.

We assume each sensor has a linear sensing model given
by:

where y; (k) € RP? is the observation of the state 2:(k) made
by sensor ¢ and v;(k) € RPi is the measurement noise as-
sumed Gaussian with zero mean and covariance matrix ;.

The goal of each sensor 7 is to compute an accurate es-
timation of the state x(k), using the local measurements
yi(k), the information received from the sensors in its com-
munication neighborhood (e.g. measurements and esti-
mates) and the confidence in the information received from
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other sensors provided by the trust model described in the
following sections.

Each sensor ¢ has a communication neighborhood con-
taining sensors with whom the sensor can exchange infor-
mation. Let AV; denote such communication neighborhood:

N; = {j | i exchanges information with j}.

The communication neighborhoods of the sensors determine
a communication graph with N vertices, such that a link
from ¢ to 7 exists if sensor ¢ sends information to sensor j.

We attach a positive value T;; to each link (j,¢) which
represents the confidence value that sensor ¢ places on the
information coming from sensor j. The value T;; represents
a measure of the trust sensor 7 has in the information re-
ceived from sensor j.

There are many different definitions of “trust” depend-
ing on the particular domains. An operational definition of
“trust” for information, mainly considers two aspects: infor-
mation accuracy and reliability. Accuracy reflects the devi-
ation of the information from truth and reliability is confi-
dence in the assessment of accuracy. In this paper, we ap-
ply trust weights to the distributed estimation problem where
these two aspects of trust are investigated separately.

3 Composite Trust Model

Trust appears in sensor networks in various ways and
meanings. Thus one can refer to the reduced trustworthi-
ness of a sensor, meaning that the sensor may have been
compromised. Or one refers to the trustworthiness of the
data transmitted by a sensor. Or one can refer to a compro-
mised link due to jamming, which reduces the trustworthi-
ness of the link. Thus trust in sensor networks, and more
generally in hybrid networks consisting of collaborating hu-
mans and automated agents (sensors, actuators, computers)
is a composite entity, represented by several metrics and/or
parameters.

Due to the composite nature of trust, it is not enough
to analyze models of trust based on an individual domain.
Rather, we must develop models and methodologies that can
represent and analyze the effects of trust across domains.
For example, as was shown in our recent work [17], one
can analyze jointly the effects of trust coming from a social
network perspective, on a communication network (support-
ing the social network) performance, by using trust related
weights on the nodes, and by extending the recently devel-
oped network utility maximization (NUM) approach [18] to
systematically develop cross-domain design of high perfor-
mance communication network protocols that are security or
trust aware. In this paper, we introduce the valued directed
graph with weighted nodes [15] as our first level model (in
terms of complexity and sophistication) of composite trust.
We integrate the valued directed graph with weighted nodes
in the distributed estimation problem as an application of
the composite trust model. Our ultimate research goal is to
extend the valued directed graph with weighted nodes com-
posite trust model to include not only numerical weights,

but also numerical constraints, logical variables, logical con-
straints and other forms of metrics, which better capture the
hybrid nature of information fusion in the emerging sensor
networks. This ultimate goal is not addressed in this paper,
but it represents our future work.

Trust, as a composite concept, consists of components
that are derived from different domains. We represent the
composite trust as trust weights on nodes or links. A trust
weight is a numerical representation of trust, which repre-
sents reliability of a node or a link to conduct certain func-
tion/ action and risks for others to cooperate with the node
or the link in such function/action. These weighted nodes
and links form the trust graph, which is a valued directed
graph with weighted nodes.

Two types of trust we are considering in our composite
model: global trust and local trust. The global trust weight
assigns to a node (trustee) a unique trust value, indepen-
dently of the node (trustor) that is evaluating the trustee’s
trustworthiness. On the other hand, a local trust weight (per-
sonalized trust weight) provides a personalized trust value
that depends on the point of view of the trustor. Global trust
weights are good when nodes have the same criterion on
trustworthiness. For instance, in Section 5.1, the trust of the
information provided by a specific node depends on the es-
timation accuracy of this node, which is globally identical
regardless of the trustor. Therefore, we assign a value T}
to node j which is the inverse of estimation error and for
any j’s neighbor, say node i, its trust value on node j is
T;; = T}. The local trust depends on each trustor’s prefer-
ence, and the trust values are assigned as weights on links.
For instance, in Section 5.2, the trust of the information pro-
vided by a specific node depends on estimation reliability,
which is compared with the current estimate of the trustor.
Apparently, this notion of trust is a personalized concept.
Therefore, we assign a weight 7;; to each link ¢j. Notice
that more than one weights are allowed on a node or a link
to represent multiple trust relations in different domains.

In order to represent trustworthiness well, trust establish-
ment schemes must ensure that these trust weights are the
best evaluation of trustworthiness of a node or a link. In
centralized networks, with the help of cryptography and
trusted third part, trust weights are proven to be able to
correctly represent the true trustworthiness of agents [10].
However, sensor networks with decentralized control pose
more difficult challenges on trust establishment. In this
case, the realization of robust and accountable trust estab-
lishment is based on healthy member cooperation, namely,
community monitoring. The community is a set of nodes
that watch each other execute all network protocols, such
as the generation or forwarding of data or control pack-
ets. The fact that the medium is wireless makes this inten-
tional or unintentional collaboration real. Nodes watch oth-
ers activities by overhearing their wireless signals or sending
out probes with secured acknowledgement (probes to nodes
with shared key). The trustworthiness of a node or a link
is evaluated based on opinions of the community. A high
level view of our general model for composite trust gener-
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ation and management is shown in Figure 1. The detailed
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Local key exchanges
[Applications |

Figure 1: Abstract view of the general model for composite
trust generation and management

schemes for trust evidence distribution and distributed trust
evaluation are beyond the scope of this paper and we refer
to our previous work on trust [16, 13, 14, 6].

There are various ways to numerically represent trust
weights. In some trust schemes, continuous or discrete nu-
merical values are assigned to measure the level of trustwor-
thiness. For example, in [5], an entitys opinion about the
trustworthiness of a certificate is described by a continuous
value in [0, 1]. In [6], a 2-tuple in [0, 1]? describes the trust
opinion. In [12], the metric is a triplet in [0, 1]3, where the
elements in the triplet represent belief, disbelief, and uncer-
tainty, respectively. Trust can also be interpreted as proba-
bility. In [7], subjective probability is defined, while objec-
tive probability is used in [8]. As a concept of uncertainty,
entropy in information theory is a natural measurement of
trust as well [9]. In the extreme case, trust can be binary:
trust (trust weight=1) or distrust (trust weight=0) because
either there is 100% security in the network or the approach
to evaluate trust is very coarse. There is no absolutely right
or wrong for these representations. All the aforementioned
numerical representations are suitable for different environ-
ments and management requirements.

In the rest of the paper, we incorporate trust weights into
a particular application of information fusion in sensor net-
works: the distributed estimation problem. We show that the
algorithm with trust “avoids” using information from sen-
sors that are not trusted.

4 Distributed Kalman filtering

Distributed estimation and tracking are two of the most
fundamental collaborative information processing problems
in wireless sensor networks. The main idea behind dis-
tributed estimation, found in most of the papers addressing
this problem, consists of using a standard Kalman filter lo-
cally, together with a consensus step in order to ensure that
the local estimates agree [1, 2, 3]. In what follows, we use a
simplified version of the algorithm proposed in [1].

For simplicity we omitted the time index in Algorithm 1.
Notice that with the exception of line 4, the above algorithm
is the standard linear Kalman filter. In line 4, the local infor-
mation is linearly combined with information received from

Algorithm 1: Distributed Kalman Filtering algorithm
with consensus step on estimates [1]

Il’lpllt: Mo, PO
1 Initialization: & = pg, P; = Py
2 while new data exists
3 Compute the intermediate Kalman estimate of the target
state:
M; = P! + CIR;'C;
L; = M;C;R;"
wi =& + Li(y; — Ci&;)

4 Estimate the state after a consensus step:
&y =i + €2 nupy (@i — #i)
5 Update the state of the local Kalman filter:

P, = AMA' +Q
& = Aty

neighbors. We will refer to line 4 as either the information
fusion step or the consensus step. We will focus our analysis
on the values of the weights w;; . In fact they will play the
role of the confidence values introduced in the previous sec-
tion. Unlike the original algorithm [1], we assume that only
local estimates are exchanged and not output measurements
as well.

S Distributed Kalman filtering with
trust dependent weights in the con-
sensus step

In this section we develop the distributed filtering equa-
tions that take into account the confidence (trust) of the sen-
sors. We address two cases with respect to what the confi-
dence values represent. In the first case, we assume that the
weights w;; are a measure of the information accuracy, i.e.
the larger the value of w;; is, the more accurate the informa-
tion received by ¢ from j is. In the second case, the weights
w;; are a measure of the trustworthiness of the data received
by sensor ¢ from sensor j. It may be the case that either a
sensor or a link were compromised, so that the information
received from the respective sensor or through the respective
link is not trustworthy.

5.1 Distributed Kalman Filtering with accu-
racy dependent consensus step

We attach to each sensor a trust value. In this subsec-
tion, the trust refers to the accuracy of information. The
larger the trust value is, the more accurate the information
received from the respective sensor is. The information ex-
changed between sensors is represented by estimates. As
previously mentioned, we denote by T;; the trust sensor ¢
has in information received from sensor j. We propose to
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choose the trust values to be inversely proportional to the
estimation error, according to the formula:

Ty = trace(M;)’ JEeN;, 3)
where M) represents the covariance matrix of the estimation
error from the standard Kalman filter step. The properties
of this matrix will be affected by how observable the state
is from sensor j, (such as the rank of matrix C;) and how
noisy the measurements are, i.e. the variance of the mea-
surements noise [2;. We can expect that the variance of the
estimation error, given by the trace of M}, to be small for
highly observable measurements with low noise. Therefore,
we computed the weight values in the information fusion
step, by normalizing the trust values 7T;;:

T;;

ST @

wij

Algorithm 2: Distributed Kalman Filtering Algorithm
with accuracy dependent consensus step on estimates

Input: po, Py
1 Initialization: & = pg, P, = Py
2 while new data exists
3 Compute the intermediate Kalman estimate of the target
state:
M; = P! + CIR;'C;
L; = M;C;R;"
i =& + Li(yi — Ci&;)

4 Compute the consensus weight values:

5 Estimate the state after a consensus step:
Bi= ) wie
JEN;U{i}
6 Update the state of the local Kalman filter:

P, = AM;A"+Q
& = Ay

This way, we assign a larger influence to the more accu-
rate estimates, directing the resulting average towards esti-
mates with high accuracy. Note however that the matrix M
is not the actual covariance matrix of the estimation error for
the current estimate ;, but the covariance error given by the
standard Kalman filter. Int does however reflect the observ-
ability properties of the sensor, making it a good candidate
for constructing the weight values. We summarize the idea
introduced above in Algorithm 2.

5.2 Distributed estimation with reliability de-
pendent consensus step

In this subsection we propose a distributed estimation
scheme where the averaging operation depends on the relia-
bility of the sensors. We assume that sensors may be com-
promised and may send data aimed at modifying the result
of the estimation process. The update mechanism for the
trust values T;; is based on the notion of belief divergence
[4]: )

di = ] Z 125 — 2;11%, )
JEN;
where we denoted by Z; the current estimates.

The belief divergence d;, gives to sensor ¢ a measure of
how different its own estimate is with respect to the esti-
mates of the other sensors within its communication neigh-
borhood.

Since the sensors exchange only state estimates, every
sensor will compute a belief divergence, d;;, for each sensor
in his neighborhood, according to the formula:

1 A
dij = N _—1 Z 125 — 2|, (6)

v kENi

This metric shows how far a received estimate is from the
other received estimates in some neighborhood. Note that
in the fusion step, estimates far from their real values are
prone to hurt more. However, if enough neighbors provide
reliable information, the belief divergence for a sensor send-
ing false information is going to by high. We use the locally
computed belief divergence metric, to update the trust values
T;;. We first choose a positive constant c;, satisfying:

cp > max{dij |] S -/\/z}

We use the constant ¢; in the following formula for updat-
ing the trust values:
Tij=ci—dj, jEN; (7
Notice that the parameters c; were chosen so that the trust
value Tj; are nonnegative. Moreover, c; are discriminating
in the sense that they influence the ratios 7;; /5. Typically,
the smaller c;, the more sensors with large values of the be-
lief divergence are penalized. From (7) we notice that we fa-
vor the sensor whose estimate is close to the other estimates
in his neighborhood, in a sense ’accelerating convergence’
to consensus. We denote by p;; the normalized versions of
the trust values T5;, computed according to the formula:
T
Pij == 4
Y ZkEN i Ek ’

which may be interpreted as the ’probability the data re-
ceived by sensor ¢ from j are accurate”. Note from the above
formulas that, although small, the normalized trust values
are not necessarily zero for sensors with large belief diver-
gence. Therefore if the value of a false estimate is large com-
pared with the others, it will still influence negatively the

®)
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information fusion step. That is why we introduce a thresh-
olding scheme on the normalized trust values. Let pI™" be
the minimum value accepted for p;;. If p;; < P the trust
value T;; will be set to zero, hence filtering out information
that is not considered sufficiently trustworthy. The lower
bound p™" should be chosen to be inversely proportional

to the size (cardinality) of the neighborhood.

Algorithm 3: Distributed Kalman Filtering Algorithm
with a reliability dependent consensus step on estimates
Input: po, Py
1 Initialization: & = pg, P, = Py
2 while new data exists
3 Compute the intermediate Kalman estimate of the target
state:

Mi = Pi_l + C{R:lCZ
L; = M;C;R; "
0i =& + Li(yi — Ci&)

4 Compute locally the belief divergence:
di= 1 3 o —anl?
' keN;
5 Compute the trust values:
Tij=ci —dij, j €Ni
6 Compute the normalized trust values:

Ty
Dij = Zk Tik

7 Eliminate insufficiently accurate data by setting T;; to
min

zero if p;; < pj
8 Compute the consensus weight values:

Ty
Zk Ti

9 Estimate the state after a consensus step:

Bi= ) wie

JEN;U{i}

wij =

10 Update the state of the local Kalman filter:

= AMA' +Q
& = Ay

The updated trust values are next used to compute the
weights in the consensus step:
Zke/\f,; T’
The distributed estimation algorithm with a reliability de-

pendent averaging scheme is presented in Algorithm 3. The
intuition behind our proposed algorithm is that if a node j

C))

Wiy =

sends false data, the other nodes will compute large belief
divergence values, and hence low trust values, which to-
gether with the thresholding scheme will eliminate the node
from the information flow. The consensus step has the role
of producing a new state estimate by averaging the estimates
on neighborhoods. If an estimate is not accurate enough, it
may drag the updated estimate towards the wrong direction.
By computing the consensus weight values using a trust de-
pendent mechanism, we try to minimize the possibility of
an estimate update moving in the wrong direction. By ad-
justing the minimum accepted value for the normalized trust
values, p’-’”" , the sensors can control their sensibility with
respect to the received data.

(2

6 Simulations

We consider a perturbed oscillatory linear system:

z(k+1) = Ax(k) + w(k)

—0.03
A= ( 0.9996 )
and w(k) € R? is a white, Gaussian noise, with covariance

matrix ) = 0.15]5. Each sensor has a sensing model of the
form:

where,
0.9996
0.03

yi(k) = Ciz(k) + vi,

where the observation matrices C; are chosen at random to
be [0, 1] or [1,0] with the same probability. The measure-
ment noise v;(k) € R is assumed white and Gaussian with
variance R; = o,/i and o, = 30. We consider a network
with seven sensors. Six sensors have each three neighbors.
The seven sensor, communicate with all others.

Figure 2: Sensor network

We first test Algorithm 2 against Algorithm 1. For com-
puting the weights w;; in Algorithm 1 we used the origi-
nal scheme proposed in [1], the value for € being chosen
such that the average estimation error per node was as small
as posssible. More precisely we want to compare the aver-
age estimation errors per node, given by the two algorithms.
Since the trust weights are computed such that more weight
is given to information coming from sensors with smaller
variance of the estimation error, we would expect Algorithm
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Figure 3: Comparison of estimation error given by Alg 1
and Alg 2 respectively

2 to perform better, in the sense that the average estimation
error per node should converge to a smaller value..

We observe form Figure 3 that Algorithm 2, as expected,
performs better. This is mainly due to the fact that in the es-
timation fusion step, we move the updates estimate closer to
the local estimate with better observability and lower mea-
surement noise.

For testing Algorithm 3, we assume that sensor 7 was
compromised and sends false information to all the other
sensors. The goal of sensor 7 is to shift the estimates of other
nodes away from their true values. We consider first the case
when sensor 7 sends to its neighbors a constant value as es-
timate, 7 = —2&,. The centered sensor has to potential to
do a lot of damage since it is connected to all other sensors.
We first test this scenario using Algorithm 1.

- = x3
20 x6
X7

Figure 4: Distributed Kalman filtering with constant false
information

In Figure 4 we plot the first entry of the state vector and
the estimates of sensor 3, 6 and 7. The solid line depicts
the trajectory of the first entry of the state vector. Notice
how the estimates of the other sensors are driven away from
the state values, due to the malevolent influence of sensor
7. We repeat the simulations, when the node 7 sends to its
neighbors sinusoidal values as state estimates values, @7 =
[—20sin(27T (k) 4+ 0.2); 10sin(27T(k))].

As in the previous case, the false data infused in the net-

40
0

Figure 5: Distributed Kalman filtering with sinusoid con-
stant false information

work, shifts the other estimates away from their correct val-
ues.

We used Algorithm 3 to test if sensor 7 is detected and
eliminated. If this is the case, the other estimates should
follow closely the state vector.

- = x3
x6
X7

Figure 6: Distributed Kalman filtering with trust dependent
consensus step and constant false information

Although is seems that the false data does have an influ-
ence on how fast the estmates track the state in the begin-
ning, since the false data is not immediately detected and
rejected, the sensors are able to compute state estimates that
are close to the state values (Figures 6 and 7).

7 Conclusions

As presented in this article, data fusion involves the integra-
tion and application of many disciplines, including commu-
nication and decision theory, epistemology and uncertainty
management, estimation theory, digital signal processing,
computer science, and artificial intelligence. In this paper,
we proposed two modified Distributed Kalman Filtering al-
gorithms, which incorporate the notion of trust. Two op-
erational interpretations of trust were used: accuracy and
reliability, respectively. When using the first interpretation,
we proposed un update scheme for the trust values based on
the estimation error computed by the standard Kalman fil-
tering; a metric which incorporates a qualitative description
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Figure 7: Distributed Kalman filtering with trust dependent
consensus step and sinusoid false information

of a sensor in terms of observability and measurement noise.
When we interpreted trust in terms of reliability, we used the
belief divergence metric and a thresholding scheme to com-
pute the trust values. In both cases, we used the normalized
trust values as weights in the information fusion step, the
resulting updated estimates leaning towards estimates with
high trust values. Finally we tested our proposed algorithms
via simulations.
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