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Abstract— In this paper, we investigate an optimal state
estimation problem for Markovian Jump Linear Systems. We
consider that the state has two components: the first component
of the state is finite valued and is denoted as mode, while the
second (continuous) component is in a finite dimensional Eu-
clidean space. The continuous state is driven by a deterministic
control input and a zero mean, white and Gaussian process
noise. The observable output has two components: the first
is the mode delayed by a fixed amount and the second is a
linear combination of the continuous state observed in zero
mean white Gaussian noise. Our paradigm is to design optimal
estimators for the current state, given the current output
observation. We provide a solution to this paradigm by giving
a recursive estimator of the continuous state, in the minimum
mean square sense, and a finitely parameterized recursive
scheme for computing the probability mass function of the
current mode conditional on the observed output. We show that
the optimal estimator is nonlinear on the observed output and
on the control input. In addition, we show that the computation
complexity of our recursive schemes is polynomial in the
number of modes and exponential in the mode observation
delay.

I. INTRODUCTION
Markovian jump linear systems (MJLS) can be used to

model plants with structural changes, such as in networked
control [11], where communication networks/channels are
used to interconnect remote sensors, actuators and proces-
sors. Moreover, linear plants with random time-delays [12]
can also be modeled as Markovian jump systems. Motivated
by this wide spectrum of applications, for the last three
decades, there has been active research in the analysis [2],
[6], controllers and estimators design [5], [6], [8], [9] for
Markovian jump linear systems.

A MJLS is characterized by a a state with two components:
the first component is finite valued and is denoted as mode,
while the second (continuous) component is in a finite
dimensional Euclidean space. The continuous state is driven
by a deterministic control input and by some process noise.
The observation output has two components as well: the
first is the mode and the second is a linear combination of
the continuous state and some measurement noise. Existing
results solve the problem of state estimation for MJLS for
two main cases. In the first case, the two components of the
observation output are assumed known up until the current
time and the Minimum Mean Square Error (MMSE) estima-
tor is derived from the Kalman filter for time varying systems
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[6], [9]. Off-line computation of the filter is inadvisable due
to the path dependence of the filter’s gain. An alternative
estimator filter, whose gain depends only on the current
mode and for which off-line computations are feasible, is
given in [7]. In the second case, only the continuous output
observation component is known, without any observation
of the mode, and the optimal nonlinear filter is obtained
by a bank of Kalman filters which require exponentially
increasing memory and computation with time [3]. To limit
the computational requirements suboptimal estimators have
been proposed in the literature [1], [3], [10]. A linear MMSE
estimator, for which the gain matrices can be calculated off-
line is described in [8].

In this paper we address the problem of state estimation
for MJLS with delayed mode observations. The motivation
behind considering such setup comes from many practical
applications. For example the delayed mode observation
setup could model networked systems which rely on ac-
knowledgments as a way to deal with unreliable network
links. In real applications, these acknowledgments are not
received at the controller instantaneously; instead they are
delayed by one or more time-steps.

Notations and abbreviations: Consider a general ran-
dom process Zt . By Zt

0 = {Z0,Z1, ...,Zt}, we denote the
history of the process Zt from 0 up to time t. A re-
alization of Zt

0 is referred to by zt
0 = {z0,z1, ...,zt}. Let

{Xt |Y t
0 = yt

0,M
t−h
0 = mt−h

0 } be a vector valued random
process. We denote by fXt |Y t−h

0 Mt−h
0

its probability density
function (p.d.f.). By µX

t|(t,t−h) and ΣX
t|(t,t−h) we will refer

its mean and covariance matrix respectively. For notational
simplicity, we will make an abuse of notation and de-
note by fMt |Y t

0Mt−h
0

(mt |yt
0mt−h

0 ) the probability mass function

prob(Mt = mt |Y t
0 = yt

0Mt−h
0 = mt−h

0 ). We will compactly write
the sum ∑

s
m0=1 ∑

s
m1=1 . . .∑s

mt=1 as ∑mt
0
. Assuming that x

is a vector in Rn, by the integral
∫

f (x)dx we understand∫
...
∫

f (x1, ...,xn)dx1...dxn, where xi are entries of vector x
and f is a function defined on Rn with values in R.

Paper organization: This paper has five more sections be-
sides the introduction. After the formulation of the problem
in Section II, in Section III we presents the main results
of this paper. Section IV provides the proofs for the results
stated in Section III. We end the paper with a simulation
section and some conclusion and comments on our solution.

II. PROBLEM FORMULATION

In this section we formulate the problem for the MMSE
state estimation for MJLS in the presence of delayed mode
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observations.
Let us first introduce the definition of a Markovian jump

linear system:
Definition 2.1: (Discrete-time Markovian jump linear sys-

tem) Consider n, m, q and s to be given positive integers
together with a transition probability matrix P ∈ [0,1]s×s

satisfying ∑
s
j=1 pi j = 1, pi j ≥ 0, for each i in the set S =

{1, . . . ,s}, where pi j is the (i, j) element of the matrix P.
Consider also a given set of matrices {Ai}s

i=1, {Bi}s
i=1 and

{Ci}s
i=1 with Ai ∈ Rn×n, Bi ∈ Rn×m and Ci ∈ Rq×n for i

belonging to the set S . In addition consider two independent
random variable X0 and M0 taking values in Rn and S ,
respectively. Given the vector valued random processes Wt
and Vt taking values in Rn and Rq respectively, the following
dynamic equations describe a discrete-time Markovian jump
linear system:

Xt+1 = AMt Xt +BMt ut +Wt (1)

Yt = CMt Xt +Vt . (2)

The state of the system is represented by the doublet (Xt ,Mt)
where Xt ∈ Rn is the state continuous component and Mt
is the discrete component. The process Mt is a Markovian
jump process taking values in S with conditional prob-
abilities given by pr(Mt+1 = j|Mt = i) = pi j. The vector
ut ∈ Rm is the control input assumed deterministic. The
observation output is given by the doublet (Yt ,Mt), where
Yt ∈Rq is the continuous component. Throughout this paper
we will consider Wt and Vt to be independent identically
distributed (i.i.d.) Gaussian noises with zero means and
identity covariance matrices (the covariance matrices of the
two noise process were assumed to be identity just for
simplicity, every results presented in this paper being valid
for any covariance matrix). The initial random vector X0
has a Gaussian multivariate distribution with mean µX0 and
covariance matrix ΣX0 which, together with the Markovian
process Mt and the noises Wt , Vt , are assumed independent
for all time instants t.

As it can be noticed, the Markovian jump linear system
described by (1)-(2) has a hybrid state with a continuous
component Xt taking values on a finite dimensional Eu-
clidean space and a discrete valued component Mt repre-
senting the mode of operation. The system has s mode of
operations defined by the set of matrices (A1,B1,C1) up to
(As,Bs,Cs). The Markovian process Mt (called also mode
process) determines which mode of operation is active at
each time instant. For simplicity, throughout this paper we
will differentiate among the different components of the
MJLS state and observation output as following. We will
refer to Xt as the state vector and to Mt as mode. If known,
we will call Yt as output observation and Mt and mode
observation.

We can now proceed with the formulation of our problem
of interest.

Problem 2.1: (MMSE state estimation for MJLS with de-
layed mode observations) Consider a Markovian jump linear
system as in Definition 2.1. Let h be a positive integer

representing how long the mode observations are delayed.
Assuming that the state vector Xt and the mode Mt are
not known, and that at the current time the data available
consists in the output observations up to the current time t
(Y t

0 = yt
0) and mode observations up to time t− h (Mt−h

0 =
mt−h

0 ) we want to derive the MMSE estimators for the state
vector Xt and the mode indicator function 1{Mt=mt},mt ∈
S . More precisely, considering the optimal solution of the
MMSE estimators ([13]) we want to compute the following:
MMSE state estimator:

X̂h
t = µt|(t,t−h) = E[Xt |Y t

0 = yt
0,M

t−h
0 = mt−h

0 ], (3)

MMSE mode indicator function estimator:

1̂h
{Mt=mt} = E[1{Mt=mt}|Y

t
0 = yt

0,M
t−h
0 = mt−h

0 ], (4)

where the indicator function 1{Mt=mt} is one if Mt = mt and
zero otherwise.

Remark 2.1: Obtaining an MMSE estimation of the mode
indicator function allows us to replace any mode dependent
function g(Mt) by an estimation ĝ(Mt) = ∑i∈S g(i)1̂{Mt=i}.
We are interested in an estimation of the indicator function
rather than of the mode itself because the MMSE estimator
of the mode can produce real values which may have limited
usefulness;

Remark 2.2: Considering the definition of the indicator
function, the MMSE mode indicator function estimation can
be also written as: 1̂h

{Mt=mt} = pr(Mt = mt |Y t
0 = yt

0,M
t−h
0 =

mt−h
0 ). Then we can also produce a marginal maximal a

posteriori mode estimation expressed in terms of the indica-
tor function: M̂h

t = argmaxmt∈S pr(Mt = mt |Y t
0 = yt

0,M
t−h
0 =

mt−h
0 ) = argmaxmt∈S 1̂

h
{Mt=mt}.

III. MAIN RESULT

In this section we present the solution for Problem 2.1.
We introduce here two corollaries describing the formulas for
computing the state and mode indicator function estimations.
An efficient online algorithm implementing the estimators is
also given. The proofs of these corollaries are deferred for the
next section. Let us first remind ourselves some properties
of the Kalman filter for MJLS synthesized in the following
theorem.

Theorem 3.1: Consider a discrete MJLS as in Definition
2.1. The random processes {Xt |Y t

0 = yt
0Mt

0 = mt
0}, {Xt |Y t−1

0 =
yt−1

0 Mt−1
0 = mt−1

0 } and {Yt |Y t−1
0 = yt−1

0 Mt
0 = mt

0} are Gaus-
sian distributed with the means and covariance matrices
calculated by the following recursive equations:

Σ
X
t|(t,t)

−1 = Σ
X
t|(t−1,t−1)

−1 +CT
mtCmt (5)

µ
X
t|(t,t) = Σ

X
t|(t,t)

[
CT

mt yt +Σ
X
t|(t−1,t−1)

−1
µ

X
t|(t−1,t−1)

]
(6)

µ
X
t|(t−1,t−1) = Amt−1 µ

X
t−1|(t−1,t−1) +Bmt−1ut−1 (7)

Σ
X
t|(t−1,t−1) = Amt−1Σ

X
t−1|(t−1,t−1)A

T
mt−1

+ In (8)

µ
Y
t|(t−1,t) = Cmt µ

X
t|(t−1,t−1) (9)

Σ
Y
t|(t−1,t) = Cmt Σ

X
t|(t−1,t−1)C

T
mt + Iq, (10)
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with initial conditions µX
0|(−1,−1) = µX0 and ΣX

0|(−1,−1) = ΣX0 .

Remark 3.1: Equations (5)-(8) are a more compact repre-
sentation of the standard recursive equations of the Kalman
filter for MJLS. Equations (9) and (10) follow immediately
from de derivation of the filter. We can recover the well
known equations by applying the Matrix Inversion Lemma
on (5)-(8). Derivation of the Kalman filter equation can be
found in [6] for example.

Our main result consists in Corollaries 3.1 and 3.2 which
show the algorithmic steps necessary to compute the MMSE
state and mode indicator function estimators for MJLS when
the mode observations are affected by some arbitrary (but
fixed) delay.

Corollary 3.1: Given a MJLS as in Definition 2.1 and a
positive integer h, the MMSE state estimator from Problem
2.1 is given by the following formula:

µt|(t,t−h) = ∑
mt

t−h+1

ct(mt
t−h+1)µ

X
t|(t,t)(m

t
t−h+1)

where µX
t|(t,t) is the estimation produced for the Kalman filter

(5)-(8) for each of the missing mode path mt
t−h+1 and the

coefficients ct(mt
t−h+1) are given by

ct(mt
t−h+1) =

=
∏

h−1
k=0 pmt−k−1mt−k fYt−k |Y

t−k−1
0 Mt−k

0
(yt−k|yt−k−1

0 mt−k
0 )

∑mt
t−h+1

∏
h−1
k=0 pmt−k−1mt−k fYt−k |Y

t−k−1
0 Mt−k

0
(yt−k|yt−k−1

0 mt−k
0 )

,

(11)
where fYt−k |Y

t−k−1
0 Mt−k

0
is the Gaussian p.d.f. of the process

{Yt−k|Y t−k−1
0 = yt−k−1

0 ,Mt−k
0 = mt−k

0 } whose mean and co-
variance matrix are expressed recursively in (9) and (10).

Corollary 3.2: Given a MJLS as in Definition 2.1 and
a positive integer h, the MMSE mode indicator function
estimator from Problem 2.1 is computed according to the
next formula:

1̂h
{Mt=mt} = ∑

mt−1
t−h+1

ct(mt
t−h+1)

where the coefficients ct(mt
t−h+1) are the same as in the

previous corollary.

Remark 3.2: We will show later that the coefficients
ct(mt

t−h+1) are the conditional probabilities pr(Mt
t−h+1 =

mt
t−h+1|Y t

0 = yt
0Mt−h

0 = mt−h
0 ) and therefore they sum up to

one. Then, we can express the estimation error as following:

εt = Xt−µt|(t,t−h) = ∑
mt

t−h+1

ct(mt
t−h+1)[Xt−µt|(t,t)(m

t
t−h+1)] =

= ∑
mt

t−h+1

ct(mt
t−h+1)ε̃t(mt

t−h+1)≤ ∑
mt

t−h+1

ε̃t(mt
t−h+1)

where ε̃t(mt
t−h+1) is the estimation error of the Kalman filter

for MJLS. Therefore the covariance matrix of the estimation
error in the case of delayed mode observations is bounded if

the covariance matrix of the estimation error produced by the
Kalman filter is bounded as well, which implies the stability
of the estimator. Note also from above, that the estimation
error speed of convergence (in the mean square sense) can
be expressed in terms of the speed on convergence of the
estimation error produce by the Kalman filter.

These results can be regarded as a generalization of the
estimation problem for MJLS. Since we assumed the delay
to be fixed, the estimation formulas have a polynomial
complexity in the number of modes. However the complexity
increases exponentially with the delay which is in accord
with the results concerning the Kalman filter for MJLS
with no mode observations [3]. We can notice that through
the coefficients ct(mh

t−h+1), the estimation introduced in the
previous corollaries are nonlinear in the sequence of observed
outputs yt

t−h+1 and control inputs ut−1
t−h+1. This nonlinearity

(especially the one in the inputs) makes the estimation error
to depend on the inputs as well, and therefore an attempt
to solve the optimal linear quadratic problem with partial
information using MMSE state estimations becomes difficult
since the separation principle can no longer be obtained.

A. Algorithms implementation

By Corollary 3.1 we note that in order to calculate the
optimal estimation X̂h

t we need to compute a number of
sh Kalman filter estimations, corresponding to all possible
paths of the Markov process Mt from t − h + 1 up to t,
plus an equal number of coefficients ct(mt

t−h+1). Hence
for the MMSE state estimator for a MJLS with delayed
mode observations the numerical complexity and required
memory space increases exponentially with the delay h.
However for a fixed h the estimators can be implemented
(with polynomial complexity in the number of modes of
operation) and an algorithm is presented in the following.
A naive way to implement the estimators consists in using,
at each time instant, the Kalman filter iterations to compute
the estimations µt|t,t for all possible mode paths mt

t−h+1 for
each time instant having has initial condition the Kalman
filter estimate µt−h|(t−h,t−h). The numerical complexity in
this case would be s + s2 + ... + sh. This is naive because
it does not make use of information already available from
past time instants. An implementation with a lower numerical
complexity is presented in the following (see next page).

We start the algorithm having as initial information the
mean and the covariance of the initial state vector X0 together
with the initial output and mode observations, y0 and m0
respectively, and the mode observation delay h. Before
entering the infinite time loop at line 5 we compute the mean
and covariance matrix for the process {X0|Y0 = y0,M0 = m0}
which will constitute the initial value for the iterations in
lines 6-21. In lines 7-13 we compute the mean and covariance
matrix for the process {Xt |Y t

0 = yt
0,M

t
0 = mt

0} for all possible
paths mt

t−h+1. This provides also all the values necessary for
evaluating the parameters ct . After computing the desired
estimations in line 16-17 we make use of the newly arrived
mode observation mt−h+1 corresponding to time instant t +1
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and keep only the means and the covariances matrices that
match the newly updated mode path (lines 18-21).

Observe that at each time step t the number of compu-
tations is of order of sh. In terms of memory requirements,
the memory space needed is of order of s + s2 + ...+ sh−1

mainly due to the need for storing the values of the functions
fYt−k|Y t−k−1

0 Mt−k
0

with k ∈ {h−1, ...,2,1}.

Algorithm 1: MMSE state estimation for MJLS with
delayed mode observations

Input: µX0 , ΣX0 , m0, h
begin1

µX
0|(−1,−1) = µX0 , ΣX

0|(−1,−1) = ΣX0 ;2

ΣX
0|(0,0)

−1 = ΣX
0|(−1,−1)

−1 +CT
m0

Cm0 ;3

µX
0|(0,0) = ΣX

0|(0,0)[C
T
m0

y0 +ΣX
0|(−1,−1)

−1
µX

0|(−1,−1)];4

forall t ≥ 1 do5

for mt
t−h+1 ∈S do6

µX
t|(t−1,t−1) = Amt−1 µX

t−1|(t−1,t−1) +Bmt−1 ut−1;7

ΣX
t|(t−1,t−1) = Amt−1 ΣX

t−1|(t−1,t−1)A
T
mt−1

+ In;8

µY
t|(t−1,t) = Cmt µ

X
t|(t−1,t−1);9

ΣY
t|(t−1,t) = Cmt ΣX

t|(t−1,t−1)C
T
mt

+ Iq;10

fYt |Y t−1
0 Mt

0
=Gaussian(µY

t|(t−1,t),Σ
Y
t|(t−1,t));11

ΣX
t|(t,t)

−1 = ΣX
t|(t−1,t−1)

−1 +CT
mt

Cmt ;12

µX
t|(t,t) =13

ΣX
t|(t,t)[C

T
mt

yt +ΣX
t|(t−1,t−1)

−1
µX

t|(t−1,t−1)];

ct(mt
t−h+1) =14

∏
h−1
k=0 pmt−k−1mt−k f

Yt−k |Y
t−k−1
0 Mt−k

0
(yt−k |yt−k−1

0 mt−k
0 )

∑mt
t−h+1

∏
h−1
k=0 pmt−k−1mt−k f

Yt−k |Y
t−k−1
0 Mt−k

0
(yt−k |yt−k−1

0 mt−k
0 )

;

end15

µX
t|(t,t−h) = ∑mt

t−h+1
ct(mt

t−h+1)µX
t|(t,t);16

1̂h
{Mt=mt} = ∑mt−1

t−h+1
ct(mt

t−h+1) ;17

µX
t−1|(t−1,t−1)(m

t
t−h+2) = µX

t|(t,t)(m
t
t−h+2);18

for k ∈ {h−1, . . . ,1} do19

fYt−k−1|Y t−k−2
0 Mt−k−1

0
(·) = fYt−k |Y t−k−1

0 |Mt−k
0

(·);20
end21

end22

end23

IV. PROOF OF THE MAIN RESULT

In this section we present the proof of our main results.
Corollaries 3.1 and 3.2, are a direct consequence of the sta-
tistical properties of the random process {Xt |Y t

0 = yt
0Mt−h

0 =

mt−h
0 } introduced in Theorem 4.1. In this theorem we show

that the p.d.f fXt |Y t
0Mt−h

0
is a mixture of Gaussian p.d.f’s with

coefficients depending nonlinearly on output observations
and control inputs. To simplify the proof of Theorem 4.1 we
introduce the following corollary in which we characterized
the statistical properties of a linear combination of two
Gaussian random vectors.

Corollary 4.1: Consider two Gaussian random vectors V
and X of dimension m and n respectively, with means µV = 0
and µX and covariance matrices ΣV = Im and ΣX respectively.
Let Y be a Gaussian random vector resulted from a linear
combination of X and V , Y = CX +V where C is a matrix
of appropriate dimensions. Then the following holds:∫

Rn
fV (y−Cx) fX (x)dx = fY (y), (12)

where fY (y) is the multivariate Gaussian p.d.f. of Y with
parameters µY = CµY and ΣY = CΣXCT + Im. Also,

fV (y−Cx) · fX (x) = f̃X̃ (x) · fY (y), (13)

where f̃X̃ (x) is a Gaussian p.d.f. with parameters µX̃ =
ΣX̃ (CT y + Σ

−1
X µX ), Σ

−1
X̃ = Σ

−1
X +CTC and, fY (y) being de-

fined in (12).
The above corollary is just in generalization at the level

of vectors for a well known results concerning the sum of
two Gaussian random variables.

Theorem 4.1: Consider a discrete MJLS as in Definition
2.1 and let h be a known positive integer value. Then the
p.d.f. of the random process {Xt |Y t

0 = yt
0Mt−h

0 = mt−h
0 } is a

mixture of Gaussian probability densities. More precisely:

fXt |Y t
0Mt−h

0
(x|yt

0mt−h
0 ) = ∑

mt
t−h+1

ct(mt
t−h+1) fXt |Y t

0Mt
0
(x|yt

0,m
t
0)

(14)
where ct(mt

t−h+1) = fMt
t−h+1|Y

t
0Mt−h

0
(mt

t−h+1|yt
0mt−h

0 ) are the
(time varying) mixture coefficients and fXt |Y t

0Mt
0
(x|yt

0,m
t
0) is

the gaussian p.d.f. of the process {Xt |Y t
0 = yt

0,M
t
0 = mt

0}
whose statistics is computed according to the recursions
(5)-(8). The coefficients ct(mt

t−h+1) are computed by the
following formula:

ct(mt
t−h+1)=

∏
h−1
k=0 pmt−k−1mt−k

fYt−k |Y
t−k−1
0 Mt−k

0
(yt−k|yt−k−1

0 mt−k
0 )

∑mt
t−h+1

∏
h−1
k=0 pmt−k−1mt−k

fYt−k |Y
t−k−1
0 Mt−k

0
(yt−k|yt−k−1

0 mt−k
0 )

(15)
where fYt−k |Y

t−k−1
0 Mt−k

0
is the Gaussian p.d.f. of the process

{Yt−k|Y t−k−1
0 = yt−k−1

0 ,Mt−k
0 = mt−k

0 } whose mean and co-
variance matrix are expressed in (9) and (10).

Proof: Using the law of marginal probabilities we get:

fXt |Y t
0 Mt−h

0
(x|yt

0mt−h
0 ) = ∑

mt
t−h+1

fXt Mt
t−h+1|Y t

0 Mt−h
0

(x,mt
t−h+1|y

t
0mt−h

0 ) =

= ∑
mt

t−h+1

fXt |Y t
0 Mt

0
(x|yt

0,m
t
0) fMt

t−h+1|Y t
0 Mt−h

0
(mt

t−h+1|y
t
0mt−h

0 ) =

= ∑
mt

t−h+1

ct(mt
t−h+1) fXt |Y t

0 Mt
0
(x|yt

0,m
t
0)
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Thus we obtained (14). All you are left to do is to compute
coefficients of this linear combination. By applying the Bayes
rule we get:

fMt
t−h+1|Y

t
0Mt−h

0
(mt

t−h+1|yt
0mt−h

0 ) =
fY t

0Mt
0
(yt

0mt
0)

∑mt
t−h+1

fY t
0Mt

0
(yt

0mt
0)

(16)

The p.d.f. fY t
0Mt

0
can be expressed recursively as:

fY t
0Mt

0
(yt

0mt
0) =

∫
Rn

fXtY t
0Mt

0
(xtyt

0mt
0)dxt =

=
∫
Rn

fYt |Xt Mt (yt |xtmt) fXt |Y t−1
0 Mt−1

0
(xt |yt−1

0 mt−1
0 )dxt

pmt−1mt fY t−1
0 Mt−1

0
(yt−1

0 mt−1
0 ).

Applying (12) we obtain:

fY t
0Mt

0
(yt

0mt
0) =

= fYt |Y t−1
0 Mt

0
(yt |yt−1

0 mt
0)pmt−1mt fY t−1

0 Mt−1
0

(yt−1
0 mt−1

0 )

Using this recursive expression we get:

fY t
0 Mt

0
(yt

0mt
0) =

=
h−1

∏
k=0

pmt−k−1mt−k
fYt−k |Y

t−k−1
0 Mt−k

0
(yt−k|yt−k−1

0 mt−k
0 ) fYt−h

0 Mt−h
0

(yt−h
0 mt−h

0 )

By replacing the previous expression in (16) we obtain
the coefficients ct(mt

t−h+1) expressed in (14). We can con-
clude de proof by making the observations that the p.d.f.
fYt−k|Y t−k−1

0 Mt−k
0

is completely characterized in Theorem 3.1,
equation (9) and (10).

Corollary 3.1 Proof: The result follow immediately
from the linearity property of the expectation operator and
from (14).

Corollary 3.2 Proof: By the law of marginal proba-
bility we can write

fMt |Y t
0Mt−h

0
(mt |yt

0mt−h
0 ) = ∑

mt−1
t−h+1

fMt
t−h+1|Y

t
0Mt−h

0
(mt

t−h+1|yt
0mt−h

0 )

Together with (15), the proof is concluded.

V. SIMULATIONS

In this section we present a comparison between the
simulation results obtained with our MMSE state estimator
and with two heuristic estimation schemes which will be
described in what follows. We consider a MJLS as in (1)
with the state vector Xt ∈ R2 and the output Yt ∈ R. We
assume that the system is being driven just by the Gaussian
noise, and there are four modes of operations described by
the matrices:

A1 =
(

0.9 0.1
0.4 0.2

)
, A2 =

(
0.8 0.2
0.7 0.3

)
,

A3 =
(

0.5 0.5
0.5 0.1

)
, A4 =

(
1 0

0.5 0.2

)
,

C1 =
(

0 0.5
)
, C2 =

(
0.5 1

)
,

C3 =
(

1 0.5
)
, C4 =

(
0.5 0.5

)
.

The Markov chain Mt has four states and the probability
transition matrix is

P =


0.3 0.7 0 0
0 0 1 0
0 0.3 0.4 0.3

0.5 0.5 0 0

 .

The covariance matrices of the two noise processes are
chosen as ΣW = 0.1I and ΣV = 0.4I. We assume that the
modes observations are delayed by three time instants (h =
3). We use two heuristic estimation schemes for comparison.
The first scheme (S1) consists in using the delayed mode
observations as current ones and using the Kalman filter
to determine the estimation. For example at time t, the
available modes are mt−3 and mt−2 which will be used
in stead of mt and mt−1, which are the modes needed in
the Kalman iteration. The second scheme (S2) consists in
using a rudimentary estimation of the mode provided by the
following optimization:

m∗t = argmax
mt

Prob(Mt = mt |Mt−3
0 = mt−3

0 )

where mt ∈ S and probability in the above optimization
being computed using the probability transition matrix P. We
solve a similar optimization problem to derive an estimate for
the mode mt−1. The initial condition X0 is extracted from a
Gaussian distribution with zero mean and covariance matrix
ΣX0 = 0.1I. The initial distribution of the mode was chosen
to be p0 =

(
0.2 0.3 0.1 0.4

)
.

In the following we provide simulation results of the
estimation schemes proposed above. The simulations were
run from t=0 to 3000. The paths Mt were generated randomly
and the filters were compared under the same conditions,
that is, the same set of paths of Mt , initial conditions X0 and
noises Wt and Vt .

Fig. 1. Mean square estimation error for MMSE state estimation with
delayed mode observations and for schemes S1 and S2.
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In Fig. 1 we present the simulation results for a realization
of the mode path, initial condition and noise. We plot the
mean square error estimations obtained with the MMSE with
delayed mode observations, S1 and S2 estimations schemes,
respectively. As expected the first scheme give the smallest
error and, as intuitively may have been expected, S1 scheme
behave the worst. Notice that due to the presence of the
(Gaussian) noise, the estimation error does not converge to
zero but rather it stabilizes to some value depending of the
covariances matrices of the noises.

VI. CONCLUSIONS

In this paper we considered the problem of state estimation
for a MJLS when the discrete component of the output
observation (namely the mode) is affected by an arbitrary but
fixed delay. We introduced formulas for MMSE estimators
for both the continuous and discrete components of the state
of the MJLS. These formulas admit recursive implementation
and have polynomial complexity in terms of the number of
modes of operation and therefore are feasible for practical
implementation. We showed that the MMSE state estimation
with delayed mode observations depends nonlinearly on a
sequence of output observations and control inputs, sequence
whose length is determined by the value of the delay and
that the same property remain valid for the estimation error
as well. We also provided an efficient algorithm for com-
puting the optimal state estimation which admits an online
implementation. Although the estimators provided in this
paper may prove difficult to use in solving optimal linear
quadratic control problems with partial information, they are
however useful for deriving sub-optimal control strategies or
in tracking problems where an accurate state estimation is
desired.
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