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ABSTRACT 

 
Future military systems, such as FCS, require a robust and 
flexible network that supports thousands of ad hoc nodes. 
Therefore, networking protocols for MANETs must be 
made to scale. The use of hierarchy is a powerful general 
solution to the scaling problem. We have previously 
proposed methods based on Simulated Annealing (SA) to 
optimize hierarchy in MANETs. The challenge, however, 
is to improve the slow convergence time of SA, so it can 
be used in dynamic environments, without penalizing 
optimality. In previous work the importance of parameters 
such as cooling schedule, state transition probabilities and 
convergence condition are investigated. This paper 
proposes a new approach to decrease SA convergence 
time. SA is an optimization technique based on an 
iterative process that takes an initial solution, or map, to 
start the process. In this paper we analyze the effect that 
this initial solution has on the SA convergence time as a 
function of the network size. We believe that the 
combined modifications to SA can speed the optimization 
process to the point that it can quickly generate very 
efficient clustering solutions in large dynamic networks. 
 

1. INTRODUCTION 
 

In recent years Mobile Ad Hoc Networks (MANETs) 
have become very popular, due to their infrastructure-less 
characteristics. Their importance in the military world has 
been highlighted from many researchers and military 
planners. However, there are still many unresolved 
problems that make them inefficacious in scenarios such 
as the large scale ad hoc networks envisioned in Future 
Battlefield Networks. Then, networking protocols (e.g., 
routing, security and QoS) must be made to scale. 
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The use of hierarchy is a powerful general solution to 
the scaling problem, since it allows networking protocols 
to operate on a limited number of nodes, as opposed to the 
entire network. Hierarchy also provides other important 
benefits, such as simplifying network management and 
providing more efficient support for heterogeneity.  

 
In the literature, there are many research proposals 

for dynamically creating and maintaining an optimal 
hierarchy in large dynamic networks (Lin and Gerla, 
1997; Baker et al., 1984; Chatterjee et al., 2002; Basagni, 
1999).  While local maintenance algorithms are essential 
to provide fast robust performance, the use of a global 
optimization has been shown to be critical on providing 
good overall clustering. In particular, Simulated 
Annealing (SA) can optimize the network for a wide 
variety of metrics simultaneously (Manousakis et al., 
2004; Manousakis and Baras, 2004). In (Manousakis et 
al., 2004) SA was optimized for the specific application 
of clustering by a) modifying the termination condition of 
the algorithm, b) selecting faster cooling schedule and c) 
modifying the state transition probabilities in accordance 
to the cost function being optimized. These techniques 
produced an order of magnitude improvement in 
performance compared to standard SA.  

 
Despite the improved performance, the application of 

SA is still limited to clustering hundreds of nodes. Other 
techniques (e.g., min-cut) are available for larger 
networks, but they are unable to solve the required 
complex multi-metric, multi-layer optimizations. This 
paper proposes new techniques to provide further 
significant reduction in SA convergence time that will 
allow applying SA in networks with thousands of nodes.  

 
Our approach is based on providing a clustering map 

“better” than a random map as the initial cluster 
configuration for SA to start the optimization process. 
Although this is a well founded intuitive solution, it has 
not been shown how much reduction in convergence time 
can be achieved and how much loss in optimality results 
for typical clustering cost functions. Even though SA 
wanders randomly around the surface of feasible 
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solutions, if it starts from a solution that is closer to 
optimal it is more probable to reach the optimal faster and 
stay there for the appropriate number of iterations until 
final convergence.  

 
Any optimal solution must work within the 

constraints that any pair of nodes in the same cluster can 
reach each other using only links and nodes that are 
internal to the cluster. We call clusters having this 
pathwise property feasible clusters; they fall within the 
category of topological clusters as defined below: 

 
Definition (Topological Cluster): A cluster consisting of 
the set S  of nodes is called topological if 

,i jnode node∀ ∈ S  and i j≠ , there is always a path ijP  

from inode  to jnode  such that knode∀ ∉ S  holds 

that k ijnode P∉ . All the members of a cluster can 
communicate between them without the need to use inter-
cluster links, which are links that involve non-member 
nodes. 

 
The initial cluster map that is fed into the SA must be 

feasible.  In (Manousakis et al., 2004), the initial 
configuration map is generated by randomly assigning 
nodes to clusters, with the constraint that the generated 
clusters are feasible. We propose here two ways of 
generating better initial clusters either by applying some 
fast heuristic related to the optimization metric of SA, or, 
when SA runs periodically, by using the existing or 
previously optimized clustering (so we do not start from 
scratch each time). 

 
The use of a modified SA solution is particularly 

attractive in dynamic networks which must be re-
optimized relatively often. Obviously, due to the mobility 
of nodes, clusters may become infeasible. Therefore we 
must force feasibility before a previously generated 
cluster configuration can be input to SA. Alternatively, 
we can directly use the current solution produced by local 
maintenance algorithms. Different approaches can be 
used (Manousakis et al., 2004b) that can have different 
effects on the rate of degradation, but all maintain feasible 
solutions that can be fed in directly into SA. 

 
2. SIMULATED ANNEALING 

 
Simulated annealing (SA) has been widely used for 

tackling different combinatorial optimization problems 
(Kirkpatrick et al., 1983). The process of obtaining the 
optimum configuration is similar to that followed in a 
physical annealing schedule. In SA, however, the 
temperature is merely used as a control parameter and 
does not have any physical meaning.    

 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Simulated Annealing algorithm for network 

partitioning 
 

Figure 1 highlights the general steps in the algorithm. 
The objective of the algorithm is to obtain the K cluster 
network partition configuration, C*, that optimizes a 
particular cost function. The process starts with an initial 
temperature value, T0, which is iteratively decreased by 
the cooling function until the system is frozen (as decided 
by the stop function). For each temperature, the SA 
algorithm takes the current champion configuration C* 
and applies the recursive function to obtain a new 
configuration C’ and evaluates its cost, E’. If E’ is lower 
than the cost of the current E*, C’ and E’ replace C* and 
E*. Also, SA randomly accepts a new configuration C’ 
even though E’ is greater than E* to avoid local minima. 
In the latter case C’ and E’ replace C* and E* respectively.  
One of the key characteristics of simulated annealing is 
that it allows uphill moves at any time and relies heavily 
on randomization (Johnson and McGeoch, 1997). The 
higher the temperature, the higher the probability of 
accepting a configuration that worsens E* instead of 
improving it. Indeed, if the temperature is sufficiently 
high, SA will simply take a random walk around the 
solution space. The lower the temperature, the lower the 
probability of accepting worse configurations. 
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The number of iterations required to reach 
equilibrium is defined by the equilibrium function. The 
function can be a simple constant (e.g., 100) or a function 
of the temperature and other parameters specific to the 
optimization problem, such as number of network nodes. 
 

3. COST FUNCTIONS 
 
SA is one of many global optimization algorithms 

that we can utilize to obtain optimal or suboptimal 
clustering decisions (Manousakis et al., 2004; Manousakis 
and Baras, 2004). The goodness of the clustering 
decisions depends primarily on the cost functions and 
constraints provided for optimization, not on the 
optimization algorithms themselves. We have found the 
careful design and selection of cost functions is very 
important for the quality of clustering decisions, with 
respect to the imposed network objectives (e.g., minimum 
overhead or minimum latency).  The cost functions are 
based on various metrics of interest that can be measured 
from the network. Table 1 lists ten example cost functions 
have been shown to meet different clustering objectives 
(Manousakis et al., 2004; Manousakis and Baras, 2004). 

 
 
Table 1 Example Objetives and associated Cost 
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Parameter Definition 

iC  Cluster i 
iC  Size of cluster i 

iCd  Diameter of cluster i 

iCBR  
Number of border routers of cluster 

i 

,i jrθ
 

Relative direction of nodes i,j 

,i jrU  Relative Velocity of nodes i,j 

ijLET  Expiration Time of Link between 
nodes i,j 

S  Scalar speed of node 
 

4. IMPROVING THE SPEED OF SA 
 
The most dominant characteristic of the network 

environments under consideration is the dynamic 
topology. The SA algorithm, due to its slow convergence 
time, has only been considered for static problems. Due to 
its simplicity of implementation, its ability to handle 
complex cost functions, and optimality of the solutions it 
provides, we have attempted to modify it appropriately, so 
that the convergence time is improved significantly.  This 
way, convergence time is not a limitation for applying SA 
in dynamic networks. These improvements are not 
coming for free, but affect the optimality of the clustering 
solutions provided by SA.  So, our task becomes twice as 
difficult since we have to speed up SA to the point where 
it can be applied in dynamic environments but also we 
have to be careful so that the quality of the clustering 
solutions remains unaffected. 
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In (Manousakis et al., 2004) we introduced three 
modifications for improving the speed of SA. In this 
section we will briefly review them prior to the 
introduction of the new modification. The three 
previously presented modifications are related to the 
following parameters of SA algorithm: 

a. Cooling Schedule 
b. Termination Condition 
c. State Transition Probabilities 

 
A more detailed description of these modifications and 
their effect on the convergence time of the algorithm is 
given in the following paragraphs. 
 
4.1 Cooling Schedule 
 

The SA algorithm has been proven to convergence in 
probability to the global optimal under the assumption of 
the logarithmic cooling schedule utilization.  

0

1 lnt
TT

t
=

+
                                    (11) 

where, 

0T : Initial Temperature 
t   : Number of iterations 

 
Even though the logarithmic cooling schedule produces 
high quality clustering solutions, it also results in slow 
convergence times. Our objective was to select another 
cooling schedule, which could result in much faster 
convergence times but also maintain the quality of the 
clustering solutions. The geometric cooling schedule met 
our objective, since it is much faster and we obtained 
clustering solutions of the same quality as the logarithmic 
cooling schedule. The geometric cooling schedule is 
described from the following expression: 
 

0
t

tT Tα=                                      (12) 
where, 

0T : Initial Temperature 
t   : Number of iterations 
α : Constant value ( 0.90 0.99α≤ ≤ ) 

 
4.2 Termination Condition 
 

The theoretical version of the algorithm terminates 
when the temperature tT  reaches zero, because this is 
when the algorithm converges to the global optimal value. 
In practice the algorithm reaches the zero temperature in 
infinite number of iterations, so we cannot utilize this 
termination condition in a realizable version of SA. 
Obviously, the larger the number of iterations are, the 
better the quality of the clustering solution and the larger 
the running time of the algorithm (i.e., slower 
convergence times).  

 
Our objective is to trade off optimality with 

convergence time, such that the quality is satisfying and 
the convergence time of the algorithm is improved. The 
parameter we introduced to control the termination 
condition is called StopRepeats. This value determines the 
number of consecutive times we have to observe the same 
optimal value before we stop the algorithm and accept 
this optimal value as the clustering solution. 

 
In (Manousakis et al., 2004) we measured the effect 

of various values of StopRepeats on the quality of the 
clustering solutions. We observed that the utilization of 
small values O(100) does not affect notably the quality of 
the clustering solution and at the same time improves 
significantly the convergence time of the algorithm. 
 
4.3 State Transition Probabilities 
 

The functionality of SA is based on the random 
generation of a new clustering map in each iteration. This 
clustering map is compared with the optimal at that time 
in order to be decided if the new clustering map takes the 
place of the optimal or the previous optimal is maintained.  

 
The clustering maps that are used for the 

comparisons with the optimal are generated by randomly 
moving nodes between clusters. The generation of a new 
clustering map consists of three random selections: 

1. Cluster from where we will move a node 
2. Node from the above cluster 
3. Cluster where we will move the new node 

 
Traditionally the selection process for each one of the 
three elements above utilizes the uniform distribution. 
Our objective was to boost the ability of SA to reach a 
good clustering solution as fast as possible. Instead of 
relying on the uniform distribution for the elements 1 and 
3 we decided to bond the selection probabilities on the 
cost function we want to optimize and study the effect 
that it has on the convergence time of the algorithm.  This 
modification is expected to result in faster convergence 
times since it assigns higher probabilities to the 
potentially better clustering maps with respect to the cost 
function being optimized. 
 

For a better understanding of the state transition 
probabilities modification, assume cost functions (1) and 
(2) for the generation of balanced size clusters. For this 
clustering objective (e.g., balanced size clusters) instead 
of utilizing the uniform distribution for selecting 1 and 3 
to generate a new clustering map, we introduced the 
following state transition probabilities: 
 
•  For selecting the cluster from where we will migrate 

a node: 
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( )"from" cluster 
(Total Number Of Nodes)

iC
P i =  

 
•  For selecting the cluster where the node will migrate 

to: 
 

( ) (Total Number Of Nodes)-
"to" cluster 

(Number of Clusters - 1)x(Total Number Of Nodes)
iC

P i =  

 
The selection of the above transition probabilities aims on 
the migration of nodes from larger clusters to smaller 
ones. By giving higher probability to this type of 
transitions we force the earlier generation of clustering 
maps with balanced size clusters. In combination with the 
modification related to the termination condition we force 
the faster convergence of the SA algorithm. 
 
4.4 Initial Solution 

 
The new modification we propose here is to use 

“better” initial solutions used to bootstrap the SA 
algorithm. Prior the introduction of this modification the 
initial solution was generated randomly subject to the 
constraint of topological clusters. The successful 
application of the modification depends on two factors: 

1. The level of the improvement we get with 
respect to the quality of the initial solution. 

2. How we can generate initial solutions that will 
provide us with large convergence time 
improvements. 

 
In this work we will go into the details of the first factor. 
Due to the random nature of SA, it is not straightforward 
that by starting from a better than a random initial 
solution will provide us with any convergence time 
improvement at all. We will answer to the latter by 
quantifying the convergence time effect subject to the 
quality of the initial solution.  
 

Intuitively, we would expect that the closer the value 
of the initial solution to the resulting optimal one, the 
faster the convergence time of the algorithm. The results 
that will be presented later provide also some indicative 
values of the improvement percentage.  

 
By showing that the random character of SA 

algorithm quest to the optimal solution does not eliminate 
the effect of starting from a good initial solution, indicates 
that we have to provide answers for the second factor. 
What are these methods that can be used to determine 
quality initial solutions? Even though we do not deal with 
this problem in this paper, the approaches depend on the 
clustering objectives we set. Good initial solutions can be 
generated from heuristic methods customized to the 
clustering objectives (i.e., for the generation of balanced 
size clusters we can generate initial solutions utilizing a 
customized min-cut algorithm). Also, modified 

optimization algorithms can be useful for the generation 
of quality initial solutions. Apart from the application of 
other methods we can also utilize a feasible, previously 
generated optimal solution from SA. Due to the dynamics 
of the MANETs environment, the clustering decisions 
have to undergo corrections in order to retain their 
optimality subject to the topology changes. In the case 
where we have to reapply SA, then instead of generating a 
new initial solution we can use as a bootstrapping 
clustering map the previously optimal one, under the 
condition that it is still feasible with respect to the new 
topology. The latter approach can provide quality initial 
solutions especially when the topology is slowly changing 
with respect to the reapplication frequency of SA 
algorithm. 

 
In any case what we have to take into consideration 

when we deal with the approach will follow for the 
generation of initial solution, is that the combined time of 
the generation of the initial solution and the convergence 
of SA has to be smaller that the convergence time of SA 
when we start from a randomly selected initial solution. In 
other words, the following inequality has to be satisfied at 
all times if we want the effect of initial solution to be 
visible on the convergence time of the algorithm.  

 
'

'

nris ris gnris SA gris SA

gnris gris SA SA gis SA

T T t t t t

t t t t t t

≤ ⇒ + ≤ + ⇒

⇒ − ≤ − ⇒ ∆ ≤ ∆
 

where, 
 

nris : Non-random initial solution 
                   ris   : Random initial solution 
  T : Complete process time 
  t   : Partial process time 

The results that will be presented in the next section 
can be utilized to suggest the order of the quantities on the 
expressions above for different quality levels of the initial 
solution. These results can be very helpful when we 
design or modify the methods for the generation of initial 
solutions. 
 

 
5.  PERFORMANCE EVALUATION 

 
This section shows the benefits received from better 

initial solutions in example networks. Specifically, by 
bootstrapping SA with a better than a random initial 
clustering solution, its convergence time is improved, 
which is not straightforward due to its random search 
character. Also, we can quantify this improvement on the 
convergence time by looking at some indicative results 
related to the convergence time of the algorithm subject to 
various qualities of initial solutions. The following results 
collected for two networks of different sizes – 100 nodes 
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and 200 nodes. The topology of these two networks 
appears in the following figures. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 2 100 node network in an area of 500m x 500m 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 200 node network in an area of 1Km x 1Km 
 
The methodology we applied for the collection of 

results it is based on the networks presented above and the 
SA clustering algorithm presented in section 2. We 
utilized cost function (1) for the generation of balanced 
size clusters. We computed the cost of a random 
generated solution with respect to this cost function and 
then we generated clustering solutions with a cost that 
was a fraction of the cost of this random solution. 

 
The y-axis of the following figures represents the 

convergence time in seconds for various qualities of 
initial solutions, which are characterized from the fraction 
of their cost compared to the random initial solution. The 
x-axis is marked with the value of this fraction. The 
convergence time values represented from the following 
graphs are indicative for the cost function (1) but they 
provide some very useful conclusions for the proposed 

modification. The following results have been averaged 
out from a large number of runs ( )1000O . 
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Figure 4 SA convergence time improvement with the 
quality of the initial solution for 100 nodes network 

Convergence Time Speedup Starting from a 
Fraction of a Random Initial Solution (200 nodes)
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Figure 5: SA convergence time improvement with the 
quality of the initial solution for 200 nodes network 

 
The most important conclusion can be drawn from 

the above figures is that the bootstrapping of SA 
algorithm with a better than a random initial solution has 
advantageous effect on the convergence time of the 
algorithm. Both curves in figures 4 and 5 respectively 
present a dropping tendency with the improvement of the 
initial solution compared to the random one. Furthermore, 
we can draw important conclusions also from the 
quantification of the convergence time improvement. By 
comparing the curves of figures 4 and 5 respectively, we 
observe that the larger the network, the larger appears to 
be the improvement of the convergence time. For the 
specific case we present, for the network of 100 nodes, 
the convergence time drops ~100ms as we utilize instead 
of a random solution, a clustering map that has a cost 75% 
better. For the network of 200 nodes the convergence time 
is improved by ~4.8s when we utilize an initial clustering 
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solution that is 75% better than a random one. To quantify 
better this decrease of convergence time we provide the 
percentage of improvement instead of the actual times. 
 

Table 2: Percentage improvements of convergence 
time 

Network size Actual Time 
Improvement 

Percentage of 
Improvement 

100 0.1s 19.2% 
200 4.8s 82.8% 

 
By looking at the corresponding percentages of 

improvement with reference to the convergence time 
when SA starts from a random solution, it is obvious that 
the larger the network, the slower the convergence time of 
SA, which results in larger space of improvement. The 
proposed modification is sufficient to improve enough the 
convergence time and constitute a traditionally slow 
convergence algorithm, realizable even in dynamic 
environments like the MANETs. 

 
We showed that better than a random initial solution 

results into faster convergence times for the modified SA. 
The remaining open issue is how we can generate these 
initial solutions, so that we can make the modification 
applicable in real world problems. As we mentioned 
above we can take various approaches for the design of 
methods that can produce quality initial solutions with 
respect to the clustering objectives we set. After the 
discussion we had in this paper, the designed methods can 
be characterized and compared using the fraction of the 
produced clustering solution cost compared to a random 
generated solution. This fraction in accordance with the 
network size can be indicative of the improvement on the 
convergence time as we showed from the demonstrated 
results.   

 
6.  CONCLUSIONS 

 
Simulated Annealing is a well known method for the 

global optimization of complex cost functions. 
Traditionally, its slow convergence time was prohibitive 
for its utilization in dynamic environments and in real 
time problems. In this paper we overviewed previously 
presented modifications but also we have suggested and 
reviewed a newly introduced modification, which is 
related to the bootstrapping solution that is provided to 
SA algorithm during its initialization.  

 
Due to the random search character of SA it is not 

straightforward that by starting from a good initial 
solution, this will result in faster convergence times. Here 
we prove this and also we quantify the improvement we 
get with respect to the level of quality of the initial 
solution (e.g., the fraction of the cost compared to a 
random initial solution). The results we collect regarding 
the proposed modification along with the improvements 

we have gotten from the application of the previous 
modifications indicate that SA can be realizable in 
dynamic environments like the MANETs. Also, we have 
shown that the proposed modifications do not affect the 
quality of the clustering solutions, even though these 
solutions might not be anymore global optimal. The latter 
is not important in such environments where the topology 
is constantly changing and the clustering solutions 
provided by the modified SA are temporary. 

 
Even though we have demonstrated the effect of the 

initial solution to the convergence time of SA, there is 
still a very important issue to be resolved for the 
completion and realization of the approach. This issue is 
related to the methods that we have to apply in order to 
obtain quality initial solutions. Our objective is to present 
such methods and prove that the combination of these 
methods with SA still provides better convergence time 
compared to the SA, which relies on a random initial 
solution.  
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