
HYBRID INTERNET SIMULATION TESTBED

Mingyan Liu, Manish Karir, Majid Raissi-Dehkordi,

John S. Baras

Center for Satellite and Hybrid Communication Networks

University of Maryland

College Park, MD 20742 �

fdaphnel, karir, majid, barasg@isr.umd.edu

ABSTRACT

Internet technology as a widely accepted modern
telecommunication standard has been widely extended
to combine with numerous other technologies, e.g.,
satellite, ATM, wireless. This is what we term as Hybrid
Internet. Along with this technology emerging, various
enhancements and alterations of standard TCP/IP for
di�erent purposes have been proposed and studied in-
tensively. More and more frequently we are facing the
question of how to choose from these di�erent schemes
to design a system for a particular purpose, which would
inevitably involve the interaction and trade-o� study.
We believe that simulation is a powerful tool for this
type of work. In this paper, we describe our implemen-
tation of a Hybrid Internet testbed which includes a se-
ries of tra�c models and TCP/IP enhancements. The
goal of our work is to make a set of reusable modules
upon which we can build complex systems to study the
standard protocols and their variations. We also present
application examples using these module components.

INTRODUCTION

Internet technology as a widely accepted modern
telecommunication standard has been widely extended
to combine with a variety of di�erent technologies such
as satellite, which results in an integration of technolo-
gies { Hybrid Internet.

However, traditional standard TCP can lead to very
poor performance when used with other technologies.
Take TCP over satellite for example, due to long-delay,
large delay-bandwidth product and high BER of satel-
lite links, standard TCP congestion control and retrans-
mission strategy become inadequate or even inappropri-

�This work was supported by the Center for Satellite and Hy-

brid Communication Networks, under NASA cooperative agree-

ment NCC3-528

ate. Various enhancements to standard TCP for di�er-
ent purposes have been proposed and studied intensively
[1, 2, 3]. At the same time, emerging of technologies also
results in a variety of new applications and more com-
plicated tra�c patterns.

More and more research has shown that simple Pois-
son tra�c assumption is far from accurate for real In-
ternet tra�c and thus may result in invalid analysis and
conclusion. Poisson assumptions greatly underestimate
the burstiness in TCP tra�c, instead, they are shown
to be self-similar. According to [4], the only thing that
is close to Poisson in Internet tra�c is the user initiated
TCP session arrivals, such as remote login and �le trans-
fer, and that the packet/data arrivals within each ses-
sion is much burstier than Poisson. Therefore, we need
more accurate source models than Poisson assumption
for simulation purposes.

Motivated by the above, our work is aimed at building
a set of more realistic source models and protocol mod-
els. The simulation environment we choose to use is
OPtimized Network Engineering Tool (OPNET). The
advantage of using OPNET is that there are existing
TCP/IP protocol models and this provides us with the
base to build the enhanced models upon.

In this project, we implemented a generic on-o�
source model, which we used to build a self-similar traf-
�c generator. The correctness of the self-similar tra�c
generator is tested as we describe in detail in later sec-
tions. We also combined the self-similar tra�c source
with the OPNET HTTPmodule so that we can generate
HTTP �les whose sizes are long-range dependent. We
also have a model generating tra�c that is of fractional
brownian motion. Other tra�c models we have in-
clude Auto-regression, Weibull, Log-normal and Markov
Modulated Possion Process.

Figure 1 is the module stack of TCP/IP implementa-
tion of client in OPNET [5].

In building protocol models, our work adopts this

1



Figure 1: TCP/IP protocol stack

module stack structure and maintains the same mod-
ule interfaces between layers. Our major focus is on
\tcp" and \ip" modules of this stack, which are replaced
by new ones in which enhancement features are imple-
mented with minimal changes to module interfaces, so
that these modules can be easily replaced and reused.
We will frequently refer back to this picture in later
sections.

Protocol enhancements to TCP include Fast re-
transmit and Fast recovery, Selected ACKnowledg-
ment (SACK), Forward ACKnowledgment (FACK),
window scaling option, �ne resolution time stamp,
and TCP spoo�ng/splitting. Modi�cation to IP in-
clude ow classi�cation module, scheduling algorithms
like First Come First Serve(FCFS), Round Robin(RR),
Start-time Fair Queuing(SFQ), and bu�er management
schemes like Tail Drop, Drop from Front, Longest Queue
Drop(LQD), Random Longest Queue Drop(RLQD),
Random Early Discard(RED) and Probabilistic Fair
Drop(PFQ). In addition to that, we also implemented
Forward Erasure Correction(FZC) protocol booster.
Modi�cations are made to either \tcp" module or \ip"
module. The spoo�ng/splitting model also includes
changes to \ip encap". In most cases new promoted
model attributes are required at the network or simu-
lation level [5]. Some of these features have been im-
plemented by Mil3 in the newest version of OPNET to
be released. We started most of this work when only
version 4.0 was widely available.

This paper is organized as follows. In Section 2 we
describe the components we implemented in OPNET

as well as tests that we did to verify the correctness of
these modules. We give an application example using
some of these modules in Section 3. Section 4 concludes
the paper and proposes future work.

TESTBED COMPONENTS

In this section, we present the simulation model and
experimental results on selected components. We do not
provide detailed description on the ones that we think
are simple and well-known. However, we give references
for interested readers.

Markov Modulated Poisson Process (MMPP)
tra�c source
A general n-state MMPP is completely determined by
two matrices as shown below. The state transition rate
matrix � de�nes the underlying Markov chain which
takes �ij as the transition rate from state i to state j.
The arrival rate matrix A gives the poison arrival rates
corresponding to di�erent state of the Markov chain.

� =

2
6664

�11 �12 � � �1n
�21 �22 � � �2n
� � � � �

�n1 � � � �nn

3
7775 ;

A =

2
6664

a11 0 � � 0
0 a22 � � 0
� � � � �

0 � � � ann

3
7775 :

A two-state MMPP model was implemented using the
above formula, with user de�nable parameters. This
model can also be easily extended to multiple states.

Self-similar tra�c source
This model is an aggregation of multiple on-o� sources.
Each of these on-o� source models generates packets at
a constant rate during the on period and go back to
silent during the o� period. The duration of on and o�
periods are of Pareto distribution, parameter of which
is tunable.
Here we are showing the tra�c traces of a source con-

sisting of 20 such on-o� source models in Figure 2 and
the zooming-in trace (on a di�erent time scale, Figure
3). The horizontal axis is time in second and the vertical
axis is the packet count for every second.
To verify the model, we collected the data traces gen-

erated by OPNET and estimated the parameter used to
generate the tra�c. The estimator uses the Maximum
Likelihood Whittle Estimation and Fractional Gaussian

2



Figure 2: Tra�c trace of 20 on-o� sources

Figure 3: Zooming in of 20 on-o� sources

Noise model. We used a parameter of value 1.2 for the
Pareto distribution to generate the tra�c, which trans-
lates to H (Hurst Parameter) of 0.9. The estimated H
we got from the Whittle estimator is 0.9035.

Fractional Brownian Motion(FBM)
The number of arrivals up to time t is [6]

X(t) = mt+ k � BH(t);

where m is the rate and BH(t) is Fractional Brownian
Motion, This arrival process is modeled using dynamic
processes.
The root process is a M=G=1 model in which the

number of busy servers are counted whenever there is
an arrival or departure. Service time is Pareto. For
every �xed small interval, the average number of busy
servers n are calculated over that interval and passed
on to the child process. The child process then generate
packets at a constant rate of m+n, until the beginning
of next interval when a new value of n is calculated and
process starts over again.

Other Tra�c Models
Other tra�c models Auto-regression, Pareto, Weibull
and Log-Normal. These models are simple and easy to
implement (they can be made into function calls), and
we will not discuss in detail here.

Fast Retransmit Fast Recovery and
SACK/FACK
These options are also implemented in tcp conn process.
Details regarding Fast Retransmit Fast Recovery(FRR)
can be found in [7], and for SACK, [8]. Apart form
SACK, we need a mechanism to use information pro-
vided by SACK. Forward Acknowledgment algorithm
[9] is known to be the most e�cient algorithm to use
SACK information for fast recovery in case of multiple
segment losses. We implemented both.

In FACK, the start of the retransmission phase is at
most after receiving three duplicate ACKs but can hap-
pen sooner by using the SACK information. After the
loss detection, the congestion window is halved and the
lost segment is retransmitted. If following this retrans-
mission the available transmit window is still not zero,
the probable further lost segments which are reported by
the received SACK blocks are transmitted before new
data. This is the main di�erence between FACK and
FRR algorithms. In FRR, since no information on ad-
ditional segment losses is available, after the retransmis-
sion of �rst lost segment the new segments are sent. It
is not until after receiving another set of three duplicate
ACKs that the second lost segment is retransmitted.

Figures 4-6 show the behavior of the di�erent algo-
rithms with sent sequence number, received sequence
number and the congestion window size, from top down,
respectively. In Figure 4 the behavior of the original
TCP protocol is shown after a segment loss. Figures 5
and 6 show the response of FRR and FACK algorithms
to multiple segment losses respectively.

In these experiments two sets of deterministic seg-
ment losses occur where in each set three segments are
dropped. In both cases the exponential growth of con-
gestion window during the initial slow-start and the lin-
ear growth during the congestion avoidance phase are
observable. Before the �rst loss, the connection has
reached the steady state with congestion window taking
its maximum value. After the detection of loss conges-
tion window is halved and the lost segment are retrans-
mitted.

Large Window and Time Stamp Options [3]
Both these options are implemented in tcp conn process
and involves relatively minor changes. In both cases,
TCP segment packet format were changed to include a
window scaling factor �eld in the large window option
and to include time stamp and time stamp echo �elds
in the time stamp option.

3



Figure 4: Plain TCP with single loss

Figure 5: Fast retransmit fast recovery with multiple
losses in consecutive windows

Figure 6: FACK with multiple losses in consecutive win-
dows

Scheduling and Bu�er Management at IP Layer
In order to evaluate various scheduling and bu�er man-
agement strategies, and how they may improve TCP/IP
performance, we implemented a ow classi�er that per-
forms per ow queuing at IP layer.

Drop from Tail is the default bu�er management
scheme in OPNET. We have added Drop from Front
proposed by [10], which is based on the interaction of
bu�er management policies and TCP's fast recovery fast
retransmit mechanism. If a packet is discarded at the
head of the queue then duplicate acknowledgments are
sent one bu�er drain time earlier, triggering TCP's fast
recovery fast retransmit instead of timeouts. We also
added the option of Longest Queue Drop (LQD) [10],
which suggest that in the presence of per ow queu-
ing, the drop from front strategy can be applied to the
longest queue. A modi�cation of this scheme is Random
Longest Queue Drop (RLQD), which performs LQD on
a randomly chosen queue from a set of non-conforming
queues. We also implemented Probabilistic Fair Drop
(PFD) proposed in [11], which drops packets from the
queue which utilizes the maximum normalized bu�er
share.

First Come First Serve is the default scheduling avail-
able in OPNET IP layer. We added Round Robin
scheduling as well as Start-time Fair Queuing (SFQ).
This is an algorithm which approximates Weighted
Fair Queuing, but is computationally less complex and
demonstrates better bounds on worst case delay and
short term unfairness [12].

Protocol Booster
By de�nition, a Protocol Booster adds, deletes, or de-
lays messages of an existing protocol, but does not orig-
inate or terminate that existing protocol. Boosters are
transparent to the protocol being boosted. Boosters
are robust protocol adaptors that can reside anywhere
in the network or end systems and are design to dy-
namically improve(boost) the performance or features
of an existing protocol. More information can be found
in http://govt.argreenhouse.com/pboosters/ and
[13].

We implemented the Forward Erasure Correc-
tion(FZC) [14] booster in OPNET. This protocol
booster was designed to enhance performance of
TCP/UDP over wireless channels. It includes two el-
ements: the sender adds parity packets into the data
packet stream, and the receiver regenerates missing/lost
packets from the parity packets. Accordingly this has
two implications: the reduced numbers of losses and the

4



reduced "goodput" because of parities. This is imple-
mented in OPNET by modifying two pipeline stages:
the error correction pipeline stage and the transmission
delay pipeline stage. We simulate the e�ect of this pro-
tocol booster by specifying a level of correction, which
is a model attribute, and the reduction in data rate re-
sulting from it.

Figure 7 is an example of how using the FZC booster
increased the number of correctly received packets.

Figure 7: Packets received with/without booster

TCP spoo�ng and splitting
By de�nition, \spoo�ng" usually means faking an IP
address and \splitting" refers to breaking up a TCP
connection. As it is impossible to implement splitting
without spoo�ng, we implemented both and both terms
are used interchangeably here. Connection splitting is
normally used on a ground gateway guarding the satel-
lite channel. The motivation behind is that we want
the long delay of satellite channel to be transparent to
end users, and that the satellite channel be able to have
di�erent TCP options from that of terrestrial part of
the TCP connection. Therefore the gateways should
have the functionality of splitting the end-to-end TCP
connection, faking the IP address of end hosts and ac-
knowledging end hosts as if it were the other end of the
connection, and storing data to transfer them onto the
next connection. By splitting the end-to-end connec-
tion, we can essentially have di�erent retransmission,
congestion control and ow control schemes at di�erent
parts along the connection.

The way we implemented spoo�ng can be best ex-
plained in the following diagram. Figure 8 describes
the connection setup and data transfer procedures. We
have two end hosts H1 and H2, and a gateway G. We
see that the gateway acknowledges both end hosts on
behalf of the other.

H1

SYNH1

ACKH1(data)

H2 G

SYNG

SYNACKH2

SYNACKG

ACKG(data)
ACKG(data)

ACKH1(data)

Figure 8: Connection setup and data transfer

This model was implemented by modifying three
modules: \ip", \ip encap", and \tcp". And to use it,
it would require that a gateway equipped with a TCP
layer, as oppose to normal gateways that only have lay-
ers up to IP.

APPLICATION EXAMPLE { DirecPC

In this section, we give an example of using some of
the modules we built { the DirecPC application model,
as shown in Figure 9.

Figure 9: DirecPC Setup

The hybrid host sends request to hybrid gateway via
the reverse channel which can be a telephone line or
wireless link. The hybrid gateway gets the request and
forwards it to the server, gets back data and delivers
them to the hybrid host via the forward satellite chan-
nel. We put TCP spoo�ng module into the hybrid gate-
way to let it acknowledge the hybrid host independently
from the server. This way the delay caused by the satel-
lite channel can be hidden from the host.
Figure 10 shows the RTT seen by the normal host

and the hybrid host. We can see that after initial delay,
the round-trip time seen by both is the same.

5



Figure 10: RTT comparison

We also got improved throughput when applying
large window option to the satellite link. Similar re-
sults and more applications can be found in another
paper that we submitted \A Simulation Study of En-
hanced TCP/IP Gateways for Broadband Internet over
Satellite" by Karir, Liu, Barrett and Baras.

CONCLUSION AND ONGOING WORK

In this paper we presented our work in building simu-
lation modules including tra�c generators and TCP/IP
protocol enhancements and protocol boosters. We de-
scribed testing results of some of our work and also gave
an example of how reusing these modules can help build
up complicated and customized systems.

Currently we are working on validation and verify-
ing applicability of di�erence tra�c models. Our ap-
proach is to take real tra�c traces, estimate parameters
for a speci�ed probabilistic model, use the estimated
parameters as input to the corresponding simulation
model to generate duplicated tra�c traces, and �nally
we use goodness-of-�t test to examine how close the
simulation trace can approximate the real trace. We
are also actively working on implementing Ad-Hoc pro-
tocols and ACK compression and ACK reconstruction
protocol booster.

References

[1] Hugo Grosmangin and John S. Baras. TCP en-
hancements for the integration of satellite links in
then Internet{Modeling and simulation study of
Tahoe, Reno and SACK TCP behavior. Techni-
cal Report TR 97-212r2, Center for Satellite and
Hybrid Communication Networks, Uni versity of
Maryland, College Park, 1997.

[2] Lawrence S. Brakmo and Larry L. Peterson. TCP
Vegas: End to End Congestion Avoidance on a
Global Interne t. 1991.

[3] R. Braden V. Jacobson and D. Borman. TCP Ex-
tensions for High Performance. IETF RFC 1323,
1992.

[4] Vern Paxson and Sally Floyd. Wide-Area Traf-
�c: The Failure of Poisson Modeling. IEEE/ACM
Trans. on Networking, 3(3):226{244, 1995.

[5] Mil 3 Inc. OPNET Modeler, Modeling/Vol.1, 1997.

[6] G. Samorodnitsky. Stable non-Gaussian random
processes: stochastic models with in�nite variance.
Chapman & Hall, 1994.

[7] W. Stevens. TCP Slow Start, Congestion Avoid-
ance, Fast Retransmit, and Fast Recovery Algo-
rithms. IETF RFC 2001, 1997.

[8] S. Floyd M. Mathis, J. Mahdavi and A. Romanow.
TCP Selective Acknowledgement Options. IETF
RFC 2018, 1996.

[9] Mattew Mathis and Jamshid Mahdavi. Forward
Achnowledgment: Re�ning TCP Congestion Con-
trol. Computer Communication Review, 26(4),
1996.

[10] T. V. Laxman, A. Nierhard, and T. J. Ott. The
Drop from Front Strategy in TCP over ATM and
Its Internetworking with Other Control Features.
Proc. INFOCOM, 3, 1996.

[11] R. Vaidyanathan. Issues in Resource Allocation
and Design of Hybrid Gateways. MS Thesis, Uni-
versity of Maryland, 1999.

[12] P. Goyal, H. Vin, and H. Cheng. Start-time Fair
Queueing: A Scheduling Algorithm for Integrated
Services Packet Switching Networks. IEEE/ACM
Trans. Networking, 5(5):690{704, 1997.

[13] D. C. Feldmeier, A. J. McAuley, J. M. Smith, D. S.
Bakin, W. S. Marcus, and T. M. Raleigh. Proto-
col Boosters. IEEE Journal on Selected Areas in
Communications, 16(3):437{444, 1998.

[14] D. Bakin, W. Marcus, A. McAuley, and T. Raleigh.
An FEC Booster for UDP Application over Terres-
trial and Satellite Wireless Networks. Proceedings
of International Mobile Satellite Conference (IMSC
97), Pasadena, CA, 1997.

6


