Generic Congestion Control Through Network Coordination
(Extended Abstract)

Xicheng Liu' Cynthia Cheung'* John S. Baras'
'Institute for Systems Research, University of Maryland, College Park, MD 20742
INASA Goddard Space Flight Center, Greenbelt, MD 20771
Emails: {aliu. cycheung. baras} @iscumd.edu

Abstract

With the rapid emergence of new services and the quick
change of traffic in Internet, the widely used end-to-end
congestion control scheme becomes insufficient. This
paper proposes @ hew congestion control architecture
based on the coordination among the core router, the edge
router, and the host. The core rowter notifies its
immediately upstream nodes when it detects incipient
congestion. Those nodes then constrain their sending rates
o prevent congestion. No per-flow state information is
maintained in routers. The application itself need not take
care of the rate adapration. The architecture provides a
uniform solution accommodating both responsive and
unresponsive traffic with trivial overhead. It reduces the
packet loss 1o zero, and leads to higher network resource
utilization. Response time to congestion is greatly reduced.
The architecture has been implemented in the Linux kernel.
Some preliminary experiments show its advantages.

1. Introduction

The success of Internet owes much to the sound
principles of the additive-increase-multiplicative-decrease
(AIMD) cengestion control of the TCP [6]. However. with
rapid emergence of muliple services and quick evolution
of Internet traffic. TCP control does not seem sufficient.
Especially —multimedia services produce many
“unresponsive” traffic flows, which from the point of view
of TCP are “unfriendly™. Nevertheless, this kind of traffic
accounts for larger and larger portion of the Internet usage.
It will even dominate [nternet traffic in some regions in the
future. We need to prepare a long-term solution rather than
relying on short-term measures.

In this paper we propose a novel congestion control
architecture as a uniform solution for both respensive and
unresponsive traffic, which we call Generic Congestion
Control Architecture (GCCA). It is based on the

coordination of the core router. the ¢dge router, and the host.

Part of this work was done when the first author was with Motorola-ICT
Joint R&D Lab and University of Cambridge, UK

0-7803-7510-6/02/817.00 ©2002 IEEE

This is essentially different from the TCP end-to-end
control policy, which depends mainly on the host ability.
New service models including both the DiffServ [2] and
the InterServ [3] would call forth closer cooperation
between the network core and the edge. Our architecture
fits well into these service models. especially the DiffServ.
Tt completely prevents packet loss in the network and leads
to higher utilization of network resources. Response time
to congestion is dramatically reduced. The scheme is
scalable to new services and to future traffic. Faimess is
guaranteed without per-flow state information
maintenance in the router. All these are achieved with
trivial overhead.

The rest of this paper is organized as follows. Section 2
presents the design principles. Section 3 describes the new
architecture and its components. Section 4 gives
preliminary results from experiments based on an
implementation in the Linux kernel. Conclusions are
summarized in Section 5.

2. Design Principles

Both the host and the router mechanisms are important
for efficient control of congestion [4], [6). The router has
the best view of the queue behavior, the flow dynamics,
and the congestion status. The host has a direct control of
the source. We provide them a way to coordinate directly
and quickly by a node-to-node information feedback
protocol called Generic Congestion Control Protocol
(GCCP). When a router detects the liability of congestion,
it notifies its immediately upstream nodes that contribute to
the congestion through GCCP. Those nodes will control
their sending rates to prevent the congestion. Packet loss
would be avoided should the notification be made early
enough. Therefore, an early congestion detector and a rate
controller are needed in the router.

Upstream nodes buffer more packets when they slow
down their sending rates. On one hand, this helps prevent
the congestion in the downstream bottleneck link. On the
other hand, it improves the utilization of the network
memory resources. Transient bursty traffic can be tolerated

ICCS 2602

903

within several steps of feedback of GCCP messages among
routers. Some lasting congestion may be referred back to
the host as a last resort. The host identifies the flows
contributing to the congestion and slows down their rates.
For the TCP connection, we keep original window-based
control intact, and add a window adjuster. For the UDP
flow, an adjustable traffic shaper is attached to each UDP
port. In fact, the end-point rate controller is ready to
accommodate any well-proven rate adaptation algorithm,
such as those obtained in the study of TCP-friendly control
[5]. [8]). [9]. Unlike the application adaptation [11] and the
TCP friendly control, however, our approach is for the
network and so is transparent to the application. The
application need not take care of the rate adjustment itself.
The incipient congestion detection in the router is at the
queue level. No per-flow status information is maintained.
This makes the overhead as little as possible in the core
network. To guarantee the faimess among {lows, we use a
revised version of the RED algorithm [4] for congestion
detection and feedback. Statistically, the amount of flow
reduction is proportional to the flow’s contribution to the
congestion. The edge router need feedback more
information to the host to help identify a particular flow.
However. it does not need to maintain the per-tflow status.
Each router or host is independent in running the
congestion detection algorithm and originating GCCP

messages. Thus the architecture is completely distributed
and autonomous. No global synchronization is needed. The
architecture does not change any operation of existing
protocols and modules in the network kemel. So an
existing node can communicate with a GCCA-capable
node without any change. The architecture can be deployed
gradually in 2 node by node fashion.

3. Generic Congestion Control Scheme

GCCA modules in the router and the host are shown in
Fig. 1. There are mainly three components, the GCCP, the
early congestion detector, and the rate controller. In the
router, the congestion detector monitors the packet queue
and detects incipient congestion. When the incipient
congestion is detected, it creates GCCP messages and
sends them to involved upstream nodes. When the router
receives a GCCP message from downstream nodes, it will
adjust packet emission rate of the queue through the rate
controller. In the host, there is no congestion detector, but
separate rate controllers for the TCP and the UDP flows.
The rate controller for the TCP connection is called a
window adjuster. The left part of Fig. 1 shows possible
packet flows in the source end, the right part shows those in
the destination end. We can see that no GCCP message is
ever sent from the destination host to the router.

Congestion Rate
Detectie Conirller

Router \\ Dustination
e [D]| pem
4 v o ES
Corigestion Rute o
Detecion Contmlier

Fig. 1. GCCA Components and Their Interactions

904

3.1. Generic Congestion Control Protocel

GCCP is added into the TCP/IP protocol stack at the
lower level of the network layer. This makes it efficient as
well as general enough to be applicable to many types of
physical networks. A GCCP message is immediately
carried in a physical frame. To identify the frame as
carrying a GCCP message, the sender assigns a special
value to the type field in the frame header, and places the
GCCP message in the frame’s data field. The format of the
GCCP message is given in Fig. 2.

VERS | LEN | opTiONs | CODE
PADDING
(a)
SOURCE IP ADDRESS
DESTINATION [P ADDRESS
SOURCE PORT | DESTINATION PORT
(b)

Fig. 2. The GCCP Message Format. (a) The Overall
Format; (b) the PADDING Field Format.

Field VERS contains the version of GCCP that is used to
verify if the sender and receiver agree on the format of the
message; it contains 1 for current GCCP, Field LEN gives
the message length measured in 32-bit words. The field
OPTIONS indicates whether the sender of the GCCP
message is an edge router, i.¢. the receiver is a host. It yes,
the field is set to 1 and the padding information is added;
otherwise. set to 0 and no padding information exists. The
field CODE specifies the congestion information. It
contains | (CONGESTION] if the incipient congestion is
detected: 0 (NORMAL) it the congestion disappears. The
padding information includes four fields, which are used
for the host to idemtify a particular flow. Fields SOURCE
IP ADDRESS and DESTINATION I[P ADDRESS contain
the 32-bit IP addresses of the flow. Fields SOURCE PORT
and DESTINATION PORT specifies the port numbers on
both ends.

3.2. Congestion Detection and Feedback

The RED algorithm [4] can detect incipient congestion
by calculating the average queue size (avg). The average
queue size is compared with two thresholds, a minimum
threshold (min,) and a maximum threshold (max,).
When avg 1s between them. each arriving packet will be

marked or dropped with probability p_. From the point of
view of traffic flows, the probability that a flow is marked
or dropped is roughly proportional 1o that flow’s share of
the bandwidth through the router. Thus the fairness among
flows is guaranteed.

We revise the RED algorithm to avoid any packet loss.
When a packet is to be dropped or marked in RED, we emit
a GCCP CONGESTION message instead. The packet is
then gqueued as normal. This GCCP-capable RED
algorithm is given is Fig. 3.

initialize status as NORMAL
for each packet arrival
calculate the average gueue size avg
if min, € avg < max,
calculate probability p,
with probability p,:
send a GCCP CONGESTION message
set status as CONGESTION
else if max, € avg
gend a GCCP CONGESTION message
set status as CONGESTICN
else if avg £ min,
if status is CONGESTION
send a GCCP NORMAL message
set status as NORMAL

Fig. 3. The GCCP-Capable RED Algorithm

3.3. Rate Control

In the router, we use an adjustable leaky bucket filter [12]
to contro the output rate of a queuwe. Upon receiving a
GCCP CONGESTION message, we adjust the leaky
bucket and decrease the rate linearly. When receiving a
GCCP NORMAL message, the output rate is restored.

In the host. we use the same mechanism with that in the
router for unresponsive flows (UDP flows). Every UDP
port is attached with an adjustable leaky bucket filter. For
the TCP flow, however, a much simpler algorithm exists.
When a GCCP CONGESTION message is received for a
connection, we decrease that connection’s congestion
window (cwnd) [1] and slow-start threshold (ssthresh)
[1] by half. The reduced rate can increase later through the
slow-start mechanism of TCP control. The GCCP
NORMAL message is ignored. Existing TCP control is
unchanged so that a TCP connection responds to receiver
acknowledgements and packet loss (if any) as before.

905

4. Preliminary Results

We have implemented GCCA in the Linux kernel 2.2.10.
The early congestion detector is mainly implemented in the

200MHz Pentium II

64MB 64MB

Host A

233MHz Pentium 11

engueue function, and the rate controller in the
degueue function. The command tool tc [13] is used for
changing and configuring queucing disciplines including
the GCCP-capable RED algerithm.

233MHz Pentium II
64MB

200MHz Pentium II
64MB

Host B

Fig. 4. The Testbed for Experiments

Time(x)

e e Y e e e T V1 o)

0 200 400 600 800

1000 1200 1400 1600 1800 2000

Number of packets

2
- 15
2
g1
A
05
T PO WY NI otk N Y
o D / edphi=sd vttty o s
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Numbar of packets

Fig. 5. Comparison of the Jitter. The Upper is for GCCA, the Lower for E2E

A testbed composed of two Linux routers and two Linux
hosts is set up 1o evaluate the scheme. The testbed is
illustrated in Fig. 4. In the experiments of this paper, we
compare the GCCA with the widely used end-to-end
control scheme (referred to as E2E below). For the E2E

scheme. the RED algorithm is used for queue management
in routers. A number of 8KB sized packets are transferred
from Host A to Host B through Router 1 and Router 2 in the
experiments. Router 2 is configured as a bottleneck. Traffic
is generated and performance data are collected using the

906

packet level measurement tool DBS [7].

We do the experiments using three different groups of
parameters. Table 1 shows the end-to-end delays in the
experiments. The GCCA produces shorter delay than E2E
even in such a small setting.

Table 2 shows the throughput in the experiments. Here
the throughput represents the average rate at which data are
transferred through the network. We can see that the GCCA
increases the throughput by as many as 15% on average.

Table 1. Comparison of the End-to-End Delay

Experiment GCCA (5} EZ2E (s)
1 54 58
2 54 66
3 55 64

Table 2. Comparison of the Throughput

Experiment GCCA (Mbps) E2E (Mbps)
1 2.37 221
2 2.37 1.94
3 2.32 2.00

Fig. 5 shows jitters that the two schemes make in an
experiment. The vertical axis (Y) represents the end-to-end
delay of a packet. The horizontal axis (X) indicates the
packet number. The jitter is calculated as the absolute value
of the difference between delays of two successive packets.
We can see that jitters from GCCA., i.e., variances of packet
delay, are always within a small bound. By contrast, E2E
produces unpredictable jitters from time to time,

In addition, no packet loss is observed for GCCA in the
experiments.

3. Conclusions

In this paper, we have designed a novel congestion
control architecture for Internet. It is based on the
coordination among the core router, the edge router, and
the host. By taking into account of both responsive and
unresponsive traffic, it gives a uniform solution for them.
We present its design principles. Main components of the
architecture are described, namely. the GCCP, the early
congestion detector, and the rate controller. The scheme is
supported by a successful implementation in the Linux
kernel. Preliminary experiments on a testbed composed
Linux routers and hosts show that the architecture can
produce better performance than the widely used

end-to-end control scheme in terms of network delay,
network throughput, and the jitter. Major advantages of the
architecture also include zero packet loss, quicker response
to congestion, and higher resource utilization. In addition,
the architecture is scalable to new services and future
traffic types. Further study is carrying out to refine details
of the architecture.

6. Acknowledgements

The authors would like to acknowiedge Mr. Fusheng
Chen, Mr. Jun Li, Mr. Bin Pang, and Mr. Lihal Yang for
their help in building the testbed, implementing the
algorithms, and doing experiments.

References

[1] Allman, M., Paxson, V., Stevens, W.: TCP Congestion Control.
Intemet RFC 2581. April 1999.

[2] Blake, S., Black, D, et al: An Architecture for Differentiated
Services. Intemet RFC 2475, December 1998,

[3] Braden, R., Clark, D., and Shenker, S.; Integrated Services in the
Internet Architecture: An Overview. Internet REC 1633, July 1994,

{4] Floyd. S., and Jacobson, V.: Random Early Detection Gateways for
Congestion Avoidance. [EEE/ACM Transaction on Networking,
1(4), pp. 397413, August 1993.

[5] Floyd, S., Handley, M., Padhye, J., and Widmer, J.: Equation-Based
Congestion Control for Unicast Applications: the Extended Version.
Intemational Computer Science Institute tech report TR-00-003,
March 2000.

[6]1 Jacobson, V.: Congestion Avoidance and Control. Proceedings of
ACM SIGCOMM. (1988) 314-329.

[7] Murayama, Y. DBS: A Powerfu! Teol for TCP Performance
Evaluations. http://shika.aist-nara.ac. jp/membet/yukio-m

(8} Padhye, J., Kurose, 1., Towsley, D, Koodli, R.: A Mode! Based
TCP-Friendly Rate Conwol Protocol. Network and Operating
System Support for Digital Audio and Video (NOSSDAV), June
1999.

[9] Rejaie, R.. Handley, M, and Estrin, D.: RAP: An End-to-end
Rate-based Congestion Control Mechanism for Realtime Streams
in the Intemet. IEEE INFOCOMM 99.

{10]Rusling, D. A.: The Linux Kernel. hupfwww.kemelnotes.org/
guides/ TLKATK html.

[11]Sisalem, D., Schulzrinne, H. The Loss-Delay Adjustment
Algorithm: A TCP-friendly Adaptation Scheme. Network and
Cperating System Support for Digital Audio and Video
(NOSSDAV), July 1998.

f12]Tumer, J.5.: New Directons in Communications (or Which Way
to the Information Age). [EEE Communication Magazine, vol. 24,
pp. 8-15, Oct. 1986.

[13] ftp:/fitp.inr.ac.rufip-routing/

907

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

