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Abstract— Effective bandwidth represents the resource 

demand for network traffic to achieve its QoS goal. However, the 
estimation of the effective bandwidth for modern Internet traffic 
is difficult and inaccurate so far. In this paper we present a novel 
scheme using the measurement and simulation techniques to 
estimate the effective bandwidth. The advantages of the scheme 
lie in its accuracy, its applicability to various traffic 
environments, and its efficiency. We describe the simulation 
procedure, the efficient search algorithm to quickly lock the 
effective bandwidth, the sample size determination algorithm, and 
the performance judgment policy in the simulation to guarantee 
the estimation accuracy. We also examine the issue of estimating 
the effective bandwidth of aggregate traffic from sub-aggregates, 
and provide an empirical formula to achieve very good accuracy. 

 
Key Words— Effective bandwidth, Estimation, Measurement 

and simulation 

I. INTRODUCTION 

Effective bandwidth is the exact amount of bandwidth a 
traffic stream needs to satisfy given QoS requirement. Directly 
measuring the resource demand for QoS fulfillment, it is a very 
useful tool in broad areas of QoS modeling, control, 
dimensioning, and management [1] [3] [5] [7] [8] [9] [15]. 
However, analysis of effective bandwidth is very difficult for 
general traffic processes, if not impossible. Paper [10] gives a 
formal definition and presents results for many traffic models 
especially Markovian processes. No exact solution exists for 
the long-range dependent process. So much work turns to large 
deviation to for asymptotic results, such as [6] [7] [11]. But 
engineering application of such approach is quite limited. 
Modern Internet traffic is generally a multi-scale process with 
complex dependent structure [13] [14]. We lack effective tools 
to analyze or approximate the effective bandwidth for such 
process. 

Recent develop of measurement and simulation technologies 
provide new opportunities to seek the solution [2] [4] [12]. In 
this paper we present a measurement and simulation-based 
(MSB) approach for effective bandwidth estimation. It is 
intended to be a general approach to suite various traffic 
environments. Our focus is to establish conditions for applying 
the method, ensuring the sufficiency of the measurement and 
simulation and thus the accuracy of the estimation. In addition 
to the basic mechanisms, we will also consider the problem of 

estimating the effective bandwidth of aggregate traffic from 
the sub-aggregates, which has wide applications. 

The paper is organized as follows. In Section II, we present 
key algorithms of the MSB effective bandwidth estimation, 
including the MSB procedure, the effective bandwidth search, 
the statistical inference for performance judgment, and the 
sample size determination. In Section III, we explore the 
accuracy of the estimation from sub-aggregates, and give an 
empirical formula to improve the accuracy. Simulation results 
are included in Sections II and III. Section IV concludes the 
paper. 

II. ESTIMATION FOR AGGREGATE TRAFFIC 

A. Procedure 
   The idea is as follows. We capture online a sample of the 
traffic (a section of traffic trace) for which the effective 
bandwidth will be estimated, and input the trace into a 
simulator attached to the point of observation (Poo), which is 
usually a link. The simulator simulates a single-server FIFO 
queue serving the traffic. The simulation is controlled by a 
search algorithm to decide the effective bandwidth satisfying 
certain QoS requirement. In this paper, the QoS requirement is 
specified with the delay bound and the loss probability in the 
form  
P[d > D] ≤ e (2.1) 
which states that the probability that the packet delay d is 
beyond a bound D should not be greater than e. 

The simulation procedure is as follows. It is a loop involving 
several algorithms. 

 
Simulation Procedure: 
1. Set a flag fg = 0. 
2. Initialize c = W0. 
3. Run algorithm Sample to initialize k.  
4. Run basic version of the queue simulation algorithm 

QSim_v1 with parameters c and k. 
5. Do hypothesis test: H: p  = e against H+: p  > e and H−: 

p < e.  
6. If H holds, 

a. fg = fg + 1. 
b. If fg < 2, go to step 8. 
c. If fg == 2, stop. 
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7. Otherwise, run the following binary search algorithm to 
determine a new c: 

B+, if H+ holds; 
B−, if H− holds. 

 Go to step 4. 
8. Run dynamic version of algorithm QSim_v2 with multi-

scale sample size inflation to update k.  
9. Go to step 5. 

 
Here are meanings of some parameters: c represents the queue 
service rate, the final value of which is the effective bandwidth 
and W0 is the initial value, k is the base 2 logarithm of the 
sample size, p denotes P[d > D]. In above procedure, step 1 
and 2 initialize a control flag fg and the queue service rate c. 
The algorithm Sample in step 3 decides an initial sample size 
2k that controls the length of input traffic. The algorithm 
Qsim_v1 in step 4 simulates the queue with the initial sample 
size. When the simulation terminates, step 5 judges whether 
the performance requirement is met or not by doing a 
hypothesis test. If the requirement is met, the procedure will go 
to step 8 and does the simulation again with an “inflated” 
sample size, which is done in the algorithm Qsim_v2. This re-
checking is to guarantee the sufficiency of the simulation, thus 
the accuracy of the effective bandwidth estimation, for 
dependent traffic. If the requirement is not met, the search 
algorithm B+ or B- will choose a new c and the simulation is 
redone. The procedure stops when a service rate passes the re-
checking. Different phases of the overall process are marked 
by fg. 

Several important technical issues are involved in the 
design of above algorithms: One is that the search algorithm 
should be able to quickly lock the effective bandwidth. A 
related problem is the choice of the initial value of c to 
improve the search efficiency. These issues will be treated in 
sub-Section II-B. Another issue is the sample size of traffic for 
simulation. It is inefficient, unnecessary, and even improper to 
do simulations for an overly long trace. For example, it may 
cause the so-called “overestimation” problem. A good sample 
size is the minimum number that is sufficient for evaluating the 
performance metric at required significance level. A problem 
related with this is how to decide whether the performance 
requirement is met or not in the simulation. We will address 
these two problems in sub-Sections II-D and II-C. 

As to the simulator itself, it is a very simple and efficient 
algorithm using the packet information (arrival time and packet 
size) and the queue information (queue service rate) to 
calculate the queueing delay of each packet. It does not 
actually process real, physical packets. Just like any single-
queue simulation, only computations involved are addition, 
subtraction, and comparison. There are two versions of the 
queue simulation algorithm. The basic version, QSim_v1, is a 
pure FIFO queue simulator. There are numerous references 
about how to do a good implementation of queue simulation. 
The dynamic version, QSim_v2, involves in the queue 
simulation an algorithm to dynamically update the sample size 
based on the simulation result, which will be described in sub-
Section II-D. 

B. Search Algorithm 
   The search algorithm is to change the queue service rate in 
the simulation and eventually find the effective bandwidth We. 
Simple search algorithms such as Newton method and binary 
search algorithm may be used. One important thing to apply 
Newton method is to decide the initial value. Binary search is 
known for its simplicity and time efficiency. Standard binary 
search algorithm needs some conditions to be satisfied: the 
search region should be bounded and the search set should be 
sorted. 
   These problems can be nicely solved based on effective 
bandwidth theory. It is known that We is between the average 
rate R1 and the peak rate R2 of the traffic. Thus, to use Newton 
method, the initial value W0 can be set as W0 = (R1 +R2)/2, 
which should not be far from We. For binary search, since the 
loss rate is a monotonic function of the queue service rate c, 
the searched set, i.e., the set of service rate values, is actually 
automatically sorted. Given R1 and R2, the search region is 
bounded. So all prerequisite for binary search are satisfied. 
 It is easy to measure R1 and R2 of each path at a Poo. Then 
the binary search algorithm, which is separated into two parts 
for description purpose, is as follows. 
 

Algorithm: B+ 
Input: R1, R2 
Output: c 
1. R2 = cold 
2. c = (R1 + R2)/2. 
3. cold = c  
 
Algorithm: B− 
Input: R1, R2 
Output: c 
1.  R1 = cold 
2.  c = (R1 + R2)/2. 
3.  cold = c  

 
cold is a global variable, and is initialized as cold = W0. The 
initial value for binary search is also W0 = (R1 +R2)/2, which is 
part of the nature of binary search. As loss rate is a monotonic 
function of c, the convergence of the binary search is 
guaranteed.  

C. Performance Judgment 
After each run of the simulation, we need to decide whether 

the simulated performance meets the performance requirement 
or not. Since the performance is statistical in nature, we use 
hypothesis test to make the decision. The performance metric 
is p = P[d > D]. As indicated in step 5 in the simulation 
procedure, the hypothesis test is  
H: p = e against H+: p > e and H−: p < e.  (2.2) 
This is a two-tailed hypothesis test. The sample size 
significantly affects the accuracy of the hypothesis test. We 
have a procedure to decide and update the sample size in the 
simulation, which will be described in next sub-Section. Given 
the sample size n, the accuracy also depends on the distribution 
of the traffic. We use the distribution-free or nonparametric 
approach to suit general traffic. A convenient method for our 
application is the binomial test. Let G be the set of delay 
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measurements from the simulation. Let m = #{s: s > D, s ∈  
G}. If p = e and is very small, it can be shown that m ~ 
N( mµ , 2

mσ ) with mean and variance being nem =µ  and 

)1(2 eem −=σ . 
We define the test statistic as 

n
m

m
m

m

/
*

σ
µ−

=  

It is easy to see m* ~ N(0, 1). To do a two-tailed hypothesis 
test, define the significance level as 

]|||[ * HmxP >=β  
Given a significance level value β = B, we can eventually write 
down the test rule as follows. 

Accept H   and   reject H+ and H-,   if |m*| < z1-B 
Accept H+  and   reject H and H-,  if m* > z1-B 
Accept H-  and   reject H and H+,   if m* < − z1-B 

Here z1-B is the 100(1-B)-th percentile of N(0, 1). 

D. Sample Size 
The number of packets captured for simulations is an 

important parameter. It should be large enough to guarantee 
the accuracy of the estimation of the performance metric. 
However, larger sample size means higher overhead in terms 
of bandwidth and computing power consumption. Also, too 
large sample size may lead to the problem of “overestimation”. 
So the sample size should be kept in a reasonable range. 

Formally, the question of determination of the sample size in 
our context is as follows. Assume n packets are fed into a 
simulator, and m of them are measured to have delays greater 
than D. Given two small quantities ε and α, how big should n 
be so that m/n can be used as an estimator of p and the 100(1-
α)% confidence interval is m/n ± ε? If all delay measurements 
are independent, there is a well-established result for this 
question. However, if the measurements are dependent, which 
is obviously the case, the theoretical result may underestimate 
the sample size and leads to inaccurate estimation of p. Our 
estimation aims at adapting to a variety of traffic behaviors that 
may have different dependent structures. In addition, it prefers 
to make as few assumptions as possible about the distribution 
of the measurements, i.e., a distribution free estimator. There is 
so far no systematic treatment of these concerns. Here we will 
use the following approach to achieve above goals. First, a 
basic sample size is deduced based on the independence 
assumption. Then, a heuristic “inflation” algorithm is 
employed to find a proper sample size using the basic sample 
size as the initial value. The first part is done statically in step 
3 of the simulation procedure, and the second part is done 
dynamically in step 8. 

 We start by assuming the delay measurements are 
independent. The sample size can be determined as follows. 
Denote measurement i by di. Obviously, either di > D or di ≤ 
D holds. If there are m out of n measurements being greater 
than D, m has a binomial distribution with parameter p. Denote 
m/n by p̂ . Because E[ p̂ ] = p, p̂  is an unbiased estimator of p. 
Let σ be the standard error of p̂ . It can be shown that the 
100(1-α)% confidence interval of the estimator is σα−± 1ˆ zp . 

Here z1-α is the 100(1-α)-th percentile of the standard normal 
distribution, N(0, 1). An unbiased estimator of 2σ  is  

n
pp )ˆ1(ˆˆ 2 −=σ  

Given α and ε, and p being the target estimation value, the 
above formula imply 22

1 /)1( εα ppzn −≥ − . 
Denote the initial sample size by N0. We choose N0 to be a 

power of 2. Let K =  22
12 /)1(log εα ppz −− . Then N0 = 2K. The 

algorithm Sample carries out above calculation of K. Then 
simulations run with N0 until an effective bandwidth is found 
(the loop of step 3 to step 7 in the simulation procedure). This 
is the first phase of simulation (fg = 0). The effective 
bandwidth value is the final result if the traffic is Poisson. For 
general traffic, it provides a coarse estimation because N0 may 
be insufficient. The multi-scale inflation algorithm to 
dynamically search the final sample size will be started. It is 
embedded in the dynamic version of the queue simulator 
QSim_v2, which is shown below. This is the second phase of 
the simulation (fg = 1). To control the termination, we select a 
factor 1 < θ < 100, and use it to limit the maximum of the 
sample size. θ's value is based on the overhead of the 
simulation that the user is willing to accept. 

 
Algorithm: QSim_v2 
Input: traffic samples, k 
Output: k 
1. Initialize k = K and n1/2 = 2k. 
2. Run QSim_v1 with n1/2 packets and get n1/2 delay 

measurements. Denote the measurements by G1. Let 
m1 = #{s: s > D, s ∈  G1}, and 1p̂  = m1/2K. 

3. Continue to run QSim_v1 with next n1/2 packets, and 
denote the delay measurements by G2. Let m2 = #{s: s > 
D, s ∈  G2}, and 2p̂  = m2/2K. 

4. Do hypothesis test: H1: 1p̂  = 2p̂  against H2: 1p̂  ≠ 2p̂ .  
5. If H1 is rejected and n = 2n1/2 < θ·2K, then  

i. let k = k + 1. 
ii. let G1 = G1 ∪ G2. 
iii. re-calculate m2, 2p̂ , and n1/2 using new k. 
iv. go to step 3. 

6. If instead H1 is accepted or if n ≥ θ·2K, stop.  
 

Basically, above procedure starts from the initial sample 
size. It checks whether the sufficiency is reached through a 
hypothesis test, which essentially checks whether the 
estimation is consistent in two successive samples. The 
techniques for the hypothesis test are similar to those in 
Section II-C, and will be omitted here. The sample size will be 
extended exponentially until it passes the sufficiency checking 
or reaches the maximum. 

If this procedure gives a new sample size, the simulation and 
the effective bandwidth search will continue until a final value 
of the effective bandwidth is found, which forms the third 
phase of the simulation procedure (though still fg = 1). The 
loop from step 4 to step 7 is re-used for this phase. 
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E. Simulation Results 
In the following simulation we determine the effective 

bandwidth of the aggregate traffic on an OC-12 (622Mbps) 
optical link. The traffic is generated to have a complex 
dependent structure that is a combination of the long-range 
dependence and the short-range dependence. It is an aggregate 
of 80 on-off flows with the average rate of 3Mbps per flow. 
Half of the flows have heavy-tailed on and off periods, and 
half are short-tailed on-off processes. Traffic like this is more 
“real” and but has no theoretical result for the effective 
bandwidth. 

We choose different values of e between 0 and 0.1 and 
different values of D between 0 and 2.56 ms, and determine the 
effective bandwidths for various QoS requirements with above 
MSB scheme. Figure 1 shows the results. Axes D and e in the 
graph are in logarithmic scales. At larger e, e.g., e = 0.1, the 
effective bandwidth decreases linearly with the increase of D, 
and the change is quite conservative. For smaller e, the relation 
tends to be rather non-linear, and the falling distance enlarges. 
The effects of changing e are very different at different D.  
When D is large, say D = 2.56 ms, the bandwidth change is not 
impressive. For small D, e.g., D = 0.01ms, the change becomes 
quite visible. These changes in general conform to neither 
exponential law nor scaling law, as are the theoretical results 
for the pure short-range dependent and the pure long-range 
dependent traffic [6] [10]. To obtain these accurate estimations 
may be impossible without the MSB approach. In this 
experiment, all simulations pass the re-checking within three 
rounds of sample size inflation. So the MSB procedure is 
efficient.  

III. ESTIMATION FROM SUB-AGGREGATES 
In traffic engineering and network dimensioning 

applications, it is often desirable to measure the traffic 
demands at the network edge and estimate the bandwidth needs 
of a core link based on them [2] [3] [4] [9]. So far this is 
mainly done with the average traffic rate. The advantage is 
clear if the effective bandwidth is used as the traffic demand 
and estimated this way, i.e., getting the path-wise effective 
bandwidths with the MSB scheme at network edge, and 
estimating the effective bandwidth We of a core link as 

∑=′
∈Jj

je wW  (3.1) 

where J represents the set of all paths passing the link, and wj 
is the effective bandwidth of path j ∈ J. Here we made the 
assumption that the effective bandwidth of the path-wise traffic 
changes little throughout the core network, which is reasonable 
since usually there are few packet losses in the core cloud and 
the traffic behavior propagates along the path. The question is, 
how accurate the estimation (3.1) is? 

Amazingly, the estimation accuracy is very bad in general: 
the error may be unbounded. To see this, we do an evaluation 
by simulation with the network shown in figure 2. Nodes D, E, 
and H are pure intermediate routers, and all other nodes are 

edge nodes generating and receiving traffic. Every link is 
duplex with an OC-12 (622Mbps) in either direction. There are 
totally 30 unidirectional links. The small triangles symbolize 
the Poos at edge. In the simulation, every edge node sends 
traffic to all other edge nodes, and there are f flows from a 
node to another. f > 0 is a uniform random number between 0 
and a fixed number F, rounded to the nearest integer. The 
flows are generated in the same way as in previous simulation. 
We create three traffic environments: pure short-range 
dependent environment, in which only short-tailed flows are 
generated, pure long-range dependent environment, which has 
only heavy-tailed flows, and the mixed environment, in which 
each sender generates either type of flows by 50%, and 
randomly distribute them among receivers. The routing 
information is known, so the paths through every link can be 
decided. We use the MSB approach to directly estimate We of 
every link at core, as well as all wj at edge, which leads to eW ′ . 
Then explore the relation between We and W′e in the following 
way: use W′e and We for each link as the x- and y-coordinates 
to draw a dot (W′e, We) on a plane. Should We = W′e, the dot 
would be on the 45º-angle line. The deviations of the dots from 
the 45º-angle line would indicate the error of the estimation. 

Figure 3 shows the results for F = 80 under three traffic 
environments. The performance requirement is D = 0.1 ms and 
e = 0.001. The 95% confidence interval of all MSB estimations 
is p ± 0.0005. From figure 3 we see generally We < W′e, and the 
dots do not match the 45º-angle line (the diagonal line), but 
diverge from it. The higher the link load is, the greater is the 
divergence. Without a little thinking we understand this is due 
to the multiplexing gain. We notice the divergence is quite 
regular. In fact, it is linear to the increase of the link load.  
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Fig.1. MSB effective bandwidths vs performance requirement for mixed 
traffic environment 
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Fig.2. Network topology. 
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Draw the least-square fitting line of the dots in each graph (the 
blue dashed line), of which the slope a and the bias b are 
marked at the bottom. The fitting shows convincingly the 
linearity is consistent for different traffic environments. 

So we can give a systematic correction formula for 
estimation (3.1): 
We = aW′e + b (3.2) 

Choose different F values, which measure the load, and do 
more simulations. Figure 4 shows the error surface of the 
effective bandwidth estimation after correction for the mixed 
traffic environment. The error is calculated as 

eee WWW /)( −′=δ . The results indicate that most errors are 
within 10% and all errors are below 15%. The average error 
for that surface is 4.5%. This level of estimation accuracy 
generally applies to various combinations of traffic loads and 
environments. Having said that, we note that in the long-range 
dependent environment the estimations are relatively more 
scattered around its fitting line. The short-range dependent 
traffic sees the best fitting and thus the least error, and the 
mixed traffic is in the middle. 

I. CONCLUSIONS 
In this paper we present a MSB approach for accurate 

estimation of the effective bandwidth. The advantages of the 
scheme lie in its accuracy, its applicability to various traffic 
environments, and its efficiency. We give the simulation 
procedure, the efficient search algorithm that enhances the 
binary search with the effective bandwidth theory, and the 
conditions of the sample size and the performance judgment 

for the simulation to guarantee the accuracy of the estimation. 
We also examine the issue of estimating the effective 
bandwidth of aggregate traffic from sub-aggregates, and 
provides an empirical formula to achieve good accuracy. 

Because of the direct relation between QoS and the effective 
bandwidth, the MSB estimation provides a very useful tool in 
resource allocation, QoS management, and network 
dimensioning. 
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Fig.3. MSB effective bandwidth estimation accuracy under different traffic environments: mixed (left), short-range dependent (middle), and long-range dependent 
(right). 
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Fig.4. An error surface of MSB effective bandwidth estimation for mixed 
traffic environment. 
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