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Abstract: The long-run queueing performance of a multi-scale TCP traffic model, the HOOmodel,
is analysed. Since the model links the multi-scale behaviour with practical traffic elements and
approximates TCP traffic very well, the analysis is expected to provide insights into the physical
interpretation of multi-scale traffic and to give useful results for performance prediction. To derive
a meaningful solution and avoid the extreme difficulty of an exact analysis, the authors adopt
several techniques to track the problem, among which are techniques to establish equivalent
processes to the traffic process or the queue content process in two cases, the case of fast flows and
the case of slow flows. Quantitative results for the queue tails are obtained in both cases, and a
unified form is derived. It indicates that three levels of traffic elements in different time scales, i.e.
the connection, the burst and the packet, all affect the asymptotic queueing performance. It shows
quantitatively how the connection determines the index of the queue tail, and the burst and the
packet contribute to the tail with their averages. Used with simple statistical inferences, the
analytical result is shown to predict the queueing performance of real traffic well.

1 Introduction

Since the seminal work of Leland et al. [1] on self-similar
Internet traffic, scaling phenomena have been widely
recognised as dominant characteristics of Internet traffic.
This was enhanced later by finding of multifractality [2],
which indicates that real traffic has scaling structures in
multiple time scales. It has been shown that the multi-scale
property may lead to a much worse network performance
than does traditional exponential traffic [3–5]. Advances in
modelling and performance evaluation of multi-scale traffic
may impact network control, planning and operations
significantly.

Traffic models proposed with regard to scaling beha-
viours largely fall into two categories. One large family of
models are based on the on–off model and view the traffic
as the aggregation of many on–off flows [1, 6, 7]. In the
other category are more or less mathematically driven
models that are intended to approximate the statistics of the
traffic rather than mimic the structure of it. They include
fractional Brownian motion [7], the M/G/N process [3],
random cascade [9], MWM [10] and heavy-tailed renewal
reward processes [11], and some others. While both
categories of models can explain the real traffic quite
satisfactorily in some aspects, they have certain short-
comings. Dating back to early packet-switched telephone
networks [12], the on–off models may be too simplified to
capture TCP protocol-related traffic textures. The mathe-
matical models do not help much in the physical
interpretation of the traffic since practical network and
protocol parameters are generally not involved.

We have made an attempt to avoid the above short-
comings by presenting a model that can on the one hand
capture the structure of the traffic in fair detail, and on the
other hand can have the multi-scale property inherently [13].
The model is justified with protocol and real traffic data
analyses and examinations of the multi-scale property.
Queueing analysis of the model is important at least in two
aspects. First, it would help us understand the effects of
different levels/scales of traffic elements on network
performance. Secondly, it would provide a basis for
performance predication of practical multi-scale traffic,
and thus improve network dimensioning and resource
allocation in such traffic environment. However, the
analysis is not an easy task and no result has been given
so far. This paper will be dedicated to the problem and give
useful results on the queueing performance of the model.
Our primary interest is a meaningful solution for long-run
performance from the engineering point of view rather than
a thorough, theoretical treatment of the hard problem. The
major contributions of this paper are that we adopt various
techniques to make the difficult problem tractable, and get a
satisfactory result to fulfill our goal.

2 Multi-scale traffic and the hierarchical on–off
model

Multi-scale phenomena indicate the complex scaling
behaviour of Internet traffic in multiple time scales.
Generally speaking, in large scales the traffic shows long-
range dependence or self-similarity [10], and in small time
scales the traffic is multifractal [2]. In fact, some research
claims that the long-range dependence may only exist in
finite time scales, and in very long time scales the traffic is
likely to be Gaussian (see [14]). This is an easier case, and we
will not address it in this paper. Researchers have tried to
understand why this happens and what factors contribute
to the phenomena. The hierarchical on–off model (HOO)
[13] is a structural model trying to link physical traffic
elements to multi-scale behaviour. It is simply a natural
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profile of the hierarchical structure of typical traffic
elements. It characterises the structure from three levels:
the connection level (level I), the intraconnection level (level
II) and the packet level (level III). Level I describes TCP
sessions. Level II describes the bursts in a connection. Level
III describes the packets within bursts. In [13] it is shown
that the existence of level II is an inherent property of TCP
protocol. It essentially embodies the effect of the TCP
window-based congestion control [15] on the traffic. In
more detail, TCP makes packets be sent in bulk from the
source to the destination. In a practical network setting, the
change of TCP window size in response to network status
makes the bulk length random. So on an intermediate link,
a bulk appears to be a burst of random length.

The model is illustrated in Fig. 1. The three levels of the
traffic structure are shown. Level I depicts the arrivals and
durations of different TCP connections (‘on’ periods). We
say the traffic element in this level is a connection. Details
within a traffic element are given in lower levels, i.e. level II
and level III. Assume a connection has a duration of t, and
the average connection length is m¼E [t]. Level II depicts
the internal structure of a connection: a series of bursts. The
traffic element is thus a burst called a ‘packet cluster’ or a
bulk. We see that between clusters are silence periods in
which no packet is available. Use random variables oon and
ooff to represent the cluster and the silence periods. The
average occupancy within a connection observed at this
level is g1¼E [oon]/E(oon]+E [ooff]). Level III pictures the
internal structure of a packet cluster. The traffic element at
this level is a packet. We represent the duration of a packet
and the interpacket interval with random variables pon and
poff, respectively. The average occupancy within a cluster is
thus g2 ¼ E½pon�=ðE½pon� þ E½poff �Þ. Let us assume the bit
rate within an ‘on’ period at this level is ron. The whole
model is then completely set.

This hierarchical model has some basic features that
make it intuitively suitable for multi-scale traffic. Obviously
the traffic elements at the three levels are in different time
scales. Consequently, traffic characteristics can be expected
to change with time scales.

Hierarchical descriptions of traffic structure have been
seen on different occasions [16, 17], but there they are not
used as a model for study of multi-scale phenomena or for
performance evaluation. In fact, to our knowledge, no
queueing analysis is available for this hierarchical traffic
model.

3 Queueing analysis

3.1 Methodology
Mathematically, a HOO process is a very complex
compound renewal process. It is extremely difficult to
analyse the queue content distribution for it. The primary

challenge we face is to make the problem tractable. To do
this, we carefully decide the following tactics. First, the
problem is separated into two cases for analysis, i.e. the case
of fast flows, in which the average rate of a flow is higher
than the queue service rate, and the case of slow flows, in
which the average rate of a flow is lower than the queue
service rate. This allows the flexibility to treat them in
different ways, which turns out to be very important for this
problem. Secondly, instead of analysing the queue distribu-
tion in the whole line, we study the tail behaviour over
selected sample points. Sample points are chosen to be the
start times of activity periods, which we will explain later.
The points have a ‘memoryless’ feature in the sense that the
intervals between the points are of an exponential distribu-
tion. Hopefully the result would give a good approximation
of the tail in the whole line. Thirdly, equivalent processes
are established for the HOO process or its queue content
process so that we can take advantages of the ‘easy’ nature
of the former to proceed. These techniques prove to be very
helpful, and with them we are able to track the problem
quite smoothly and obtain a simple form of solution that
well satisfies our goal.

To facilitate the analysis, we simplify the HOO model in
this way; we extend level II and level III to the whole line
and view the HOO process as the product of the three
levels. The resulting HOO process then has an appearance
of an on–off process, but the transmission rates in different
‘on’ periods may be different. It is easy to see the overall
occupancy of the process is g¼ g1g2. We assume connec-
tions arrive in a Poisson process with average rate l, and the
connection length t has a Pareto distribution with
parameters b and a.

3.2 Queueing analysis for fast flows
Probability distributions frequently used in this paper are
defined as follows:
Definition 1: A random variable X is Pareto-distributed with
parameters b and a if the distribution function F(x) satisfies

F ðxÞ ¼ 1� x
b

� ��a
; x!1 ð1Þ

where a40, b40 and xZb. A Pareto distribution is
denoted as FAP and a Pareto random variable is
represented by (b, a).
Definition 2: A random variable X has a heavy-tailed
distribution (or X is regularly varying), denoted as FAV, if

F ðxÞ ¼ 1� x�aLðxÞ; x!1 ð2Þ

where a40 and L(x) is a slowly varying function satisfying

lim
x!1

LðkxÞ
LðxÞ ¼ 1; 8k40

Obviously, PCV.
We will establish an equivalent process for the HOO

process through the M/G/N process [14] in this case. An M/
G/N process is defined as follows:
Definition 3: An M/G/N process is the busy server process
of an M/G/N queue.

In an M/G/N process there are silence periods during
which no servers are active. Between silence periods are
activity periods during which the system is in service. We
denote the start time of the ith activity period, which is
exponentially distributed as Ti, �NoioN.

It is not difficult to see that a HOO process and an M/G/
N process have the following basic relation:
Proposition 1: Level I of a HOO process is an M/G/N
process.

I 

II

III

Fig. 1 Hierarchical on–off model for TCP traffic
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Proof: It is straightforward by comparing the level I of the
HOO process with definition 3. &

It should be pointed out that in previous literature about
scaling traffic modelling the M/G/N model is primarily
used as the limiting process of the aggregation of on–off
flows [6, 8]. Proposition 1 indicates that it applies in a more
natural sense as a profile of the connection level structure.

Assume all connections have the same average rate %r.
Then %r¼ rong¼ rong1g2. Based on this relation, we can define
an M/G/N companion process for a HOO process.
Definition 4: An M/G/N companion process of a HOO
process is a copy of the level I process of the latter except
that it has a constant transmission rate r0 ¼ %r for each
connection.

Denote a HOO process as x and its M/G/N companion
process as x0. The following relations follow from defini-
tion 4:

(i) x and x0 have the same average traffic rate for one
connection.

(ii) Let vectors S and E represent sequences of start times
and durations of all connections in x, respectively, and S0

and E 0 for those in x0. Then S¼S0 and E¼E 0 hold.

(iii) Let Di be the arriving workload of x during [Ti, Ti+1)
and D0i that of x

0. Then Di ¼ D0i holds.

Therefore, we can use Ti of x0 to mark corresponding
points of x. Ti will be referred to as the start of the ith
activity period of either process hereafter.

Now we start to derive the queueing performance of a
single server FIFO queue fed by a HOO process. We will
first give two lemmas.
Lemma 1: For an M/G/N process, if rZc, the following
relation holds:

Qiþ1 ¼ ðQi þ Di � CiÞþ ð3Þ
where the operator (q)+ means the maximum of q and 0, Qi

is the queue content at time Ti, Di is the arriving workload
during [Ti, Ti+1) and Ci is the leaving workload during [Ti,
Ti+1).
Proof: See the Appendix (Section 8.1). &
We call (3) the generalised Lindley’s equation.
Equivalently, (3) can be written as

Qiþ1 ¼ ðQi þ Di � �i � LiÞþ ð4Þ
where Pi is the leaving workload in the ith activity period
and Li is the leaving workload in the ith silence period (the
silence period immediately after the ith activity period).

In an on–off process, an ‘on’ period and its successive
‘off ’ period form an on–off cycle. For level II, denote the

‘on’ and the ‘off ’ period in the ith cycle as oðiÞon and oðiÞoff ,

�NoioN. For level III, denote them as pðiÞon and pðiÞoff . So

the occupancies of the ith cycle at level II and level III are

gðiÞ1 ¼ oðiÞon=ðoðiÞon þ oðiÞoff Þ and gðiÞ2 ¼ pðiÞon=ðpðiÞon þ pðiÞoff Þ, re-

spectively. Let g1;min ¼ minfgðiÞ1 �1oio1g7 and

g2;min ¼ minfgðiÞ2 �1oio1g. We can establish the fol-

lowing relation between a HOO process and its companion
M/G/N process with regard to their queueing content
processes.
Lemma 2: If rong1,ming2,minZc, the queue contents for a
HOO process at the start and the end of an activity period
are equal to those for its M/G/N companion process.
Proof: See the Appendix (Section 8.2). &
The condition rong1, ming2, minZc, denoted as O, seems

to be very strict. However, to loosen the condition will

greatly complicate the analysis, which does not make much
sense for achieving our main goal. Instead of examining a
more general condition, we simply make the following
probability statement: there exists a more general condition
Y*O under which lemma 2 holds with high probability (-
1). Proof is available in [18]. For simplicity we proceed with
condition O. However, the following theorem holds with
high probability under condition Y.
Theorem 1: For a HOO process, if lmo1, 0og1o1,
0og2o1, rong1,ming2,minZc, and the distribution of t is FAP
with parameters b40 and a41, then its queue content
process at Ti, Qs, has the following tail:

P ½Qs4x� � l
a� 1

baðlmrong1g2 þ rong1g2 � cÞa

c� lmrong1g2
x�ða�1Þ;

x!1 ð5Þ

Proof: From lemma 2 and definition 4, the queue tail of a
HOO process is the same as that of its M/G/N companion
process with r¼ rong1g2. For a queue fed by an M/G/N
process, if lmo1, r4c, and the distribution of t is FAV, the
following relation holds [6]:

lim
x!1

P ½Qs4x�R1
x=ðlmrþr�cÞ ð1�F ðuÞÞdu

¼ l
r

c� lmr
� 1

� �

With the Pareto distribution function F(x) given in (1), we
obtain (5). &

3.3 Queueing analysis for slow flows
As far as we know, the queue tail for an M/G/N process
with heavy-tailed service time in the case of slow flows is an
unsolved problem. So we cannot use the approach in
Section 3.2. Instead, we will approximate the queueing
process by means of the M/G/1 queue. The approach has
been used in [19, 20].

We first define two processes. One is related to the queue
for an M/G/N process

Viþ1 ¼ ðVi þ Di � �i � LiÞþ ð6Þ
The other is for an M/G/1 queue

Wiþ1 ¼ ðWi þ rti � LiÞþ ð7Þ
Process V looks similar to the queue content process at Ti.
In the case of fast flows, they are equivalent. But in the case
of slow flows, they are not, because the queue may be empty
at some instants in an activity period and thus lemma 2 does
not hold. Process W is exactly the queue content process of
an M/G/1 queue at customer arrival points. The workload
brought by customer i is rti, the interarrival time between
customer i and i+1 is Li and the queue service rate is 1. It
can also be understood as the waiting time process of the
M/G/1 queue. This understanding will be used in theorem 2.

Next, we make the following assumption:
Heavy traffic assumption: If lmr-c, P[Q¼ 0]-0.

This is reasonable and has been shown to be true for
extensive cases [19]. It enables a probabilistic equivalent
relationship between V and W, and is a key step towards
the final result for this case.
Lemma 3: If roc and lmr-c, process V resembles the
actual queue content at Ti with probability 1, and it has the
same tail as process W.
Proof: Assuming heavy traffic, for any time unit within
an activity period, P[qj+dj�cZ0]-1. So P[Qi+1¼
(Qi+Di�Ci)

+]-1. This means the queue content process
Qs is equivalent to process V with probability 1. That V and
W have the same tail has been shown in [20]. This completes
the proof. &
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Now we are ready to present the queue tail for heavy
traffic of slow flows.
Theorem 2: For a queue fed by a HOO process,
if rong1g2oc, lmrong1g2-c, and the distribution of t is
FAP with parameters b40 and a41, then the
queue content process at Ti has the following tail with
probability 1:

P ½Qs4x� � l
a� 1

baðrong1g2Þa

c� lmrong1g2
x�ða�1Þ; x!1 ð8Þ

Proof: For both the HOO process and its M/G/N
companion process, assuming heavy traffic, at any time
unit within an activity period P[qj+dj�cZ0]-1. So
P[Qi+1¼ (Qi+Di�Ci)

+]-1. Thus the queue content for
the HOO process at time Ti+1 is equivalent to process V
with probability 1. With lemma 3, process V has the same
tail as W. As defined above, W is the waiting process of an
M/G/1 queue with arrival rate l and service time s¼ rt. It is
easy to get F(s)¼ 1�ra(s/b)�a and E [s]¼ rE [t]¼ rm. It is
known that the following relation holds for W if the
distribution of s is FAV with parameter a41 and r ¼
l � E½s�o1 [20]:

P ½s4x� � ða� 1Þ x
E½s�

� ��a
LðxÞ; x!1

, P ½W 4x� � r
1� r

x
E½s�

� �1�a
LðxÞ; x!1

Then we can write down

P ½W 4x� � r
ð1� rÞE½s�

bara

a� 1
x�ða�1Þ; x!1

Given parameters for the HOO process, i.e. r¼ rong1g2 and
r¼ lmrong1g2/c, we obtain (8). &

3.4 Summary
The combination of the results for the case of fast flows and
the case of slow flows gives the full solution. We notice that
(5) is exactly the same as (8) when lmr-c. Thus we
immediately get the following corollary.
Corollary 1: Under heavy traffic, i.e. when lmr-c, both fast
flows and slow flows have the same Qs.

In more general conditions, the two cases also share
important commonalities; the queue tails both follow a
power law and their indices are the same. So the results can
be generally presented in a simple form

GðxÞ ¼ P ½Qs4x� � bx�ða�1Þ; x!1 ð9Þ
where factor b represents the coefficient part on the right-
hand side of either (5) or (8). The similarity of this result
with those from the on–off model and the M/G/N model
[6] suggests the persistence of the power-law queueing
behaviour in various traffic environments. Compared with
the latter two, this result displays the roles of different traffic
elements. First, the connection length determines the index
of the queue tail while the traffic elements at level II and
level III have no effects on it in the conditions when either
the overall traffic load or the individual flow rate is high.
Secondly, the traffic elements at level II and level III
contribute the queue tail by their averages. This can be seen
from the fact that b is a function of

g1g2 ¼
E½oon�E½pon�

ðE½oon� þ E½ooff �ÞðE½pon� þ E½poff �Þ

4 Result evaluation and performance prediction

In this Section, we will compare the analytical tail with
simulation results. Furnished with simple statistical infer-
ences, the analytical result can be demonstrated to predicate
the queueing performance quite well.

4.1 Comparisons of analytical tails with
simulation results
Figure 2 compares the analytical results (5) and (8) with
simulation results for different traffic loads. The connection
length in level I of the HOO process is set as t¼ (20, 1.5).
Level II parameters are oon¼ (1, 2.0) and ooff¼ (4, 2.0),
which results in g1¼ 0.2. Level III parameters are chosen as
pon¼ 1 and poff¼ 0, meaning the packet size is fixed and the
interpacket intervals are too tiny to be seen. This maintains
the simulated data series in a reasonable length. Then
g2¼ 1. The traffic load is indicated by the queue system
utilityr¼ lmrong1g2/c. Let c¼ 1. We change l to get different
values of r. Figures 2a and 2b are for fast flows where %r¼ 1
(ron¼ 5), and Fig. 2c is for slow flows, where %r¼ 0.2
(ron¼ 1). l for the Figures are 1/300, 1/200 and 1/15,
respectively, and corresponding traffic loads are 20%, 30%
and 80%.

We observe that the analytical tail does not always match
the simulation data well, especially when the load is high. A
key fact, nevertheless, is the identity of tail indices between
the analysis and the simulation in all situations. This is
clearly indicated by the parallelism between the tail parts of
the curves for the simulated and the analytical results. It
suggests that the index of the tail in the analysis is accurate
while the coefficient part is not. This is not unusual for
asymptotic results. In consequence, it is not sensible to
estimate every parameter in (5) or (8) to do statistical
inferences. Instead, the coefficient may be estimated as a
whole. This leads to a simple and efficient statistical
inference method.

4.2 Statistical interference of the queue tail
The simple method is to estimate the tail based on (9)
instead of (5) and (8). In simulations, a is a given parameter.
In real networks, it can be estimated either from connection
length data or directly from queue size data. Several good
estimators are available [21, 22]. b can be estimated with

empirical queue tail probabilities. Suppose ĜGðxiÞ, i¼ 1, 2, ..,
m, are a set of samples of empirical tail probabilities for
different xi. A simple estimation of b is then as follows

b̂b ¼ 1

m

Xm

i¼1
½ĜGðxiÞ=x�ðâa�1Þi � ð10Þ

where âa is the estimation of a. To make sure the samples are
in the tail part, xi should be chosen to be considerably big.

Used with the above inference method, (9) can serve as
an estimation-based performance predictor. Figure 3
compares the inferred queue tails with real ones from
simulations. We can see they match very well in all cases.
The gaps between the analytical tail and the real data are
greatly reduced. This indicates that (9), as a long-run
performance predictor, is fairly good.

4.3 Matching queueing performance of real
traces
We apply the estimation-based predictor to real traffic
traces and compare the predictions with real queueing
performance. Two traces are used, named LBL-TCP and
SAT-TCP. LBL-TCP is a frequently used trace from LBL
[23]. It includes 1.8 million packets, and was measured
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from 14:10 to 16:10 on 20 January 1994 on an Ethernet of
LBL. Its average rate is 282.12kbit/s. We choose the
queue service rate as 500kbit/s, which means r¼ 56.42%.
SAT-TCP is collected from an Internet–satellite network
gateway of NASA. It includes 4.8 million HTTP packets,
and was measured in a period of 7396 s between 17:00 and
18:00 on 12 May 1999. The average rate of it is 4.39
Mbit/s. The queue service rate is set as 6.4Mbit/s and
r¼ 68.59%.

Figure 4 shows the results. The unit for the queue length
is a byte. We see the predicted tails match the real ones quite
well. The queue length data used for the real traces are from
the whole line (every time unit), not just at time Ti. So the
predictor, though based on analytical results at Ti, provides
a good approximation to the overall tail distribution.
Considering the real traces include both fast and slow flows,
and the transmission rates of connections are very diverse,
the results also suggest that the predictor is quite robust.
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Fig. 2 Comparisons of analytical and simulated queue tails in
different traffic loads
a Fast flows, r¼ 20%, %r¼ 1
b Fast flows, r¼ 30%, %r¼ 1
c Slow flows, r¼ 80%, %r¼ 0.2

0 500 1000 1500 2000 2500
− 6.5

− 6.0

− 5.5

− 5.0

− 4.5

− 4.0

− 3.5
simulation
estimation

0 500 1000 1500 2000 2500 3000 3500
− 6.5

− 6.0

− 5.5

− 5.0

− 4.5

− 4.0

− 3.5

− 3.0

− 2.5

0 500 1000 1500 2000 2500 3000 3500 4000
− 5.5

− 5.0

− 4.5

− 4.0

− 3.5

− 3.0

lo
g 

(p
ro

ba
bi

lit
y)

lo
g 

(p
ro

ba
bi

lit
y)

lo
g 

(p
ro

ba
bi

lit
y)

queue length at Ti 

queue length at Ti 

queue length at Ti 

simulation

simulation
estimation

a

b

c

estimation

Fig. 3 Comparisons of inferred and simulated queue tails in
different traffic loads
Simulation settings are the same as those in Fig. 2
a r¼ 20%, %r¼ 1
b r¼ 30%, %r¼ 1
c r¼ 80%, %r¼ 0.2
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5 Conclusions

In this paper, we evaluate the queueing performance of a
complex multi-scale traffic model, the HOO model. To
track the problem we employ several techniques to avoid
difficulty. In particular, an equivalent process to the traffic
model is established in the case of fast flows and an
equivalent process to the queue content is established in
the case of slow flows. Quantitative solutions for both
cases are obtained and a unified form is derived. The
result indicates that the connection level of the traffic
determines the index of the queue tail, while the burst and
the packet levels affect the asymptotic performance with
their averages. The analytical formula is further tested
against simulations under different traffic loads. Using
simple statistical inferences, a performance predictor
based on the analysis is demonstrated to match the
queueing performance of real traffic quite well.
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8 Appendix

8.1 Proof of lemma 1
Proof: Assume [Ti, Ti�1) includes Ni time units, i.e.
Ni¼Ti+1�Ti. First Mi (oNi) units form an activity period
while the rest, Ni�Mi units have no traffic. Let qj be the
queue content at the start of the jth time unit in this interval,
dj is the arriving workload in the time unit and c is the
service rate. So

Di ¼
XMi

j¼1
dj

Let q1¼Qi. Because djZrZc for j¼ 1, 2, y Mi, with
Lindley’s equation we can write down

qMiþ1 ¼ q1 þ
XMi

j¼1
ðdj � cÞ ¼ Qi þ Di �Mic ð11Þ

For j¼Mi+1,y, Ni, available queue content merely drains
out. So

Qiþ1 ¼ðqMiþ1 � ðNi �MiÞcÞþ

¼ðQi þ Di � CiÞþ ð12Þ
&
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8.2 Proof of lemma 2
Proof: Recall that the ith activity period of a HOO process
has the same workload Di and duration Mi with its M/G/N
companion process. Inside an activity period are many ‘on’
and ‘off ’ periods. These include on–off cycles within clusters
and intercluster ‘off ’ periods. A cluster always begins
with an ‘on’ period. Because ronr2,min4rong1,ming2,minZc,
we have

ronpðjÞon � cðpðjÞon þ pðjÞoff Þ � 0 ð13Þ

for any on–off cycle j in a cluster k. Obviously, the average
rate of cluster k, rk, satisfies rkZrong2,min. Thus rkg1,minZc.
Then

rk$
ðkÞ
on � cð$ðkÞon þ$

ðkÞ
off Þ � 0 ð14Þ

for any on–off cycle k at level II (including cluster k and the
intercluster silence period immediately after it). Then, with
Lindley’s equation, it is straightforward to write down the
same equation as (11) for the ith activity period. An
equation the same as (12) for the interval [Ti, Ti+1) follows.
This completes the proof. &
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