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Fixed Point Approximation for Multirate Multihop
Loss Networks With State-Dependent Routing
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Abstract—In this paper we consider a class of loss networks
that have arbitrary topologies and routes of arbitrary length.
Multiple traffic classes are present, each with different bandwidth
requirement, and each routed according to a state-dependent
routing scheme. In particular, we consider the least loaded
routing method generalized to routes of arbitrary number of
hops. The connection level performance metric of interest is the
end-to-end blocking probability. We are interested in developing
fast evaluation methods to provide reasonably accurate estimates
of the blocking probability, especially under heavy traffic load.
Our algorithms are based on the fixed-point method framework,
also known as the reduced load approximation. In addition to
what commonly examined by previous work, two more factors
contribute to the complexity of the computation in the scenario
under consideration in this paper. One is the state-dependent
nature of the routing mechanism, the other is the possible over-
lapping between routes due to the general multihop topology of
the network. We present two fast approximation algorithms to
evaluate the blocking probability with state-dependent routing by
simplifying the route overlapping computation. We discuss the
computational complexity of our algorithms as well as sources of
approximation error. We then compare the numerical results with
that of simulation and show that our algorithms provide fairly
accurate blocking probability estimates especially under heavy
traffic load.

Index Terms—Blocking probability, fixed point approximation,
least loaded routing, loss network, multihop, multirate, perfor-
mance modeling, state-dependent routing.

1. INTRODUCTION

N this paper we study the problem of evaluating connec-

tion level blocking probabilities in a class of loss networks
with arbitrary topology and state-dependent routing. The focus
is on developing fast computational evaluation methods. In a
loss network traffic arrives in the form of calls or connections,
each requiring a fixed amount of bandwidth on every link along
a path/route chosen between the source and destination nodes.
Upon a call arrival, if the network has a route with the required
bandwidth available on all its links, the call is admitted and set
up, and it will be holding the requested bandwidth for the en-
tire duration of the call; otherwise the call is rejected or blocked.
Upon the departure of a call, the occupied bandwidth is released
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from all the links of that route. The connection or call blocking
probability associated with such a loss network is the probability
that a call finds the network unavailable when it arrives and is
thus rejected. An excellent detailed discussion of loss network
can be found in [1].

The concept of loss network is a good abstraction for circuit
switched networks, e.g., telephone networks, where each tele-
phone call requires a fixed amount of bandwidth and only re-
leases it upon completion. When the network becomes overly
crowded a call may not go through. An important performance
measure in the design of such networks is the call blocking prob-
ability, and it has been extensively studied for traditional tele-
phone/voice networks. An ATM network can also be viewed as
a loss network at the connection level. More generally a data
network with certain notion of connection establishment may
be considered a loss network if each connection requires guar-
anteed resources from the network in order to achieve some
quality of service (QoS) guarantee, e.g., via the use of certain
QoS routing schemes [2], [3]. These connections may be re-
jected if the network does not have the requested resources. The
connection blocking probabilities in such networks can be cal-
culated by applying the concept of effective bandwidth [4]; see,
for example, [5], [6]. More recently the loss network model has
also been applied to the emerging optical networks.

Analytical methods of evaluating the connection blocking
probability are attractive not only because they can potentially
generate estimates orders of magnitude faster than simulation,
but also because they can be used in network sensitivity
analysis, network design and optimization [7], [8]. The Erlang
formula

clc .1*
v v
B, C) = C! Z n!]

n=0

established the loss probability of a single link with C' units
of bandwidth where calls arrive as a Poisson process with rate
v. The blocking probability when multiple classes of calls are
present over a single link has also been studied; see, for example,
[9], [10].

Analytically, when there are multiple links and multiple
classes of calls with different arrival rates and different
bandwidth requirement, and when a fixed route is associated
with each source-destination node pair, a loss network can
be modeled as a multi-dimensional Markov process, with the
dimension of the state space being the product of the number
of routes allowed in the network and the number of call classes
[1]. This is because the number of calls of each class on each
feasible route uniquely defines the state of the network. This
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Markov process possesses a product form which simplifies
the computation of the solution. When alternative routes are
present, i.e., when each source-destination node pair is allowed
more than one route, the Markov process no longer has a
product form. The equilibrium state probabilities can be ob-
tained by writing out the entire set of detailed balance equations
and solving them [1]. This approach however, is not practical in
dealing with large networks with a large number of routes and
integrated services with potentially a large number of service
classes, since the computational complexity is both exponential
in the number of routes and exponential in the number of
service classes. This leads to the need for fast computational
techniques that provide accurate estimates. In this study we
will concentrate on developing such approximation schemes
for networks with multiple classes of traffic (i.e., multirate) and
multiple routes between any source-destination node pair. For
the rest of our discussion we will use the terms calls and traffic
interchangeably.

Blocking probabilities in a loss network, and the reduced load
approximation (also known as the fixed point method) proposed
for computing blocking probabilities have been studied exten-
sively; see, for example, [1], [6], [11]-[22]. The reduced load
approximation is based on the following two assumptions.

1) Link independence assumption. Under this assumption,
blocking is regarded as to occur independently from
link to link. This assumption allows us to compute the
blocking probability at each link separately.

2) Poisson assumption. Under this assumption, calls arrive
at a link as a Poisson process and the corresponding ar-
rival rate is the original external offered rate thinned by
blocking on other links, thus known as the reduced load.

Consider the case of a single class of calls with fixed routing.
Using Erlang’s formula, the blocking probability of each link
can be expressed by the offered call arrival rate and the blocking
probabilities of other links. This leads to a set of nonlinear fixed
point equations with the link blocking probabilities as the un-
known variables. Solving these equations gives us the approx-
imation on the blocking probability of each link. Recent work
on using reduced load approximation for fixed routing can be
found in [12], [14], [21], [23], and [24].

The reduced load approximation has also been used for se-
quential alternative routing [20], dynamic alternative routing
[24], and state-dependent routing [13], [15], [16].

An important type of state-dependent routing is the least
loaded routing (LLR), where if a call cannot be set up along
the direct route (assumed to exist), then the two-hop alterna-
tive route (also assumed to exist) with the largest amount of
point-to-point free bandwidth is selected. LLR has been studied
in a fully connected symmetric network by Mitra, Gibbens,
and Huang in [15] and [16]. Chung, Kashper, and Ross studied
LLR for fully connected asymmetric networks in [13]. Girard
and Bell further studied LLR for nonfully connected networks
(but assuming the direct route and two-hop routes exist) in [22]
and [25].

In this study, we are interested in networks that are much
sparser than fully connected. Thus, the assumption of the ex-
istence of a direct route or two-hop routes between source and
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destination nodes does not hold in general. In such networks
routes can consist of a much larger number of hops and there
are typically a large number of possible routes between source
and destination nodes. One of the difficulties that arises with
such general networks is the dependence or overlapping among
routes (via shared common links) employed by a source-des-
tination node pair, as we discuss in more detail in subsequent
sections. Such dependence does not exist in a fully connected
network where only routes up to two hops are considered.

We will study a generalized version of LLR applied to an
arbitrary topology multihop network, where the route with the
maximum amount of free/residual bandwidth on its most con-
gested link is chosen for an incoming call. We present two al-
gorithms to estimate call blocking probabilities with LLR in an
arbitrary topology network with multiple classes of traffic. In the
first algorithm the overlapping among alternative routes is par-
tially ignored to simplify computation. In the second algorithm
the overlapping is dealt with by considering the most congested
link (determined by the steady state link occupancy distribution)
along that route. Both are approximations designed with the in-
tention of producing reasonable and fast estimates. Both have
varying degrees of accuracy depending on the network structure
as well as the intensity of traffic, examined through comparison
with simulation.

Among the aforementioned previous work, [13], [20], and
[22] are most relevant to our study here. Greenberg and Srikant
in [20] considered a sequential routing scheme in a multirate
random topology network, where two nodes may or may not be
directly connected. Each node pair is assigned an ordered list of
feasible routes in increasing length. Routing is accomplished by
going through this list till an admissible route is found. If none
is found, the call is blocked. Therefore, a route is chosen only
when all routes listed before this one are not in a state to admit
the call. A fixed point approximation method was proposed to
calculate the blocking probabilities in this scenario. In order to
compute the reduced load, the probability of choosing a par-
ticular route needs to be derived, and it was done by solving a
network reliability problem via a linear program. This approach
successfully produced probabilities of using a particular route
while taking into account the overlapping among routes on the
ordered list. Since we also consider a multihop random topology
network, similar route overlapping exists in our study. However,
the state-dependent routing scheme considered in this paper is
different from the sequential routing considered in [20] and thus
different approximation is needed to derive the probability of
choosing a route.

Chung, Kashper, and Ross in [13] considered LLR in a fully
connected network, and Girard and Bell in [22] considered LLR
in a nonfully connected network but with direct and two-hop
routes between any node pair. The LLR considered in our study
can be viewed as a generalization of the LLR used in these
two papers in general multihop network where direct route and
two-hop routes do not necessary exist. Due to this generaliza-
tion, overlapping between different routes used by the same
source-destination node pair is introduced and complicates the
computation. Similar to [22] we model LLR using a stationary
routing scheme where each route is associated with a probability
of being chosen. However, the derivation of this probability is
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different in our paper. In one of our algorithms this probability
is computed in a way that can be viewed as a generalization of
that used in [13].

The rest of this paper is organized as follows. In Section I we
describe the network model, the routing scheme considered, and
a summary of assumptions and notations. Section III presents
the proposed fixed point approximations, and Section IV com-
pares the approximation with simulation and discusses the ac-
curacy of our models. Section V concludes the paper.

II. NETWORK MODEL

Consider a network that has a set of NV nodes and a set of .J
links. The topology of the network is arbitrary, with no special
features (we will also call this a random topology, to be distin-
guished from a mesh topology). In particular, there may or may
not be a direct link between a potential source-destination node
pair. Eachlink 7,7 = 1,2, ..., .J, has a capacity of C; in units of
bandwidth (interchangeably used with circuits and trunks). The
network supports S classes of traffic or calls. Calls of different
classes have different characteristics and resource requirement,
e.g., arrival rate, call duration, and bandwidth requirement. In
this study the admission of a call is solely determined by the
availability of bandwidth. A call of class s, s = 1,2,...,S5,is
accepted into the network if the bandwidth requirement of the
call can be accommodated, and is blocked otherwise. If the net-
work does not employ any form of admission control, then a
call can be accommodated if there is a feasible route for the call
where all links on that route have enough free bandwidth to ac-
cept the call. If call admission control is employed, then there
may be additional requirements on these links to be met before
the call can be admitted. Once a call is accepted onto a certain
route, it holds the amount of required bandwidth on all the links
along that route for the duration of the call, and releases it upon
departure.

The performance metric of interest is the probability that a
call of a certain class is blocked. The evaluation of this measure
depends on, among many factors, the routing mechanism, the
admission control method used, as well as the structure of the
network. In the following we will discuss the state-dependent
routing mechanism studied in this paper and summarize nota-
tions and key assumptions underlying our models.

A. State-Dependent Routing

State-dependent routing is a commonly studied routing
policy, under which a call is assigned to a certain route based
on the state of the network, e.g., link congestion level. One
important scheme of this kind is the least loaded routing
(LLR). Most of previous studies on LLR have concentrated on
networks with routes of up to two hops, e.g., [13], [22]. In this
scenario, a call is first tried on the direct route, if there is one.
If it cannot be setup along the direct route, then the two-hop
alternative route with the largest number of point-to-point free
circuits is chosen. A version of LLR was implemented in the
AT&T long-distance domestic network [13].

A natural extension of LLR to networks where routes tend to
have a larger number of hops than one or two hops is to choose

the route that has the maximum units of end-to-end free band-
width (also called the residual bandwidth) among all routes.
More specifically, in this study we will assume that each source-
destination node pair is allowed a list of feasible routes, ordered
in increasing length, i.e., number of hops. A call is then routed
on the one that has the largest amount of end-to-end residual
bandwidth. If multiple routes have the same amount of residual
bandwidth the shortest one will be chosen, with ties broken
randomly. This essentially results in a “widest first” routing
scheme. It is also a “max-min” type of routing since the chosen
route has the maximum amount of free bandwidth on its most
congested link compared to other alternative routes. One of the
approximation algorithms presented in this paper is established
by exploiting this max-min property of this routing scheme. In
the version of LLR studied in this paper we will not require
that the direct link (one-hop route) always be selected with pri-
ority over all other routes, but rather that it is selected if it has
the maximum residual bandwidth. This is because in a general
network direct-link routes do not always exist. We do study
a fully connected network in Section IV where we compare
the performance of this generalization and the traditional “di-
rect-first” approach. It is worth mentioning that the sequential
routing studied in [20] where routes are ordered in increasing
length is a “shortest first” routing scheme.

This maximum residual bandwidth routing scheme tries to
avoid bottlenecks on a route. However, since a route is chosen
only based on the amount of free bandwidth, we may be forced
to take a longer or even the longest route in the feasible route
set, using more network resources. This may in turn force calls
arriving later to also be routed on their longer/longest routes,
which leads to increased loss/blocking probability in a network
[1]. Therefore, using some form of admission control along with
this routing scheme is a valid choice when traffic is heavy. The
type of call admission control considered in our model is known
as trunk reservation, where a call is rejected if the amount of free
bandwidth along a route is below a certain level. More specifi-
cally, a call of class s is accepted on a route only if every link on
this route has at least b, + w; units of free bandwidth, where b,
is the bandwidth requirement of class s calls and wy is the trunk
reservation parameter of class s. Thus, w, should be viewed as
the amount of bandwidth reserved for calls other than class s.
Equivalently, denoting by n; the number of ongoing class : calls
on a link, a class s call is accepted to a route only if for all links
7 on the route, we have

bs S Cj — mel — Ws-

In networks with routes of at most two hops, trunk reserva-
tion is typically applied only to the two-hop routes. This means
that unless a two-hop route has the extra bandwidth in addition
to what is required by a call, the call cannot be admitted. This
gives the single-hop route clear priority. Since a single-hop route
involves less network resource than a two-hop route, this admis-
sion control subsequently makes the admission of a call onto its
two-hop routes less likely to cause a later call to be blocked out
of its single-hop route. However, it is less straightforward how
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this reservation scheme should be used in a more general net-
work of an arbitrary topology where routes can be much longer
than two hops. One could apply an increasing reservation pa-
rameter wg to routes of increasing length, with wy, = 0 for a
single-hop route. More generally one could consider a routing
scheme that selects a route with least cost, which is a function
of both the route length and the amount of residual bandwidth
along the route, i.e., a mixture of widest first and shortest first
routing schemes. However, this is out of the scope of this paper,
and in our numerical evaluation in Section IV we will only use
trunk reservation in a fully connected network example with one
and two-hop routes.

B. Assumptions

Key assumptions adopted in this paper are as follows, in-
cluding those that underly the general reduced load approxima-
tion technique.

(A1) All links are assumed to be undirected. For traffic be-
tween two nodes, we will not differentiate the source
from the destination. Consequently a feasible route set
is associated with a pair of nodes, regardless of the or-
dering. This assumption is adopted only for the sim-
plicity of notation and our discussion. Our models can
be applied to directional link scenarios in a straightfor-
ward manner.

Calls arrive at the network as a Poisson process, and the
total offered load to an individual link is also a Poisson
process with rate thinned by blocking on other links.
Blocking occurs independently from link to link, de-
termined by their respective arrival rates. That is, even
though the conditions of successive links along a route
are dependent (so is the blocking on these links), we
will nevertheless treat them as being independent. This
assumption becomes more reasonable as traffic gets
heavier.

We will assume that given stationary inputs, certain
time varying quantities of interest have well-defined
averages. These include the number of on-going calls
on a link of each class, the average call holding time,
and the reduced load (call arrival rate) on a link. With
these averages we can further assume that there is a
stationary probability of choosing a particular route
under the state-dependent routing scheme. Thus, the
key is to find these probabilities so that the state-de-
pendent routing can be approximated with a stationary,
nonstate-dependent routing algorithm with the derived
probabilities of route selection. This is discussed in
more detail in the next section when our approxima-
tion is presented.

(A2)

(A3)

(A4)

C. Notations

We summarize below the notations used in the paper.
N The set of nodes in the network. We will use N to
denote both the set and the total number of nodes
without causing ambiguity.
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Tm

pj(n)

m
Qrs

Tm
Uj s

The set of links in the network. Again we will use
J to denote both the set and the total number of
links in the network.

The capacity/total bandwidth of link 7, in units of
bandwidth, circuits, or trunks.

The amount of residual/free bandwidth on link j.
This is a random variable since it is a function of
the state of the network.

Both the set and the total number of node pairs in
the network. Since we ignore the ordering of a pair,
R=N(N-1)/2

The set of routes allowed between node pair . We
will also use M, to denote the total number of
routes between node pair 7.

The mth route of the source-destination node pair
r. Here m = 1,2,..., M,. r,, defines a set of
links.

The total number of traffic/call classes. Each class
s has a bandwidth requirement denoted by b5, and
a mean call holding time denoted by 1. Note that
for different node pairs the classification of calls
does not have to be the same. However, we will re-
strict our discussion to a single unified classifica-
tion since it can always be obtained by increasing
the number of classes.

The arrival rate of class s calls between node pair
T.
The end-to-end blocking probability of a class s
call between node pair 7.

The reduced load or arrival rate of class s calls on
link j.

The probability that link j is in a state of admitting
class s calls, or the admissibility probability of link
7

The stationary occupancy probability of link 7, i.e.,
the probability that exactly n circuits/trunks are
being used on link j. n = 0,1,...,Cj.

The probability that the mth route r,, is chosen for
a class s call request between node pair r.

The reduced load on link j contributed to by class
s traffic routed on r,,.

The most congested link along route 7,,, defined as
the link that has the least amount of free bandwidth
along a route. That is, L(r,,) = argmin;c,. C’j.
This is in general a random variable since it is a
function of C;, and thus a function of the state of
the network.

The most congested of all links that are on route
T, DUt not on route 7.

The capacity of the most congested link along
route 7, i.e., C(rm) = Cr(,.)-

The residual bandwidth on the most congested
link along route r,,, i.e., C’(rm,) = C’L(Tm)
minje,., C'j.

The minimum link capacity along route 7,,, i.e.,
Crin(Tm) = minje,., C;.
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As a general rule, we will use subscripts for links, node pairs,
and call classes, while using superscripts to indicate a particular
route.

III. FIXED POINT MODELS

Before we proceed with the fixed point model, it helps to
take a closer look at what constitutes the end-to-end blocking
probability of a call when a state-dependent routing scheme is
used.

A. Blocking Probability

Consider a random probability based routing policy first.
Suppose we associate an independent probability with each
of the routes in the feasible route set of node pair r, i.e., we
select the mth route 7, for an incoming call of class s with a
fixed probability p]" that does not depend on link state, with
> P = 1.1If the call cannot be admitted by the randomly
selected route then it is considered blocked. Under such a
routing policy, the end-to-end blocking probability is

Brszl_zp::né H Ajs- M

JETm

That is, the probability a call is admitted is the sum of individual
route admissibility probability weighted by the probability the
route is chosen. Note that (1) is obtained because the route se-
lection probability p;: is independent of link admissibility prob-
ability a;,. With this type of routing, the reduced load on a link
is the offered load first weighted by the probability of using a
route that contains that link and then thinned by blocking on
other links on that route.

Consider now the state-dependent routing LLR described in
the previous section. Under this scheme each route is not chosen
independently of link state. The end-to-end blocking probability
is, therefore

B,y =1-— Z Pr [ry, is the least loaded route, and

m

Tm 18 In a state to admit the call]. 2)

Note that the elements within the summation in (2) are mutu-
ally exclusive (assuming a lower numbered or shorter route is
considered to be less loaded among multiple routes that happen
to have the same residual bandwidth). However, the event that
route r,,, is the least loaded of all 7’s routes and the event that r,,,
is in a state of admitting class s calls are generally not indepen-
dent, since they are both functions of the link state. Therefore,
this joint probability cannot in general be separated into two in-
dividual probabilities.

One way to compute this joint probability is to ignore the
dependence and assume that the probability of selecting a route
is independent of link state by using assumption (A4), and
these probabilities are given by ¢):. Then we can use (1) to
approximate (2). This is equivalent to assuming that there exists
an average probability that route 7, is the least loaded of all
routes. In essence, we are approximating the state-dependent
routing by a nonstate-dependent routing, that simply assigns
fixed probabilities to each route. In the former traffic is routed
based on link state, a scheme also known as metering. In the

js
m [//V/
Qs

Fig. 1. Mappings between variables.

latter, traffic is routed randomly among routes with fixed prob-
abilities, a scheme also known as randomization. In general
metering results in better performance than randomization; see,
for example, in the case of a queueing system [26]. We will use
this approximation in our reduced load models.

In order to compute B,.s, in the rest of this section we show
how to find ¢,"2, the route probability, and a s, the link admissi-
bility probability.

B. Mappings

Our fixed point approximation model centers around a set of
mappings between unknowns v;, a;s, pj(n) and ¢

First, we fix the link admissibility probability a;, and route
probability ¢,"; to get v;,, the reduced load on link j. Then we fix
vjs to get the link occupancy probability p;(n) and a;,. Finally
we fix p;(n) to get ¢t By repeated substitution, the equilibrium
fixed point can be solved for all four sets of unknowns. The
mappings are illustrated in Fig. 1.

1) Mapping 1 (ajs, q/y — vjs): Recall that V7" is the
offered reduced load on link j contributed by traffic class s on
route 7, and thinned by blocking on other links. It is given by
the reduced load approximation as

V;;n = As Qg1 [J € 7] H Qis 3)
USR]

where [ is the indicator function. Note that we first take a portion
of the total offered load )\, that is routed on r,,, with probability
q:, and then multiply it with the probability that this portion is
admitted by all links other than link j. The aggregated load of
class s calls on link j is

Vjs = Z Z e (4)

réeR  r, €M,

2) Mapping 2 (vjs — ajs, pj(n)): Givenv;s, we can com-
pute the link occupancy probabilities p;(n) for each link in the
network. This can be done by either using Kaufman’s simple
recursion [27] when there is no admission control, or using ap-
proaches proposed by Bean, Gibbens and Zachary in [9] and
[10]. By the link independence assumption, this mapping is con-
ducted on a per-link basis. Each link is calculated separately and
similarly.

In the absence of admission control, classical product form
holds for describing the equilibrium call blocking probabilities
for a single link [1]. In [27] Kaufman gives a simple one-dimen-
sional recursion for calculating the link occupancy probabilities.
Denoting by ns the number of class s calls in progress on link j
and denoting by b, the bandwidth requirement of class s calls,
we have

Vis
np;(n) = st Lpi(n—bjs), n=1,...,C; (5
sES Hs
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where n = ) b,n,. Note that pj(n) = 0if n < 0 and

Cj
2inzopi(n) = 1.

The probability that a class s call is admitted to link j is then
given by

Cj Cj—bs
ajs=1- % pin)= Y pin). (6
n=C;—b;+1 n=0

From (5) we see the computational cost in this case is both linear
in C and linear in S.

Admission control destroys the product form of the link oc-
cupancy probabilities p;(n), which in turn destroys the efficient
exact computation of those probabilities just described. To solve
for these probabilities, we need to solve the equilibrium distri-
bution of the associated Markov chain, whose state space is a
lattice embedded in the simplex ZS bsngs < C,ng > 0. The di-
mension of this Markov chain is both proportional to S and C,
thus the computational cost can be prohibitive, even for mod-
erate values of C' and S, as pointed out by [20]. An approxi-
mation approach was proposed in [9] and [10] that transforms
the above problem into a one-dimensional one by assuming that
while 7, the number of class s calls in progress varies, the pro-
portion of such calls in progress remains fixed (or varies slowly).
In our model we will adopt the following method used in [20],
based on the approximation suggested by [9] and [10]. Let o,
denote the average number of calls of class s in progress on link
7, then
AjsVjs

Hs

since calls enter at rate a;, 1, and depart at an average aggregate
rate of ovjepts.
Consider the one-dimensional Markov chain, for any given
state n and class s, with the following state transition rates:
From state n to state n + bs: v I(C; —n > ws + bs);
From state n to state n — bs: psn(ojs/ Y, aje)I(n > by).
This mounts to approximating the actual amount of bandwidth
occupied by class s on the link using n(a;5/ >, a;¢). The prob-

ability of admitting a call of class s is given by

C; Cj—bs—w,

> pi(n)= >
n=C;—b;—w,;+1 n=0
Note that p;(n) — a;s — p;(n) forms another fixed point,
which can be solved via iteration to get the equilibrium distri-
bution p;(n) and a;5. Since this is a one-dimensional approxi-
mation, it has a per iteration cost linear in C.

3) Mapping 3: (p;(n) — ¢): In this subsection we de-
rive ¢ from link occupancy distribution p;(n). The idea is that
given the link occupancy probabilities of all links, and given the
composition of all feasible routes in the network, we can find out
the probability that a particular route is the least loaded among
a set of routes.

Denote by A,, (7., ) the event that all links on route r,, have
at least n free trunks (> n), and A,,(7,,) the event that at least
one link on 7, has less than n free trunks (< m). Thus

et = TT 32 n®

JE€Tm k=0

rm)] =1 = Pr[A,(rm)].

Qjs =

0,]'321—

pi(n). (7)

Pr [An(
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Denote by fin(rm) the event that all links on 7,,, have at least
n free trunks and that at least one link on 7, has exactly n free
trunks. Therefore

Pr [An(rm)] = Pr[A(rm)] = Pr[Apsr ()] -

Since r,,, can be viewed as a set of links, the above definitions
readily apply to an arbitrary set of links rather than a route. We
will also use the same notations for similar quantities defined
for a single link j. More specifically, A,,(j) denotes the event
that link j has at least n free trunks, and so on. Thus, we have

Aa(j) = 50" pi(k). Au(i) = 1= Au(G), and A, (j) =
pj(n).

The probability ¢; that a call of class s is routed on r,,, is the
probability that all routes prior to the mth route on the ordered
route list have less end-to-end free bandwidth, and that all routes
following the mth route on the list have at most the same amount
of free bandwidth (as we mentioned earlier the routing is such
that the shortest one is chosen when there is a tie in end-to-end
free bandwidth). Therefore, ¢ is given by

:ﬁfl

k=1

ZPr

Crnin (Tm) [k

k=M,

ﬂ An+1(rk)|fin('rm)

k=m+1

Pr [/in(rm)} . ®)

Note that the range of the summation is from n = 0 to the min-
imum link capacity along route 7, Cpnin (7m ). This is because
forn > Cinin(rm ) the second probability inside the summation
would be zero. Because of the overlapping among routes, as the
number of alternative routes M,. increases there is no simple
way of computing the first probability inside the summation.
One may adopt the technique developed in [28] as was used in
[20] to approximate the probability of the intersection of non-
mutually exclusive events via a linear program. However, the
required number of such operations is on the order of (C' — b;),
where C' is the average link bandwidth. This can be significant
when links have a large amount of bandwidth while the band-
width requirement of each call is relatively small.

A straightforward approximation to (8) is to assume that all
routes are independent, i.e., no two routes between a source-
destination pair share a common link. Under this assumption all
events within the above probability become independent, which
yields

Crmn Tm)k m—1
m
Irs = Z H Pr[4
k_J\[r

H Pr [An+1(rk)] -Pr [An(rm)} .9
k=m+1

For networks that do not allow routes longer than two hops,
there is no overlapping between routes. Thus, (9) is precisely
equivalent to (8). This model easily extends to routing schemes
that require the direct route to be used whenever possible by
simply replacing the first element of the product (k = 1) with
Pr[Ay_(71)], which is the probability that the first direct route is
not in a state to accept the call. We will call this routing scheme
direct first (DF).
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For general multihop networks, we can refine (9) by only con-
sidering the dependence between r,, and all other routes but ig-
noring the overlapping among routes other than r,,. This sim-
plification leads to the following:

Corin (Tm) k=m—1

qn = Pr [/in(rk — rm)]
n=0 k=1
k=M, ) :
T PrlAwsal = )] - Pr[Au(ra)] - (10)
k=m+1

where r, — 1, denotes all links that belong to 7, but not r,,.
This is our first approximation algorithm which we call FPA1.
Intuitively, this approximation would be reasonably accurate in
a network when routes between every source-destination node
pair share one or more common links, but are disjoint otherwise.
This is because for any route r,,, (10) takes into account the
overlapping between 7, and other routes but ignores common
links among other routes.

We now examine the quantity in (8) by considering the most
congested link along a route. Since the most congested link
along a route is the link that has the least free bandwidth among
all links on that route, the event A,,(r,,) that at least one link
on 7, has less than n free trunks is equivalent to the event
that the most congested link on 7, denoted by L(r,,), has less
than n free trunks, denoted by A,, (L(7,,)). Similarly, the event
A (rm) is equivalent to the event that the most congested link
on r,,, has exactly n free trunks, i.e., fin(L(rm)). Replacing
events in (8) with these equivalent events, we have

Y

where L(r, — ) denotes the most congested link of all links
that are on 7, but not r,,,. The overlapping between these single
links are much easier to deal with by simply comparing L(ry),
1< k< M,k # mand L(ry,). This is our second approxi-
mation which we call FPA2.

In the special case of no overlapping between these links, i.e.,
L(ry) # L(rm), all k # m, k < M,., (11) is simply

Crnin (Tm) k=m-—1 B
0 = IT PrlA. (L(r)]
n=0 k=1

k=DM,

I PrlAus (E(r)] -Pr [An(L(rm))]. (12)

k=m-+1

It remains to determine the most congested link L(ry) for
each route 7, computationally. Under steady state, the conges-
tion of a link is characterized by the amount of average free
bandwidth on the link, given by the following proposition.

Proposition 1: The average number of busy circuits/trunks
on link j, denoted by E[X], is given by

Proof: Using Kaufman’s recursion

V;gbg
nep(n) = 3 e p(n - b)
s=1 s
and summing over 0 through C; on both sides, we have
Cj C]‘ S b
VjsOs
BIXjl=) n-p(n) =7 ~=p(n—b)

n=1 n=0s=1 fs

s i

I/jsbS l/jsbS
= p(n —bs) = “ag.

|

Therefore, the average free bandwidth on the link is given by

C;— Zle (vjsbs/ 1ts)-ajs, and the most congested link is given
by

s
'sbs
L(rm,) = argmin¢,. (Cj - Z YisDs aj5> . (13)
L

s=1 s

Note that g, derived as above will have the same value for
different classes of traffic, since the probability that a route is
the least loaded as perceived by an incoming call has nothing
to do with the type of the call if no admission control is used.
Howeyver, this is not the case when trunk reservation admission
control is used. Since different classes of calls have different
reservation requirement, this probability may vary, as shown in
the next subsection.

To summarize, algorithm FPA2 computes the probability that
a route 7, is chosen by first determining the most congested
link along each route and then computing the probability that
the most congested link on r,,, has the most residual bandwidth
among all most congested links. With a similar spirit to that of
assumption (A4), such an approximation implies the existence
of amost congested link (with high probability) along each route
in steady state. During actual network operation, different links
along a route may take turns being the most congested link due
to traffic dynamics, especially under light traffic when very few
links are truly congested. In this case, there may be a stationary
probability that a given link is the most congested among all
links on a route, but we may not be able to define a single link
as the most congested link in steady state. As the network gets
more and more congested, a few links (or a single link) may
become the most congested with higher and higher probability
(or more and more often), thus making the assumption more
reasonable. Therefore, intuitively, this approximation may only
be accurate in a network where each route in the network with
high probability has a single bottleneck link that determines the
end-to-end free bandwidth, either due to the discrepancy in link
bandwidth (i.e., some links have much lower link capacity than
others) and/or due to heavy traffic. This is because under heavy
traffic and using state-dependent routing scheme, the proba-
bility of selecting a route and its admissibility probability will
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be determined with high probability solely by the relative con-
gestion on these bottleneck links. On the other hand, under light
traffic there may not always be a single bottleneck link with high
probability, and thus this might not be a good approximation.

C. Trunk Reservation Call Admission Control

If trunk reservation is used, the first route (also the shortest
one) on the ordered route list of every node pair is given priority,
and all routes other than the first route will require an extra w
trunks to be reserved on their links when admitting a call. There-
fore, applying trunk reservation, the original computation of g,’;
in (8) is modified as follows, for m # 1:

mzn(Tm) k=m-—1
g = Z Prid.(r) [ Antw.(rs)
k=2
k—]\/[,« ~ ~
m Aptw,+1(78) [ Antw, (Tm) 'Pr[An+ws(7"m)]~ 14
k=m+1

For m = 1, (8) becomes
Cmin(r1)

4o = Z Pr ﬂ nw,+1(7%) [ An (1)

Pr [An(rl)} . (5)

(12) can be modified in a similar way and is thus not repeated.

D. Summary of the Model

To summarize, the fixed point approximation consists of the
following steps. First, use (3) and (4) to compute the link re-
duced load for every link. Next, use either (5) or (7) to com-
pute the link occupancy distribution for every link, depending
on whether trunk reservation is used or not. Then, use (10) or
(11) (or their trunk reservation versions) to compute the prob-
ability of choosing a route. These three steps are then iterated
using repeated substitution to obtain the fixed point, i.e., solu-
tion for all the unknowns v, a;s, pj(n), and ¢].. Finally, the
end-to-end blocking is calculated using (1).

E. Discussion, Computational Cost, and Approximation Error

While it is easy to show the existence of a fixed point under
the proposed fixed point approximation by applying Brouwer’s
fixed point theorem, the uniqueness of this fixed point depends
on various factors. It has been pointed out in [1] that in general
when alternative routes are used without admission control in
a fully connected network, there can be multiple fixed points.
In particular, bi-stability has been observed. This is due to the
fact that calls admitted to the two-hop routes use more network
resources and may force more calls to be routed through their
two-hop routes instead of their direct routes. Thus, the network
may enter a bi-stable region where there are two equilibrium
points, one stable and one unstable. Less can be said about more
general topology networks. Unfortunately, it is not clear from
the existing literature how one might ensure the convergence to
a particular equilibrium point. In [20] it was argued that if the
ratio between hop numbers of any two alternative routes is suffi-
ciently large (e.g., greater than 0.5), then the network resources
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used by routing a call on different alternative routes do not sig-
nificantly vary, and thus the blocking probability will increase
more smoothly with the increase in traffic without going into
a bi-stable region. It was also suggested that for many cases
of practical interest, these approximations are applicable and
are expected to find the equilibrium point (with certain error).
In all our numerical experiments presented in the next section
our fixed point algorithms converged, although we did observe
oscillation in intermediate values before it converged in some
cases. More is discussed on this in the next section.

Since the computational cost of our approximation largely re-
lies on the number of iterations required to compute the set of
unknowns with desired accuracy, we are only able to discuss the
computational cost of each iteration, and will leave the obser-
vation from experiments to the next section. The first mapping
involves O(.J - S) operations of (4), each of which has O(R- M)
operations of (3), where R is the number of node pairs and M
is the average number of routes each node pair has. The cost of
(3) is also linear in the average length in hops of a route, de-
noted by H. The second mapping involves O(.J) operations of
either the Kaufman recursion or the one-dimensional approxi-
mation by Bean, Gibbens and Zachary. They both have a cost of
O(C - S). The third mapping involves O(R - M) operations in
the case of no admission control and O(R - M - S) operations
in the case of admission control.

Below, we compare the cost of computing a single ¢; value
using FPA1 and FPA2. The evaluation of A,,(r,) for a route r,,
involves O(H) operations (multiplication). Under FPA1, each
route on the route list is evaluated for every value n, which gives
O(M - C) such operations, C being the average link capacity.
This results in a total O(M - C' - H) operations. FPA2 on the
other hand evaluates A,,(j) for one link per route. Thus, (12)
involves O(M - C') operations. Therefore, FPA2 results in faster
per iteration computation than FPA1 as H increases (to be ex-
pected when the network becomes large).

The accuracy of our approximation models relies firstly on
the validity of the sequence of assumptions made in the previous
section, i.e., the independence and Poisson assumptions as well
as the existence of well-defined averages for all the values we
computed. In general, the independence and Poisson assump-
tions become more accurate when the network is better con-
nected, routes are diverse and as the traffic becomes heavier.
In addition to that, the accuracy heavily relies on the structure
of the network. This applies to both FPA1 and FPA2, but the
sources of error are not completely the same. FPA1 largely ig-
nores the dependence between routes. Therefore, if we consider
the case where a network has mostly disjoint routes/paths and
a second case where a network has many routes sharing links,
the algorithm will in general produce better approximation in
the first case. If routes are not all disjoint but the majority of
routes between a given node pair share the same set of links and
are otherwise disjoint, then the approximation error may also
be reduced. FPA2 approximates the route selection probability
by only comparing the most congested links on different routes.
Furthermore, these most congested links are defined by their
expected occupancies, i.e., these are most congested links in an
average sense. In a network with equal link bandwidth and well
balanced traffic load and routing choices, the most congested
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link along a route may not be a fixed link with high probability
over time, especially when traffic is light. Therefore, this ap-
proximation might only be reasonably accurate when there is a
clear single bottleneck link along each path that rarely changes
from time to time, i.e., when there is a link that is the most con-
gested with high probability or for a large portion of the time.
Unfortunately, the actual condition of a network is usually a
mixture of the above scenarios, therefore rendering the assess-
ment of degree of accuracy less straightforward. These errors
will be examined through a sequence of numerical examples
in the next section. What we hope to gain is fast computation
methods by tolerating certain amount of error.

It is worth mentioning that the method underlying FPA2 can
be easily extended to other routing schemes. For example, we
could use a mixed widest first and shortest first routing scheme
by considering both the maximum end-to-end residual band-
width and the length of a route via the following cost function
of route 7,,:

c1 Z by — CQC'(Tm)

JETm

where the first term is the total number of trunks that would be
occupied if the route is chosen, and the second is the number of
free trunks on its bottleneck link (end-to-end free bandwidth),
each weighted by constants c; and cg, respectively. The route
which minimizes this cost is chosen. Clearly, a longer route will
increase the cost. If ¢ is zero, this becomes the widest first LLR
we used earlier.

Under this mixed routing scheme, selecting the mth route for
routing the call indicates that all the routes before the mth route
have a higher cost than the mth route, and all the routes after the
mth route have at least the same cost. Therefore, the probability
of attempting the call on the mth route can be expressed as

Corin(rm) m—1 o o
7 = [Tt 2 b= S bt
Co ¢ Co
n=0 k=1 JETL JETm
= ¢ ¢
T e b= 3 bt L) Pl (K
k=m+1 JETE JETm

where ¢, (n) = Pr[A,(L(rmy))], the probability that the most
congested link on route 7, has less than n free trunks.

IV. EXPERIMENT AND EVALUATION

In this section we give two network examples, comparing
the results from the two approximation algorithms (FPA1 and
FPAZ2) to that of simulation. First we study a fully connected net-
work allowing routes up to two hops, with no route overlapping.
We then study a general topology network, allowing routes up
to a certain number hops. Route overlapping is obvious in this
case, and the level of overlapping varies from one node pair to
another. Some node pairs have routes sharing a single bottleneck
link while others do not.

The stopping criteria for the iterative algorithms is for the dif-
ference between successive iterates to be less than 0.001. Sim-
ulations are run to achieve 95% confidence intervals with width
of 0.001.

Fig. 2. Example one: fully connected network.

A. Fully Connected Network

The first example is a five-node fully connected network de-
picted in Fig. 2.

We assume each link has a capacity of 100 units of bandwidth
or trunks. On the other hand, the offered traffic is asymmetric.
For each node pair, the direct route and all two-hop routes are
allowed. The direct route is listed first in the routing list, and
the two-hop routes are listed in increasing order of the numer-
ical index of the intermediate node on the two-hop routes (e.g.,
route 1-2-4 is listed ahead of 1-3-4). There are three classes of
calls/connections indexed by 1, 2, and 3, with bandwidth re-
quirement of 1, 2, and 3 trunks, respectively. When call admis-
sion control is used, the trunk reservation parameter for each
class is 2, 4, and 6, respectively. That is, the first class will re-
quire that a two-hop route to maintain an extra 2 trunks of free
bandwidth, and so on. In the Appendix we give a list of nom-
inal traffic rates, and we examine traffic load of 1.2, 1.4, 1.8 and
2.0 times of the nominal traffic, denoted by 1.2x, 1.4x, 1.8x,
and 2.0x, respectively. The nominal traffic approximately cor-
responds to, for every node, a ratio of 0.5 between the total band-
width requirement originating from that node (3  A\rsbs/ s,
where this node is part of the pair r) and the total link capacity
attached to that node (3 j C; where j is a link of this node).

The results of two approximation algorithms (FPA1 and
FPA2) and the discrete event simulation (DES) for selected
node pairs are shown in Table I-IV. “DES(1)” denotes the
simulation result for class 1 calls, and “FPA1(1)” denotes the
result using FPA1 for class 1 calls, and so on. All blocking
probability values are in percentages.

First note that in this example the end-to-end blocking prob-
abilities of the same class traffic are of very similar values re-
gardless of the actual source and destination node pairs. There
are two reasons to this. One is because the network is symmetric
in terms of topology and link capacity. The other is the fact that
the traffic load is such that the total bandwidth requirement orig-
inating from any node is roughly the same (as “nominal” load
was explained earlier). Therefore, the same class calls experi-
ence similar blocking along their direct link routes and two-hop
routes irrespective of its source and destination.

We see that when traffic is very light and the end-to-end
blocking probability is (far) below 1%, neither algorithm pro-
duces accurate estimates, as shown in Table I, with FPA2 gen-
erating overestimates of relative errors around +300%.

Overall FPA1 provides quite accurate estimates except for the
1.2x traffic case. The accuracy improves as traffic load increases
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TABLE 1
EXAMPLE 1 WITH 1.2 TIMES THE NOMINAL TRAFFIC
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TABLE IV
EXAMPLE 1 WITH 2.0 TIMES THE NOMINAL TRAFFIC

Node Pair (% blocking) Node Pair (% blocking)
(0,1) | (0,2) | (0,3) | (1,2) | (1,3) | (1,4) | (2,4) (0,1) | (0,2) | (0,3) | (1,2) | (1,3) | (1,4) | (2,4)
DES(1) 0.02 0.01 0.02 0.02 0.02 0.01 0.02 DES(1) 3.83 3.7 4.07 4.26 4.33 3.52 3.72
FPA1(1) 0.02 0.01 0.02 0.01 0.02 0.01 0.02 FPA1(1) 4.47 4.74 4.72 4.66 4.63 4.35 4.59
FPA2(1) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 FPA2(1) 8.46 8.43 8.02 7.95 8.02 7.70 7.80
DES(2) 0.24 0.26 0.23 0.25 0.19 0.20 0.24 DES(2) 23.82 | 25.13 | 24.99 | 25.69 | 24.83 | 22.72 | 24.17
FPA1(2) 0.32 0.31 0.29 0.26 0.31 0.29 0.31 FPA1(2) | 24.47 | 25.73 | 25.57 | 25.37 | 25.24 | 24.05 | 25.01
FPA2(2) 0.61 0.45 0.41 0.61 0.73 0.78 0.76 FPA2(2) | 25.66 | 26.84 | 26.24 | 26.06 | 26.15 | 25.61 | 25.84
DES(3) 0.84 0.88 0.80 0.83 0.77 0.77 0.82 DES(3) 48.18 | 49.70 | 49.45 | 50.40 | 49.74 | 46.72 | 48.59
FPA1(3) 0.98 0.92 0.89 0.90 0.86 0.88 0.97 FPA1(3) | 48.23 | 50.24 | 49.95 | 49.73 | 49.47 | 47.68 | 49.04
FPA2(3) 1.36 1.41 1.37 1.39 1.39 1.37 1.42 FPA2(3) | 49.55 | 50.04 | 49.41 | 49.12 | 49.18 | 48.54 | 48.89
TABLE 1I TABLE V
EXAMPLE 1 WITH 1.4 TIMES THE NOMINAL TRAFFIC EXAMPLE 1 WITH 2.0 TIMES THE NOMINAL TRAFFIC
WITH TRUNK RESERVATION
Node Pair (% blocking)
(0,1) | (0,2) | (0,3) | (1,2) | (1,3) | (1,4) | (2.4) Node Pair (% blocking)
DES(1) | 0.42 | 0.42 | 0.43 | 045 | 0.44 | 0.32 | 0.41 03) | (1,2) | (2:4)
FPA1(1) 0.47 0.49 0.47 0.46 0.44 0.44 0.47 Class 1 2 3
FPA2(1) 1.85 1.68 1.54 1.86 1.83 1.78 1.85 DES-TR 1.94 | 11.38 31.93
DES(2) 4.10 4.46 4.21 4.40 4.09 3.78 4.12 FPA1-TR 1.84 11.78 32.12
FPA1(2) 4.32 4.58 4.41 4.33 4.18 4.15 4.38 FPA2-TR | 4.66 23.47 34.06
FPA2(2) | 16.44 | 17.03 | 16.44 | 16.69 | 16.56 | 16.55 | 16.42
DES(2) 11.74 | 12.64 | 12.08 | 12.22 | 11.71 | 12.22 | 11.96
FPA1(3) | 12.93 | 13.63 | 13.19 | 12.98 | 12.58 | 13.18 | 13.09 TABLE VI
FPA2(3) | 24.13 | 24.91 | 24.15 | 24.43 | 24.24 | 24.23 | 24.18  EXAMPLE 1 WITH 2.0 TIMES THE NOMINAL TRAFFIC WITH DIRECT FIRST LLR
Node Pair (% blocking)
TABLE III 0,3) | (1,2) (2,4)
EXAMPLE 1 WITH 1.8 TIMES THE NOMINAL TRAFFIC Class 1 2 3
DES-DF 4.05 19.43 36.74
Node Pair (% blocking) FPAI-DF | 3.49 | 20.78 | 37.44
O | 02) | (03) | (1.2) | (13) | (1.4) | (24) FPA>DF | 822 | 2152 | 41.59
DES(1) 2.44 2.49 2.68 2.78 2.76 2.31 2.42
FPA1(1) 2.94 3.13 3.08 3.04 2.99 2.84 3.01
FPA2(1) | 5.22 | 560 | 591 | 547 | 5.61 | 5.61 | 5.79 Since all links have equal capacity, when traffic is light there is
DES(2) | 17.38 | 18.67 | 18.31 | 18.95 | 18.20 | 16.57 | 17.79 po obvious single bottleneck along a two-hop route. In partic-
FPA1(2) | 18.24 | 19.23 | 18.98 | 18.78 | 18.55 | 17.81 | 18.59 .
FPA2(2) | 19.18 | 19.57 | 20.00 | 19.26 | 19.49 | 19.43 | 19.75 ular, each of the two links on a two-hop route may be the more
DES(3) | 38.78 | 40.19 | 39.90 | 40.65 | 39.74 | 37.53 | 39.21 congested one equally likely, and thus the most congested link
FPA1(3) | 39.38 | 41.16 | 40.69 | 40.41 | 39.99 | 38.71 | 39.98 may alternate between the two. As the traffic becomes heavier,
FPA2(3) | 41.96 | 42.80 | 43.20 | 42.29 | 42.56 | 42.40 | 42.83

for the same class, and as the blocking increases with band-
width requirement under the same traffic load. For example, in
the case of class 3, the worst case relative error ranges from
60% in Table I to 3% in Table IV for the 2.0x case, while for
the same level of 1.8x traffic load the worst case relative error
ranges from 15% for class 1, to 8% for class 2, to 5% for class
3 in Table III. The absolute error of FPA1 averages below 1%
in blocking probability, with the worst case being 1.7% (node
pair (0,4), class 3, with 1.4x traffic). This accuracy is to be ex-
pected since in this network there is no route overlapping, there-
fore FPAL1 is a fairly accurate model. The improvement with in-
creasing traffic or with increasing blocking probability is likely
due to the fact that as traffic becomes heavier assumptions (A2)
and (A3) become more accurate.

On the other hand, FPA2 provides good estimates only under
very heavy traffic, and only when the experienced end-to-end
blocking is high enough (more than 10%). The worst case rela-
tive error for classes 2 and 3 in the 2.0x case are 12% and 5%, re-
spectively, with an average absolute error below 1%. This is also
to be expected as discussed in the previous section considering
the symmetric nature of this network in terms of link capacity.

congestion becomes more prominent till eventually the conges-
tion on some links is significant enough to make them the more
congested link on certain routes with high probability. Note that
although the link capacities are equal, the external traffic load is
asymmetric. In addition to this, the accuracy of FPA2 improves
with increasing traffic and increasing blocking for the same rea-
sons given above for FPA 1. From this result, FPA2 should not be
recommended to give estimates for light traffic scenarios where
some end-to-end blocking probabilities are well below 10%.

Note that in general both FPA1 and FPA2 are conservative al-
gorithms that produce overestimates, which is desirable (given
reasonable accuracy) from performance evaluation and system
design point of view. The reason behind this overestimate is the
fact that we used a nonstate-dependent routing scheme to ap-
proximate a state-dependent routing scheme as discussed in the
previous section, although the probabilities of selecting a route
is computed based on the stationary link state distribution. As
mentioned before, the former is a randomization scheme, which
in general results in worse performance than the latter (me-
tering). Our algorithms essentially estimate the blocking prob-
abilities by approximating the original state-dependent routing
using a randomized routing, resulting in higher blocking prob-
ability estimates.
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Table V shows results of using trunk reservation (TR-LLR)
under heavy traffic 2.0x (we only show one entry per class
of traffic due to the fact that again same class traffic experi-
ences very similar end-to-end blocking probabilities). We see
from Table V that trunk reservation very effectively reduces
end-to-end blocking for every class of traffic, compared to
results from Table IV. Table VI shows results for the direct
first (DF-LLR) type of state-dependent routing. That is, the
direct link between any two nodes is always chosen to route an
incoming call if it is in a state to admit a call. Otherwise the
least loaded two-hop route is chosen. We only show the 2.0x
case since the general observation of the performance of FPA1
and FPA2 when the load increases remains the same as in the
case of pure LLR.

We have the same observation as before, i.e., FPA2 is only
reasonable when the blocking is high and provides gross over-
estimates for results that are well below 10%. FPA1 on the other
hand provides quite accurate estimates with absolute error av-
eraging below 1%. An interesting observation is that both trunk
reservation and direct first result in lower end-to-end blocking,
but trunk reservation is far more effective than using direct link
first. Note that by using trunk reservation, if a call is blocked out
of its direct route (indication of congestion), then it has a good
chance of being blocked out of its two-hop routes as well due to
reservation requirement. Thus, some calls are either routed on
their direct route, or not admitted at all. As a result, later calls
have a higher chance of being admitted onto their direct routes.
On the other hand using DF-LLR calls will be routed on their
two-hop routes if the direct one is not available but a two-hop
route is (this is easier to achieve under DF than under TR due to
reservation requirement). As a result under DF-LLR more calls
will be routed on their two-hop routes than under TR-LLR, oc-
cupying more network resources. Consequently trunk reserva-
tion produces lower blocking probability, for all classes in this
case.

B. Example Two: Random Topology Network

Our next example is borrowed from [20] with minor changes.
The topology is derived from an existing commercial network
and is depicted in Fig. 3.

There are 16 nodes and 31 links, with link capacities ranging
from 60 to 180 trunks. The detailed link capacities as well as the
nominal traffic rates can be found in [20], and are not provided in
this paper due to space limit. The traffic in the network consists
of four classes, requiring bandwidth of one, two, three, and four
trunks, respectively. No admission control is employed in this
experiment. In [20] sequential routing was used. Here we use
LLR, allowing all routes up to six hops, with the total number
of routes between each node pair not exceeding seven. Routes
between each node pair are ordered in increasing number of
hops, with ties broken randomly.

We list results for selected node pairs and classes in
Tables VII-XI, corresponding to the nominal, 1.2, 1.4, 1.6,
and 1.8 times the nominal traffic (denoted by 1.0x, 1.2x,
1.4x, and 1.8x), respectively. All blocking probabilities are in
percentages.

Fig. 3.

Example two: a random topology network.

FPA1 and FPA2 again provide overestimates and both algo-
rithms improve as the network becomes more congested. The
reason for this is the same as explained in the previous ex-
ample. That is, heavy traffic makes the underlying assumptions
more accurate; and both of our algorithms model a state-depen-
dent routing scheme using a randomized routing approximation.
Thus, our results on average are conservative estimates of the
actual blocking probabilities. In addition, in the case of FPA2,
heavier traffic makes the assumption of a steady state most con-
gested link more accurate.

Similar to the first example, FPA2 only gives reasonable es-
timates for node pairs that experience significant blocking and
when the overall traffic load is high, with average absolute error
below 2% in the 1.8x traffic case. However, overall the per-
formance of FPA2 in this example is better than in the pre-
vious one. For example, the estimates for node pairs that have
blocking probabilities between 5% and 10% have an average
relative error around 30%, which is much lower than in the first
example (around 100%). The accuracy significantly improves
as blocking becomes more severe. The reason FPA2 performs
better in this example is due to the asymmetric topology of the
network as well as the asymmetry in link capacities, which more
easily lead to a dominant bottleneck link along a route, whereas
in the previous example this does not happen until the traffic is
very heavy.

FPA1 provides quite accurate estimates overall, with an av-
erage error slightly higher than in the first example. For ex-
ample, the absolute error in the 1.8x case averages around 0.7%
in blocking probability whereas in the first example the average
absolute error in the 1.8x case is slightly below 0.6% in blocking
probability. It has to be mentioned that the multiple traffic load
cases specified for the two examples are not exactly equivalent
considering the network topology, link capacity as well as the
different traffic classes. At first thought, FPA1 was not expected
to perform very well since there is obvious route overlapping
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TABLE VII
EXAMPLE 2 WITH NOMINAL TRAFFIC

Node Pair (% blocking)
(0,4) | (0,13) | (1,6) | (9,18) | (0,6) | (6,11) | (1,6)
Class 4 1 1 4 2 2 3
DES 0.00 0.75 0.79 3.62 1.55 1.09 2.23
FPA1l 0.00 0.87 0.82 3.94 2.18 1.71 2.48
FPA2 0.43 2.34 1.88 5.47 3.03 4.19 4.14
TABLE VIII
EXAMPLE 2 WITH 1.2 TIMES THE NOMINAL TRAFFIC
Node Pair (% blocking)
(0,4) | (0,13) | (1,6) | (9,13) | (0,6) | (6,11) | (1,6)
Class 4 1 1 4 2 2 3
DES 0.00 3.64 3.65 15.23 7.16 7.07 10.39
FPA1 0.00 3.85 4.41 15.96 8.12 7.72 11.07
FPA2 0.45 5.61 5.85 16.36 9.14 8.98 13.65
TABLE IX
EXAMPLE 2 WITH 1.4 TIMES THE NOMINAL TRAFFIC
Node Pair (% blocking)
(0,4) | (0,13) | (1,6) | (9,13) | (0,6) | (6,11) | (1,6)
Class 4 1 1 4 2 2 3
DES 0.00 7.49 7.61 28.42 14.84 14.46 21.62
FPA1 0.00 7.85 8.04 28.94 15.26 14.88 22.35
FPA2 0.54 9.39 9.81 29.74 17.58 16.17 | 24.67
TABLE X
EXAMPLE 2 WITH 1.6 TIMES THE NOMINAL TRAFFIC
Node Pair (% blocking)
(0,4) | (0,13) | (1,6) | (9,13) | (0,6) | (6,11) | (0,6)
Class 4 1 1 4 2 2 3
DES 0.00 11.85 11.80 39.90 22.49 21.40 31.38
FPA1 0.00 11.46 12.38 40.52 23.08 21.79 31.98
FPA2 0.46 13.54 14.44 42.37 25.60 23.56 32.47
TABLE XI
EXAMPLE 2 WITH 1.8 TIMES THE NOMINAL TRAFFIC
Node Pair (% blocking)
(0,4) | (0,13) | (1,6) | (9,13) | (0,6) | (6,11) | (1,6)
Class 4 1 1 4 2 2 3
DES 0.25 14.98 15.25 | 49.17 | 28.68 28.71 39.93
FPA1 0.31 15.39 16.48 | 49.16 29.74 | 29.09 | 40.17
FPA2 1.05 15.78 16.42 50.13 30.11 30.13 | 40.36

in this example. However a closer inspection of this random
topology network reveals some interesting features. Note that
although this network is not at all well connected as a whole, it
consists of three distinct groups of nodes. The first group con-
sists of nodes 0-5 and 8-9. Note that this group of nodes are
very well connected among themselves. For example, between
node 0 and node 1 there is one direct route and six two-hop
routes that do not overlap. The second group consists of nodes
12 and 15, which are attached to the first group via a single link.
Thus, all traffic between either of the two nodes and the rest of
the network will share a single link. Similarly the third group,
which consists of nodes 67 and 13—14, is also attached to the
first group via a single link. As a result, most of the node pairs
have routes that either do not overlap significantly and/or share
common links that are likely to be the bottleneck links. These
properties have made the assumptions underlying approxima-
tion FPA1 more accurate.
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Our results are in general similar to that in [20] (for the entries
that were reported in [20]), with no significant performance im-
provement or degradation (e.g., 14.98% for pair (0,13), class 1,
with 1.8x traffic vs. 14.92% in [20], and 39.90% for pair (9,13),
class 4, with 1.6x traffic vs. 39.58% in [20]). Indeed our results
are slightly above those shown in [20] for the entries that were
reported in [20] (total of four pairs). Comparing the shortest first
sequential routing used in [20] with the widest first least loaded
routing used here, the latter avoids congested links at the pos-
sible expense of occupying longer routes and more network re-
sources. It would be interesting to further consider more general
combinations of shortest first and widest first routing schemes,
such as the cost function introduced at the end of Section III. It
has to be mentioned that the two sets of results are not strictly
comparable since we have likely adopted different sets of routes
(and likely fewer number of routes for each pair) between node
pairs. And even in the case where routes are the same, we may
have used different ordering of these routes than that used in
[20].

C. Discussion

We have discussed sources of approximation error for both
algorithms, and these errors are further examined in the above
two examples. We observe that the features of the second net-
work example, i.e., group of very well connected nodes and
groups of nodes that share a single bottleneck link, etc., are not
at all exclusive to this particular example. They are in fact quite
common to many commercial and public networks. Thus, we
believe that our algorithms could be applied to a large class of
general topology networks.

We did not observe oscillation in the second example. Oscil-
lation was observed while running FPA2 for the 1.2x case of the
first example. The algorithm managed to converge via heavy
dampening techniques where during the iteration newly com-
puted values are heavily weighted by their old values to prevent
drastic changes from happening. As discussed in the previous
section, it is likely that this fully connected network without ad-
mission control has two equilibrium points.

All simulations and the approximations are run on a Dell Pre-
cision 630 workstation. The simulation typically takes on the
order of 10* s to complete, while FPA1 typically takes on the
order of 102 s and FPA2 takes on the order of 10-10? s. The
number of iterations needed for FPA1 does not change signif-
icantly from one experiment to another, while the number of
iterations needed for FPA2 typically increases with the increase
in traffic intensity. It is a subject of further study whether this is
in any way related to the intrinsic structure of these approxima-
tion algorithms.

V. CONCLUSION

In this paper we derived two fixed point approximation al-
gorithms to estimate the connection level blocking probabili-
ties in a general topology network with state-dependent routing
schemes. Central to our approximation is the derivation of the
probability of choosing a particular route for an incoming call.
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While this probability can be expressed in terms of link occu-
pancy probabilities, it is computationally expensive due to over-
lapping links among routes. Our first approximation is obtained
by considering only part of the overlapping, and the second ap-
proximation is obtained by considering only the most congested
link on a route. We discussed the accuracy, computational cost,
and applicability of each of them. An important future research
area would be to explore the capabilities of such models in pro-
viding performance bounds, and to use such models for solving
design problems.

APPENDIX
TABLE XII
ARRIVAL RATES IN EXAMPLE ONE
pair7 [ s [ Mg [ pairr [ s [ Aps [ pairr [ s [ Aes
(0,1) 1| 10.0 (1,2) 1| 18.5 (2,3) 1 0.0
2 7.5 2 | 10.0 2 7.5
3 5.0 3 2.5 3 | 10.0
0,2) 1 2.5 (1,3) 1| 15.0 (2,4) 1 7.5
2 | 19.0 2 3.5 2 7.5
3 4.5 3 8.5 3 | 10.0
0,3) 1 8.0 (1,4) 1 1.5 (3,4) 1] 255
2 8.5 2 | 10.0 2 | 13.0
3 8.0 3 | 10.0 3 0.0
(0,4) 1 3.0
2 0.0
3 | 16.0
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