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Abstract— Achieving the Nash equilibria for single objective
games is known to be a computationally difficult problem.
However there is a special class of equilibria called evolutionary
robust equilibria which can be obtained through a special type
of evolutionary dynamics called the replicator dynamics. This
dynamics has special properties over the simplex, which has
been studied in optimization theory to solve several combina-
torial problems. In this work, we consider the essentially hard
combinatorial optimization problem of computing the equilibria
in games with multiple objectives. We extend the notion of
replicator dynamics to handle such games. We establish proofs
of dynamic stability of this modified replicator dynamics and
present their relation to the Pareto Nash equilibria in multi-
objective games.

I. INTRODUCTION

In conventional game theoretic problems, it is usually as-
sumed that the decision makers usually make their decisions
based on a scalar payoff. But in many practical problems
in economics and engineering, decision makers usually deal
with multiple objectives or payoffs. In these problems, one
needs to consider a vector payoff function. The notion of
vector payoffs was originally introduced by Blackwell [2]
and later by Contini [3]. A more rigorous model for zero-
sum games and games against nature was studied by Zeleny
[12]. In [12], Zeleny solves the multiple objective zero-sum
game using multi-parametric criteria linear programming.
In the preceding work by Contini, a non-zero-sum version
of the Multi-Objective Game (MOG) was introduced. A
general version concerning the n-person MOG in the non-
cooperative setting was introduced in [4]. A further extension
to cooperative games and hybrid games was introduced by
Zhao in [9]. Then notions of Pareto Nash strategies were
reborn in the works by Zelikovsky [5] where the authors
provide algorithms to obtain the Pareto Nash Equilibria.

However, we observe that most of these algorithms are
only existential in nature and do not offer any constructive
means to achieve the equilibria. As far as the complexity
of the non-zero sum games is concerned, the vector payoff
games can be shown to be as hard as their single objective
counterparts. In this work, we develop a continuous time
dynamics to achieve a special set of equilibria called the
evolutionary equilibria. This special type of equilibria was
introduced in evolutionary biology by Maynard Smith [16],
within the context of single objective payoffs. However in
many practical scenarios, single objective games become
handicapped in capturing the tradeoff relations between the
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various payoffs that players perceive in an evolutionary
sense. To the best of our knowledge, there has been no
previous work in this area for vector payoffs. We feel that
the theory of MOG has significant potential to model several
practical scenarios especially in the context of networked
controls and communications. For examples we refer the
reader to [1].

This paper is organized as follows. In section II, we
introduce the notion of equilibria in a MOG. We also provide
a novel proof to establish existence of such an equilibrium.
In section III, we shift focus to two player MOGs, which
would be the topic of interest for the rest of the paper. In
this section, we show the equivalence of the player’s best
strategy against opponents to a parametric multi-objective
linear program. In section IV, we show that this relation is
useful in constructing the tradeoff weights among the various
payoffs. Finally, in section V, we present the continuous time
dynamics, called the biased replicator dynamics, to achieve
the evolutionary stable set of strategies.

II. PARETO NASH EQUILIBRIUM

As in single objective games, the notion of equilibrium
can be defined in terms of unfruitful deviation from the
equilibrium strategies. In the MOG setting, this can be
interpreted as the following:
”Deviations from the equilibrium strategies do not offer any
gains to any of the payoff functions for any of the players.”

We introduce the notion of orders in Rl in Table I to
compare vector payoffs. These orders are commonly used in
the multi-criteria optimization literature.

Notation Definition Name
x ≥ y xi ≥ yi i = 1, 2, .., l Weak component-wise order
x > y xi ≥ yi i = 1, 2, .., l and x 6= y Component-wise order
x� y xi > yi i = 1, 2, .., l Strict component-wise order

TABLE I
TABLE OF ORDERS IN Rl

To rigorously define the Pareto Nash Equilibria, we need
to introduce certain notation and terminology that is prevalent
in the game theoretic literature.

A. MATHEMATICAL NOTATION

We follow the notations used in the book by Weibull
[10]. We consider finite games in normal form. Let I =
{1, 2, · · · , n} be the set of players, where n ≥ 2. For each
player i ∈ I , let Si be her finite set of pure strategies. Let the
pure strategies set of player i ∈ I be Si = {e1

i , e
2
i , · · · , e

mi
i },

where mi ≥ 2. The vector s of pure strategies, s =
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[s1, s2, · · · , sn], where si is the pure strategy of any player i,
is called the pure strategy profile. The pure strategies profiles
live in the Cartesian product space S = ×iSi.

For any strategy profile s ∈ S and player i ∈ I , let πi(s) ∈
Rli be the li dimensional vector payoff function for player i
when all the players play a strategy profile s. The combined
payoff function π : S → ×iRli is the collection π(s) =
(π1(s), π2(s), · · · , πn(s)).

A mixed strategy for player i is a probability distribution
over her set Si of pure strategies. Let xi denote the mixed
strategy for player i. Then xi lives in the (mi − 1) dimen-
sional unit simplex ∆i, where

∆i = {xi ∈ Rmi
+ :

mi∑
h=1

xih = 1}

These are probability distributions over the pure strate-
gies, which are represented by the vertices of ∆i, e1

i =
[1, 0, · · · , 0], e2

i = [0, 1, · · · , 0], · · · , emi
i = [0, 0, · · · , 1].

Thus, the mixed strategies can be alternatively represented

as xi =
mi∑
h=1

xihe
h
i . A mixed strategy profile is a vector

x = [x1, x2, · · · , xn] that lives in Θ = ×i∆i. Let C(xi)
be the support of the vector xi; i.e Ci = {h | xih > 0}.

The mixed strategies payoff functions are given by
ui(x) =

∑
s∈S

x(s)πi(s), where x(s) =
∏
i xisi

. If player

j’s strategy in the strategy profile x is replaced by another
strategy yj we denote the new profile by (yj , x−j). Here x−j
represents the strategy profile of all players other than player
j. Then the payoff function can be expressed as

ui(x) =
mj∑
k=1

ui(e
k
j , x−j)xjk

It should be noted that ui ∈ Rli . i.e., the vector payoff
function is expressed as ui(x) = [u1

i (x)u2
i (x) · · ·ulii (x)].

Each component function uki , k ∈ {1, 2, · · · , li} is a multi-
linear mapping that is linear in each vector component
xj ∈ ∆j . The collection of payoff vectors for all i ∈ I
is called the combined mixed strategy payoff function, and is
denoted by u(x) = [u1(x), u2(x), · · · , un(x)].

B. PARETO REPLIES AND PARETO DOMINATING
REPLIES

We next introduce our Pareto reply and Pareto dominating
reply that are analogous to Nash’s best reply and better
response reply of a single objective game.

Definition The Pareto Reply of player i ∈ I for the strategy
profile x−i of the rest of the players is defined as that strategy
xi ∈ ∆i such that the strategy profile (xi, x−i) is Pareto
optimal with respect to the vector payoff function ui(., x−i).

The Pareto reply correspondence
βPi : ×k 6=i∆k → 2∆i is given by

βPi (x−i) = {xi ∈ ∆i | 6 ∃z ∈ ∆i

such that ui(z, x−i) > ui(xi, x−i}

where > is the component-wise order defined in Ta-
ble I. The combined Pareto reply correspondence of
the strategy profile x is then given by βP (x) =
(βP1 (x−1), βP2 (x−2), · · · , βPn (x−n)).

Definition A strategy profile x∗ = [x∗1, x
∗
2, · · · , x∗n] is called

a Pareto Nash equilibrium for the MOG if x∗ ∈ βP (x∗).
The set of all Pareto Nash equilibria is denoted by ΘPNE .

In other words, a Pareto equilibrium is a fixed point
of the Pareto reply correspondence. The Kakutani fixed
point theorem cannot be invoked to prove the existence of
such an equilibrium here because the Pareto replies do not
necessarily form a convex set. A detailed reference to these
fixed point problems is available in [6]. In the current game
theoretic literature, there are several complicated proofs for
existence of equilibria in various topological spaces. We give
an alternative proof for the existence of the Pareto Nash
equilibria that is solely motivated from Nash’s original work
and Pareto optimality.

Nash, in his seminal work on non-cooperative games
[7], [8], introduced the notion of better responses, which
has motivated the study of several similar dynamics in the
literature [10]. However, it should be mentioned that Nash
used the better response maps to prove the existence of a
non-cooperative equilibrium for single objective games. In
the same spirit, we define the Pareto dominating reply. For
an arbitarily small ε > o, we define

chi (x) = min((u1
i (e

h
i , x−i)− u1

i (x) + ε)+,

(u2
i (e

h
i , x−i)− u2

i (x) + ε)+, · · · ,
(ulii (ehi , x−i)− u

li
i (x) + ε)+)

max((u1
i (e

h
i , x−i)− u1

i (x))+,

(u2
i (e

h
i , x−i)− u2

i (x))+, · · · ,
(ulii (ehi , x−i)− u

li
i (x))+)

The Pareto dominating reply map DP : Θ → Θ is defined
by

x′ih =
xih + chi (x)

1 +
∑
k∈Si

cki (x)
∀h ∈ Si ∀i ∈ I

Lemma 2.1: The map DP : Θ→ Θ has a fixed point xf .

Proof: The map DP is continuous, and the set Θ
is a compact convex set. Then by Brouwer’s fixed point
theorem([6]), there exists a fixed point xf for DP in Θ.

Lemma 2.2: For any strategy profile x, ∀i ∈ I ,
and ∀p ∈ {1, 2, · · · , li}, ∃h(p) ∈ C(xi) such that
upi (e

h(p)
i , x−i) ≤ upi (x).
Proof: Suppose there exists no h ∈ C(xi) such that

upi (e
h
i , x−i) ≤ u

p
i (x). Then for all h ∈ C(xi) we have

upi (e
h
i , x−i) > upi (x)

⇒
∑

h∈C(xi)

xihu
p
i (e

h
i , x−i) >

∑
h∈C(xi)

xihu
p
i (x)

⇒ upi (x) > upi (x)
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And this contradiction completes the proof.
Lemma 2.3: x is the fixed point of DP if and only if it

is a Pareto Nash equilibrium.
Proof: We prove the first implication that if x is a fixed

point then x is a Pareto Nash Equilibrium.
If x is a fixed point then

xih =
xih + chi (x)

1 +
∑
k∈Si

cki (x)
, ∀h ∈ Si, ∀i ∈ I

By Lemma 2.2, ∃h ∈ C(xi) such that upi (e
h
i , x−i) ≤ u

p
i (x).

For such a h, the above equation reduces to

xih =
xih

1 +
∑
k∈Si

cki (x)

Since xih > 0, we have
∑
k∈Si

cki (x) = 0. Since cki (x) ≥
0, ∀k ∈ Si, we have cki (x) = 0, ∀k ∈ Si, ∀i ∈ I .
Then

cki (x) = 0 ∀k ∈ Si
⇒ Either one of the objective functions

upi (e
k
i , x−i) < upi (x) or upi (e

k
i , x−i) ≤ u

p
i (x),∀p.

⇒ ∃ no eki such that ui(e
k
i , x−i) > ui(x)

⇒ ∃ no z ∈ ∆i such that ui(z, x−i) > ui(x)

Thus, x is Pareto Nash equilibrium. Next, we prove the
reverse implication that if x is a Pareto Nash equilibrium,
then x is a fixed point of DP .
Since x is a Pareto Nash Equilibrium, ∀i ∈ I, xi ∈ βPi (x−i),

⇒6 ∃z ∈ ∆i such that ui(z, x−i) > ui(x)
⇒ In particular there exists no h ∈ Si
such that ui(e

h
i , x−i) > ui(x)

⇒ chi = 0 ∀h ∈ Si ∀i ∈ I.

Therefore x is a fixed point of the DP .
Theorem 2.4: ΘPNE 6= ∅

Proof: The proof follows trivially from Lemma 2.1 and
Lemma 2.3.

We trust that this proof method would inspire some
dynamics to achieve the equilibria in the MOG setting. In
the forthcoming sections, we develop a dynamics to reach a
certain class of Pareto Nash equilibria.

III. TWO PLAYER SYMMETRIC
MULTI-OBJECTIVE GAMES

Two player symmetric games have been widely studied in
the game theoretic literature because they have been useful
in modelling many social and economic interactions between
homogeneous agents that perceive identical payoff functions
[13]. In this regard, games such as Prisoner’s dilemma,
coordination game and stag hunt have been extensively
studied. The notable property of these symmetric games is
that they can be used to study an action strategy without
associating it with any of the players. In this sense they
are useful in characterizing the payoff of one action against
another. This property makes two player symmetric games

an attractive tool in large population games, where modelling
the players becomes intractable.

In this paper, we extend these two player symmetric single
objective games to MOGs. In particular, we are interested
in characterizing the symmetric equilibria of these games.
However, the same ideas can be extended to asymmetric
equilibria. This is because there exists a polynomial-time
reduction of the general Nash equilibria problem to the
symmetric Nash equilibria problem [14]. However, it should
be noted that the algorithmic reachability of the asymmet-
ric equilibria in MOGs is non-trivial. These ideas will be
discussed in the forthcoming sections.

Since we consider two player games (|I| = n = 2) in
greater detail, we introduce the notion of Multiple Matrix
Games (MMG), which is a natural extension of the Bi-
Matrix Games in the single objective setting. The same
matrix notation has also been considered by [12]. Associated
with each player is a sequence of matrix payoff functions
(A1, A2, · · · , Al1 ) and (B1, B2, · · · , Bl2 ) (for player I and II
respectively). We assume that player I is the row-player and
player II is the column player. Let us suppose that player
I chooses strategy ξ ∈ ∆1 and player II chooses strategy
η ∈ ∆2. Then, the expected scalar payoff with respect to the
pth and qth objectives of the MOG for player I and II is given
by ξTApη and ξTBqη respectively, where p ∈ {1, 2, · · · , l1}
and q ∈ {1, 2, · · · , l2}.

The analysis in this paper concerns symmetric two player
games. Since the games are symmetric we can denote both
players’ pure strategy set as K = {1, 2, · · · , k}, and the
associated mixed strategy set as ∆ = {x ∈ Rk+ :

∑
i∈K xi =

1}. In these games (B1 = AT1 , B2 = AT2 , · · · , Bl = ATl ).
The polyhedron of mixed strategy profiles is Θ = ∆2.
The vector payoff to strategy x ∈ ∆ when played against
y ∈ ∆ is given by u(x, y) = (u1, u2, · · · , ul)(x, y) =
(x.A1y, x.A2y, · · · , x.Aly). The Pareto best response replies
to any strategy y ∈ ∆ is denoted by βP∗(y) ⊂ ∆. The set of
all symmetric Pareto Nash equilibria is denoted by ∆PNE .

A. SYMMETRIC EQUILIBRIA IN SYMMETRIC GAMES

The set of Pareto Nash equilibria for the vector payoff
symmetric two player game are given by

∆PNE = {x ∈ ∆ | x ∈ βP∗(x)}

= {x ∈ ∆ | x = arg
P

max
w∈∆

u(w, x)}

where
P

max stands for Pareto maximization.
There is an alternate characterization of symmetric Pareto

Nash equilibria which is developed from multi-criteria linear
programming (MCLP). [11] and [17] introduce the termi-
nology and definitions related to MCLP in a MOG. In
order to establish the relation with MCLP, we begin with
characterizing the geometry of the βP∗. Let us denote the
payoff space against strategy x ∈ ∆ as U(x). Let ∆E denote
the set of all efficient strategies. The corresponding set of
non-dominated points in U is denoted by UN .

Since both the decision space ∆ and the objective space
U(x) are finite dimensional we can associate an objective
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matrix U . U will be parameterized by the opposing strategy
x ∈ ∆. Thus, the symmetric Pareto Nash problem can be
reformulated and posed as

max
w∈∆

PUw (1)

Let Rl>0 denote the set of l-dimensional vectors such that
for a ∈ Rl>0, a > 0, where > is the component-wise order
for vectors.

Definition Let z ∈ ∆E . If there is some λ ∈ Rl>0 such that
z is an optimal solution of max

w∈∆
λTUw, then z is called a

supported efficient strategy and Uz is called supported non-
dominated payoff against x ∈ ∆. The set of all supported
efficient strategies and supported non-dominated payoffs are
denoted by ∆sE and ∆sN .

The weights λ ∈ Rl>0 signify the trade-off between the
various objectives of the vector payoff. We next present a
sequence of lemmas that characterize the efficient strategies
and non-dominated points. Supporting arguments to these
lemmas are found in [11].

Lemma 3.1: ∆E 6= ∅
Proof: ∆ is a closed set. The payoff set U = {Uw|w ∈

∆} is also thus a closed set (by continuity of the bounded
linear operator). Hence XiE 6= ∅.

Lemma 3.2: ∆E = ∆sE and UN = UsN .
Proof: ∆ is a convex set.

⇒ {Uw|w ∈ ∆} is a convex set. ⇒ UsN = UsN . (Theorem
3.5 of [11]).

Lemma 3.2 suggests that the Pareto reply can be solved
by weighted sum scalarization. For reference on this tech-
nique, we recommend Chapter 3 of [11]. For the symmetric
Pareto Nash equilibrium, we show that the weights can be
constructed very efficiently using MCLP simplex methods.
For a detailed reference on these topics, we refer the reader
to Chapter 2 of [15] and Chapters 7 and 8 of [11].

Definition The weighted sum linear program, for λ ∈ Rl,
corresponding to the βP∗ in equation (1) is

max
w∈∆

λTUw (2)

Let us denote the set of solutions for the problem posed in
Equation (2) by LPsoln(λ).

Lemma 3.3: ∪λ∈Rl
>0
LPsoln(λ) = βP∗

Proof: The proof follows trivially from Lemma 3.2.
Lemma 3.4: The payoff space U is supported by a finite

set of hyperplanes.
Proof: ∆ is a convex compact set. If u is a bounded

function for every objective, then Ui(x−i) is a convex poly-
tope. A convex polytope has a finite number of faces and
each face is supported by a hyperplane (Chapter 2 of [15]).

Theorem 3.5: There exists a finite set Λ = {λ ∈ Rl>0}
such that ∪λ∈ΛLPsoln(λ) = βP∗(x)

Proof: The existence proof is a direct implication from
Lemmas 3.3 and 3.4.

It is clear that the complexity of computing the symmet-
ric equilibria is reduced to that of computing the tradeoff
weights λ. In the next section, we present very efficient
algorithms to compute these weights.

IV. SELECTING TRADEOFF WEIGHTS

In this section, we establish constructively that there are
only a finite set Λ of non-degenerate weights, which yield
all the non-dominated points. We use simplex methods for
parametric linear programs [11]. First, we present the sim-
plex algorithm to obtain the trade-off weights for bi-objective
games. In the section to follow, we show its extension to a
general MOG.

A. BI-OBJECTIVE GAMES

For a bi-objective game, the Pareto problem in Equation
(1) can be stated as

P
max (U1w,U2w)

subject to 1Tw = 1
w ≥ 0

where U1 and U2 are the first and second rows of U
respectively. Let us consider a parametric objective (λ ∈
[0, 1])

u(λ) = λU1 + (1− λ)U2 (3)

This yields a parametric linear program

max{u(λ)w : 1Tw = 1, w ≥ 0}.

Now we can construct the simplex algorithm. For any
feasible basis B, let the vector of reduced gains be denoted
by

ū(λ) = λŪ1 + (1− λ)Ū2. (4)

where Ū1 and Ū2 are reduced cost vectors (defined in
Chapter 6 of [11]). Let us denote the non-basic indices by N .
If ū(λ) ≤ 0, then the simplex algorithm achieves optimality
of the parametric linear program and terminates (Chapter 6
of [11]). If Ū2 ≤ 0, then ū(λ) ≤ 0 for all λ > λ̂. This
simplex method is illustrated in Algorithm 1. The algorithm
returns the list L of non-degenerate weights.

Algorithm 1 Compute weights for Bi-Objective game
List L = {}
λ→ 1
Compute an initial feasible B
Compute reduced gain objective ū(λ)
while I = {i ∈ N | Ū1

i > 0, Ū2
i ≤ 0} 6= ∅ do

λ→ min
i∈I

−Ū2
i

Ū1
i − Ū2

i
L → L ∪ λ
s→ argmin

i∈I

−Ū2
i

Ū1
i − Ū2

i
Compute next feasible basis by pivoting with s

end while
return L
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B. MULTI-OBJECTIVE GAMES

We extend Algorithm 1 to the MOG case. Algorithm 2
is an abstraction of Algorithms 6.2 and 7.1 of [11]. By
transversing through the connected efficient bases, we obtain
the kissing planes of the U . The number of efficient pivots
is finite and hence Λ = L.

Algorithm 2 Compute Weights for MOG
List L = {}
Find an initial basic feasible solution.
Determine an initial efficient basis and cor-
responding weights λ1.
L ← L ∪ λ1

k ← 1
while Efficient Pivot 6= ∅ do

Perform Efficient Pivot operation.
Determine efficient basis and weights λk.
L ← L ∪ λk.
k ← k + 1

end while
return L

Once these algorithms return the set of weights, the next
step is to achieve the various symmetric equilibria. In this
paper, we adopt an evolutionary dynamics to achieve the
equilibria.

V. BIASED REPLICATOR DYNAMICS

The ideas of Maynard Smith and Price [16] on evolu-
tionary robustness gave rise to an evolutionary dynamics
called the replicator dynamics. These dynamics have several
interesting dynamic stability properties that are related to
the Nash equilibrium of a corresponding auxiliary game.
Chapters 3 and 5 of [10] include a survey of these properties.

We provide an extension of the replicator dynamics to
multi-objective games, and the proofs of dynamic stability
of this extension. We also establish the relationship between
the dynamic stable equilibria of this extension and the Pareto
Nash equilibria.

A. EVOLUTIONARY STABILITY

In this subsection, we introduce the notion of evolutionary
stability for multi-objective large population games. Assume,
there exists a large population that plays the same incumbent
strategy x ∈ ∆. Suppose, a small group of mutants, which
are programmed to play some mutant strategy y ∈ ∆, are
introduced into the original population. Let the share of
mutants in the post-entry population be ε ∈ (0, 1). Pairs of
individuals are drawn from this hybrid population to play a
MOG. For any individual, the probability that the opponent
will play the mutant strategy y is ε, and the probability
that the opponent will play the incumbent strategy x is
1− ε. Thus, the post-entry payoff to the incumbent strategy
is u(x, εy + (1 − ε)x), and that to the mutant strategy is
u(y, εy + (1− ε)x).

Definition A strategy x ∈ ∆ is said to be evolutionary stable
in the � ordering if for y ∈ ∆ and y 6= x, there exists εy
such that ∀ε ∈ (0, εy)

u(x, εy + (1− ε)x) � u(y, εy + (1− ε)x).

In the above definition, � can be one of the several vector
orders. In this work we consider the λ-scalarized order, i.e.,
a >λ b, for x, y ∈ Rl, if and only if λTa > λT b, for λ > 0.

B. BIASED EVOLUTIONARY STABILITY

The λ-scalarized order gives rise to, what we call, the
Biased Evolutionary Stability. To characterize the biased evo-
lutionary stable strategies, consider an auxiliary symmetric
single objective game G(λ). The payoff function for strategy
x ∈ ∆ against y ∈ ∆ in game G(λ) is given by λTu(x, y)
(where u(x, y) is the corresponding vector payoff in the
multi-objective game).

Proposition 5.1:
∆BESS = {x ∈ ∆PNE | y 6= x, y ∈ β∗P (x) ⇒
x dominates y as a reply to opponent strategy y}

Proof:
The proof is based on the score function of the auxiliary

game.

f(ε, y) = λTu(x− y, x) + ελTu(x− y, y − x) > 0
⇒ λTu(x− y, x) ≥ 0
⇒ λTu(x, x) ≥ λTu(y, x)
⇒ x ∈ ∆PNE ( by 3.2)

if y ∈ β∗P (x)⇒ λTu(x− y, y − x) > 0
⇒ λTu(x, y)− λTu(y, y) < 0
⇒ x dominates y as a reply to strategy y

C. POPULATION DYNAMICS UNDER BIASED FITNESS
FUNCTION

Consider a large but finite population of individuals who
are programmed to play the pure strategies i ∈ K in a
symmetric multi-objective two player game with the vector
payoff function u. Let pi(t) ≥ 0, t ≥ 0, denote the
number of individuals who are currently programmed to
the pure strategy i ∈ K, and p(t) =

∑
i∈K pi(t) ≥ 0.

The population state is given by the population share vector
x(t) = (x1(t), x2(t), · · · , xk(t)), where each component
xi(t) = pi(t)/p(t). Thus x(t) ∈ ∆. The expected vector
payoff to any pure strategy i at a random match, when the
population is in state x ∈ ∆, is u(ei, x). The associated
population average payoff is given by

u(x, x) =
k∑
i=1

xiu(ei, x).

It is common in evolutionary biology to describe the
population dynamics using a fitness function. The fitness
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function usually describes the number of offsprings per unit
time. A particular population changes its population share
based on its fitness in the current population state. For
this work, we assume that fitness is governed by a biased
payoff function. Then, the corresponding dynamics for the
population shares xi becomes

ẋi = [λTu(ei, x)− λTu(x, x)]xi · · · (BRE(λ)) (5)

D. DYNAMIC STABILITY OF BRE

There is an alternative representation for the Pareto Nash
Equilibria given by the following lemma. U is a convex
polyhedron with vertices in u(ei, x), i ∈ K.

Lemma 5.2:

∆PNE

= {x ∈ ∆|λTu(ei, x) = λTu(x, x), i ∈ C(x), and

u(ei, x) ∈ Pareto Dominating Face of U ,
where λ ∈ Rl>0

is the normal to the corresponding face.}
Proof: Every face of the convex polyhedron is sup-

ported by a hyperplane, and thus there exists λ ∈ Rl>0 such
that λT (u(ei, x)−u(y, x)) = 0 for all y in a particular face of
the convex polyhedron. If the face of the polyhedron contains
x, then λT (u(ei, x) − u(x, x)) = 0. Further, if x ∈ Pareto
dominating face of the convex polyhedron then x ∈ ∆PNE .

E. STATIONARY STATES

The stationary states of the autonomous dynamics of
BRE(λ) are given by

∆o(λ) = {x ∈ ∆|λTu(ei, x) = λTu(x, x) ∀i ∈ C(x)}
(6)

Let ∆oo(λ) denote the set of interior stationary states of
BRE(λ), i.e., ∆oo(λ) = ∆o(λ) ∩ int(∆).

Proposition 5.3: {e1, e2, · · · , ek} ∪ ∆PNE(λ) ⊂ ∆o(λ).
∆oo(λ) = ∆PNE(λ) ∩ int(∆).

Proposition 5.4: If x ∈ ∆ is Lyapunov stable in BRE(λ),
then x ∈ ∆PNE(λ).
Let us suppose that ζλ(t, x0) is a solution to BRE with
ζλ(0, x0) = x0.

Proposition 5.5: If x0 ∈ int(∆) and ζ(t, x0) → x, then
x ∈ ∆PNE(λ).

The proofs for Propositions 5.3-5.5 for the auxiliary single
objective game, G(λ), are given in Chapter 3 of [10]. We
proceed to characterise the asymptotically stable states of the
dynamics. We begin by introducing a candidate Lyapunov
function . To define its domain, consider the neighbourhood
set

Qx = {y ∈ ∆| C(x) ⊂ C(y)}.

The function Hx : Qx → R

Hx(y) =
∑

i∈C(x)

xilog(
xi
yi

)

behaves as a Lyapunov function for the biased replicator
dynamics [10]. The time derivative along the dynamics is
given by

˙Hx(y) = −λT [u(x, y)− u(y, y)]

Theorem 5.6: If x ∈ ∆BESS then BRE(λ) is asymptot-
ically stable.

Proof: The proof is based on Lyapunov’s direct method.
Since x ∈ ∆BESS , we have ˙Hx(y) < 0 ∀y ∈ Nx ∪ Qx,
where Nx is some neighbourhood of x.

VI. CONCLUSIONS

We have presented an alternate proof method that estab-
lishes the existence of equilibria for MOGs. We have shown
an extension of evolutionary stability to these MOGs. As
with single objective games, we have shown that a modified
form of replicator dynamics achieves these evolutionarily
stable strategies. We have also shown that at these equilibria,
the tradeoff weights among various payoffs can be efficiently
computed using simplex methods of MCLP.
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