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Abstract-The performance of real time applications 
such as video and voice streams relies on packet delay jit- 
ter. Large delay jitter causes buffer overflow or underflow 
at the receiver end and the user encounters interrupts. 
The delay jitter is mainly due to the perturbation of 
background traffic in the bottleneck router. Fulton and Li 
1121 provide an analytical approximation for the tirst-order 
and second-order statistics of delay jitter. However, their 
analysis is based on a Markovian model of the hackground 
traffic, which is not quite suitable for Internet traffic 
and requires lots of computational effort. We propose an 
efficient method to predict the jitter variance of a CBR 
(constant-bit rate) connection based on the wavelet model 
of the background traffic. The wavelet analysis extracts the 
statistical properties of background traffic and the analysis 
result can be used to predict an upper hound for the jitter 
variance of the CBR connection. 

I n d a  Ternis- Delay Jitter, Multifractal, Wavelet. 

I. INTRODUCTION 

EAL time applications such as voice and video R streams have become exceedingly popular in recent 
years. The performance of real time connections is very 
sensitive to the connection quality such as the packet 
jitter in the network. The traffic behavior of a real time 
application is usually quite smooth and stable. After 
entering the network, the real time packet stream is 
multiplexed and shares the link bandwidth with the 
background traffic. Hence, the packet jitter is mainly 
due to the perturbation of the background traffic in the 
bottleneck router. Most jitter analysis methods [12] [4] 
[21] are based on Markovian models of the background 
traffic. However, recent studies [25] [24] [20] [14] on 
Internet traffic have shown that the aggregate background 
traffic driven by TCP is long range dependent and self- 
similar. Wavelet analysis [29] [13] also demonstrates that 
background traffic is monofractal (self-similar) at large 
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time scales and multifractal at small time scales. The 
traditional Markovian traffic model is unable to capture 
this multifractal behavior well and is not a proper model 
for performance analysis [19] [20]. In order to predict 
the jitter more efficiently and accurately, we applied 
wavelet analysis to characterize the background traffic 
and propose an upper bound for the jitter variance of a 
constant-bit rate connection. 

The arrangement of this paper is as follows. In the 
next section, we briefly introduce the wavelet analysis for 
traffic and show the multifractal behavior of a real traffic 
trace. In section 3, the background traffic is characterized 
by the Logscale diagram. An approximation of queue 
length distribution is derived from properties of wavelets 
and the Logscale diagram. The upper bound of CBR 
jitter variance is developed in section 4. Sitnulition and 
analysis results are demonstrated in section 5. Section 6 
contains conclusions and suggestions for future work. 

11. WAVELET ANALYSIS OF THE BACKGROUND 
TRAFFIC 

The wavelet technique is a multi-resolution analysis 
tool widely used in signal processing and data analy- 
sis [7] [5]. It has remarkable advantages in analyzing 
stochastic processes with long range dependence [ 11 [23] 
[2] [30] [16] [15] [3]. For instance, wavelet analysis can 
eliminate the effect of deterministic trends hidden in ran- 
dom processes if the wavelet function is chosen properly. 
Given the scaling function 4 0  and the mother wavelet $0, 

the discrete wavelet transform of the continuous time 
process X(t) is defined as follows: 

Definition (Discrete Wavelet Transform) [23]: Given 
the scaling function $0 and the mother wavelet $0, the 
approximation coeficients u j ,k  and detail coeficients 
dj,1; of the discrete wavelet transform ofthe process X(t) 
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are dejined as 

J --M 
P m  

where 

&,IC(t) := 2-3/240(2-3t - k )  (3) 

G J . k ( t )  := 2-3/2$0(2-Jt  - k ) .  (4) 

It can be shown that the dj>k and$j2kform an orthonor- 
mal basis. X ( t )  has the following representation 

IC j = O  k 

For the discrete time process Xi, i = 0 , l ;  2; ..., the 
discrete wavelet transform can be implemented by the 
fast pyramidal algorithm [26]. To understand the behav- 
ior of the traffic Xi, we are more interested in the detail 
process of the discrete wavelet transform d j , k .  It is well 
known that the Intemet traffic is long range dependent. 
Many studies [SI [17] [19] [6] have shown that this long 
range dependence property plays an important role in 
network performance. 

Definition (Long Range Dependence) [lS]: A sta- 
tionavy jnite-variance process X i  displays long range 
dependence with parameter cy i fits spectral density S(w) 
satisjies 

S(w) N C J ~ L - "  as w + 0; (6)  

where 0 < cy < 1 and CJ is a positive constant. It 
also itnulies that the autocovariance fiinction ~ i k )  := 

This property suggests that the parameter cy can be 
estimated by the slope of the logzE[di,,] 1)s. j plot. This 
plot is named the Logscale diagram. One advantage of 
wavelet analysis is that even when the original process 
Xi has long range dependence, its wavelet transform 
dj,k still has short range dependence if the number of 
vanishing moments N of the mother wavelet $o(t) is 
chosen large enough ( N > n/2 ). 

Definition 1281: The number of vanishing moments N 
of the mother wavelet $o(t) is defined as: 

tk$O(t) E 0: k = 0,1:2: ..., N - 1. (9 )  

Proposition 191 [IS]: r f  the number of vanishing 
moments N > ( ~ 1 2 .  then d j , k  is stationary and no longer 
exhibits long range dependence but only short range 
dependence. 

s 

where j # j '  and IC # IC'. This implies the higher N ,  the 
smaller the correlation. 

Figure 1 is the Logscale diagram of a real traffic trace. 
Veitch and Arby [27] developed an asymptotically unbi- 
ased and efficient joint estimator for the parameter cy and 
C ( q  $0). They also provided a closed-form expression 
for the covariance matrix of the estimator and showed its 
accuracy. The Logscale diagram not only demonstrates 
the long range dependence property of the traffic but also 
extracts the second order statistics at every time scale. 
In this paper, we characterize the traffic in terms of the 
traffic mean rate and the Logscale diagram. With the 
Logscale diagram, we are able to predict the overflow 
urobabilitv and the iitter variance at the bottleneck router. ~, 

E [ ( X i  - EX,)(&+,, - EX,)] satisfies 
Ihp4€.(lHaBU 

a : ........ . . . . . .  " ...... , . : r ( k )  - CTka-l as k + CO; (7) . .  -.:I/ where C, = CJ2!?(1 ~ a)sZn(lrcy/2), and r denotes the 
Gamma function. 

The mother wavelet &(t) is usually a bandpass func- 
tion between w1 and w2 in the frequency domain. Note 

". 

f , . .  . . . . .. . . . . . . . . . 

that the detail coefficient dj ,k  is the output process of the 
corresponding bandpass filter. The square of the detail 
process d;,k roughly measures the amount of energy 

............. .~ . n : "" . .  
. .  . .  . .  

. .  
. .  

..... ........ , .  . :  
. .  . .  . . . . .. . . . .. . . . .  . .  . .  . .  . . .  around the time t = 2jkA and the frequency 2-jw0, 

where A is the unit time interval and WO := 9. 2 1 I 8 10 12 %I 16 
h mm. __ 

Proposition [lS]: r f  a stationary jnite-variance pro- 
cess Xi has long range dependence with parameter cy, 

then the corresponding detail coefticients d j , k  have the 
following property: 

Fig. " diagram Of a rea' trace 

111. TRAFFIC MODEL A N D  OVERFLOW PROBABILITY 
@) The wavelet analysis has many advantages in 

Note that C(n ,  $0) is independent of the variable . I .  parameter estimation and traffic analysis. The 

log*E[d,2,.] = jcu + logzC(cy, $0). 
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background traffic in this paper is characterized 

bound of the overflow probability is provided by using 
the properties of wavelets. 

by the Logscale diagram and mean rate m. An upper 1" J 
--, 

IO 

2 
E 10. Lemma Let a j , k  and d j , k  be the approximation coef- 

jicients and the detail coeficients of the Haar wavelet. 
We have the following relations: 

a j+ l , k  - djtl ,k 
( ' I )  

Wth  the uncorrelated assumption of a,j,k and dj,k for 
every j ,  we have 

Fig. 2. The CCDF of workload A,  j = LZ, ..., 7 and the fitted 
& Lognornial distribution 

Uj ,Zk+l  = 

(12) 
Var[a,+1] + Var[dj t l l  

2 
Var[aj] = 

Note that the plot log2Var[dj] V . S  j is the Logscale 
diagram. On the other hand, let Aj  be the total arrival 
bytes in the interval [0,2jA). From the definition of Haar 
wavelet: 

A .  3 -  - a i 2 j / 2 ,  (13) 

Thus, the variance of workload Var[Aj] can be 
computed recursively for all j by using the Logscale 

Lemma Given the Logscale diagram log,Var[dj] and 

Fig. 3. The CCDF of workload Aj j = 8,2; ..., 14 and the fitted diagram. . Lognormal distribution 

the variance of Ao. the variance of Aj, j = 1; 2 ,  ... is 
Figure 2 and Figure 3 are the complementary CDF 
Pr[Aj  > 51 of the real traffic trace and the corre- 
sponding Lognom" distribution with the parameters 
estimated from the Logscale diagram. 

Consider a FIFO queue with an infinite buffer size 
and the service rate C (bytesiA). Assuming that the 
distribution of Aj is known for all j ,  Riedi [ 2 2 ]  proposes 
an upper bound for the overflow probability P[& > b].  

Lemma [22] Assume that Ej := {Aj < b t G d A }  
are independent to each other and the T.V. Q is the queue 
length in steady state. An upper bound of the overflow 

Var[Aj] = 2 3 V ~ ~ [ a j ]  
V a r [ q ]  = 2Var[aj-l] - Var[dj]. 

Assuming that A j  has the Lognow" distribution for 
all j with mean Mj := E[Aj] = m2JA and variance 
r/; := l [ a ~ [ A j ] ,  the probability density function of the 
Lognormal distribution is: 

1 (Inz - pj)' 
f&) := - 

zu3& 

Since the rth moment ofthe Lognormal distribution has probabiliry o f a  FIFO qlreue is: 
a closed-form: 

1: 1~ > 0. (14) 
2 4  

P[Q > b] = 1 - p[& 5 B] N 1 - p[n,K_,~,] 
T z u ?  

EA,' = exp(rpj + T),  3 (15) K 

= l-PIEo]n.[.JIEi-l,...:E~] 
the parameters p j  and uj can be easily calculated by the 
following equations: K 

2 =In(- 1, (16) j=O 

fir; K 

pj = ln(fi1j) - 2, 2 (17)  j=O 

j=1 

- < 1 - nP[E j ]  
h q  + v, 

3 

U? = 1 - n P[Aj < B + C2'A], (18) 
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where K is the maximum octave and 2KA is the 
maximum time scale. 

Figure 4 shows simulation results of the queue length 
distribution and the upper bound. The simulation result 
shows that this upper bound provides a good approxi- 
mation of the steady state queue length distribution. We 
will apply this result to predict the jitter variance of a 
CBR traffic at the bottleneck router. 

this paper. The packet size of the CBR process is set to 
be small enough so that its mean rate is negligible to the 
handwidth at the bottleneck link. The statistical property 
of the background traffic is described by its mean rate m 
(6yteslA) and the Logscale diagram L,  := log, Var[dj] 
of the wavelet analysis. The delay jitter of CBR is 
defined as follows: 

Fig. 4. The queue length distribution with utilization p = 0.4 

1v. U P P E R  BOUND FOR JITTER VARIANCE 

In this section, we propose an efficient method to 
predict the jitter variance of a CBR connection based 
on the Logscale diagram of the hackground traffic at 
the bottleneck router. Consider the following scenario. 
In Figure 5, there is one CBR process sharing the 
bandwidth and buffer with the background traffic at a 
FIFO queue. 

CBR 

2% 

\ Fig. 5 .  The target process and the'background traffic 

I 10 1 I1  I 1 

The arrival and departure time of CBR traffic Fig. 6.  

The CBR process periodically sends out a small packet 
every 2nAsec. Note that the A is the finest time resolu- 
tion in the wavelet analysis and we set A = 0.001sec in 

Definition: Let the random sequence Ii be the interde- 
parture times of the target process. The jitter is defined 
as the difference of two consecutive interdeparture times: 

(19) J .  .- I .  z .- z+1 -4 .  
We also define An,i as the total arrival bytes of the 

background traffic in the ith time slots. The duration of 
each time slot is T := 2ILA sec. 

Lemma: Let the current time be t = iT and assume 
that the current queue length is q ( t )  2 6 := 2"+'A(C- 
m). The conditional variance of jitter is 

1 
c2 

Var[Jlq(t) 2 b] 1 -Var[(An,i+i - An2<)]. (20) 

Proof: Without loss of generality, let the CBR packets 
arrive at times 0, T ,  and 2T, which have queuing delay 
do, d l  and d,, respectively. As shown in Figure 6, the 
total arrival bytes of the background traffic in the i th time 
slot (t E [iT, (i + 1)T)) is An,i. Since the current length 
q(0) 2 6 is quite large, it is reasonable to say that the 
output link is always busy during the Oth and lt'l time 
slots. Moreover, the buffer size is infinite so that there 
is no packet loss event. The Lindley equation: 

q(t)  = mazo<,<t[A(t) - _  - A(s) - C(t - s)],Vt 2 0 (21) 

can be simplified as 

q ( ( i  + l)T) = q(iT) t An,i - CT. (22) 

Hence, the packet delay di = q(iT)/C and the interde- 
parture time is 

I, = T +dit1 - d i  
q(( i  + 1)T) - diT) 

c = T+ 

The jitter variance under this condition is 

var[Jlq(t) 2 b] = var(ritl - ri) 

According to the definition of wavelet analysis, one 
may easily obtain the value of Var[(A,,l- A,;o)] from 
the Logscale diagram L j  
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for every j and k .  

process is 
Hence, the conditional jitter variance of the CBR 

On the other hand, if the current queue length is small 
(q ( t )  < b) ,  we assume that there is at least one idle server 
event happening in the next two time slots. The simple 
relations of eq.(22) and eq.(23) do not hold. Since there 
is at least one idle event in this period, the sequence of 
interdeparture times I ,  and the sequence of packet delays 
d, can he treated as uncorrelated random sequences 
respectively. We have the following approximation: 

Var[Jlq(t) < b] = Var[lt+l - I ,]  N 2Var[lt] 
= 2Var[dt+1 - d,] = 4Var[d*] 

4 
5 - max Var[(Aj - C2jA)+]. 

c2 o < j < n  

other side has 800 web servers. The server is running 
HTTP I .  1 protocol and has a Pareto file size distribution 
with parameters (K=2.3Kbytes, ~ 1 . 3 ) .  The propaga- 
tion delay of each server link is uniformly distributed 
and the mean round-trip time is about 128ms. Note that 
the mean arrival rate of the web (background) traffic is 
around 1.2Mbps. 

A .  Jitter at a FIFO Queue 

Figure 7 compares the predicted jitter standard devia- 
tion with the simulation results. The target CBR process 

' has fixed interarrival times 2"A and n = 3,4,  ..) 8. 
The link utilization is about 0.4,0.6 and 0.8 with the 
corresponding bandwidth C = 3.0,2.0 and 1.5Mbps 
respectively. 

The simulation results show that our prediction 
method indeed provides a tight upper bound even when 
the CBR interarrival time ZnA is getting larger. 

(27) 

Lemma: Let A be the Lognormal rundom variable 
with parameter (p>u)  and d > 0 be any real number. 
we have 

eP+U2/2 In d - 1-1 - 02 
E[(&d)+] = - erfc(  JZu ) 

E [ ( ( A  -cl)+)'] = - fig 1 

2 
- d F ( d )  (28) 

e2&+2'Jz 

2 
ln d - p - 2u2 

I 13 1 I S  I II e is 7 ?l 8 
L q m  "Unm(-,, 1 Ind - p - U' 

J Z U  
- de"+u2'2er j c (  

+ d2i@(d): (29) Fig. 7. The standard deviation of delay jitter std(J) U.S .  n with a 
FIFO queue 

where F ( d )  := Pr[A > 4. 
The probability of Pr[q(t)  2 b] is based on the pre- 

diction of the steady state queue length distribution. We 
applied Riedi's approach [22] to calculate the overflow 
probability. 

Proposition Let the T.V. Q he the queue length in 
steady state. From eq. (26) (27) and (IS). there is an 
upper bound of the jitter variance of the CBR trafic at 
the bottleneck router: 

V a r ( J )  5 Var(J1Q 2 b)Pr'[Q 2 b] 
+Var(JIQ < b))Pr[Q < b].  (30) 

v. SIMULATION RESULTS 

B. Jitter at a RED Queue 

We replace the FIFO queue by an adaptive RED queue 
at the bottleneck router. The adaptive RED queue [ 1 I ]  
[lo] will keep the average queue length located in a 
desired region by randomly dropping the TCP packets. 
Since the queue length is in the desired region, the 
link has a 100% utilization and no idle event happened. 
Hence, the jitter variance is bounded by equation (26). 

Figure 8 shows that the prediction method also pro- 
vides a tight bound for the jitter variance when a different 
queuing policy such as RED is employed. 

The network topology in our experiment is the simple 
dumbbell with a single bottleneck link. One side of the 
bottleneck link consists of 800 web clients, each client 
sends a web request and has an Exponential think time 
with mean 50sec after closing the current session. The 

VI. CONCLUSIONS 

The performance of video and voice streams mainly 
depends on the delay jitter in the network. Recent studies 
show that Intemet traffic is multifractal, which can not be 
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1 3 5  4 <I I I 5  6 * /  I 1 s  1 
Lo4,CBRm-.,irm6-,, 

Fig. 8. 
RED queue 

The standard deviation of delay jitter s t d ( J )  V.S. n with a . 

modeled well by traditional Markovian models. Instead 
of using a Markovian approach, we applied wavelet 
analysis to analyze the background traffic at the bot- 
tleneck router. The second order statistical property of 
the background traffic is characterized by the Logscale 
diagram. Based on properties of wavelets and some 
reasonable assumptions, we provide an efficient and 
accurate method to predict the jitter variance of CBR 
traffic. Our simulation results also show that this method 
works well with a different queuing policy such as RED. 
In future work, we are considering the effects of finite 
buffer size in the FIFO queue. 
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