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ABSTRACT 

A high performance Universal Modem ASIC that supports sev- 
eral modulation types and burst mode frame formats is under 
development. The ASIC is designed to work under svingent 
conditions such a3 large carrier frequency offset (up to 13% 
symbol rate) and low signal-to-noise ratio (SNR). Powerful and 
generic data-aided (DA) parameter estimators are necessary to 
accommodate many modes. In this paper we present an ap- 
proximated maximum likelihood (MI,) carrier frequency off- 
set estimator, ML joint carrier phase and timing offsets esti- 
mator and their systolic VLSI implementations for PSK burst 
modems. The performances are close to the Cramer-Rao lower 
bounds (CRLB) at low SNRs. Compared with theoretical solu- 
tions the estimators proposed here are much simpler and easier 
to implement by the current VLSI technology. 

1. INTRODUCTION 

A high performance ASIC supporting Hughes Network Sys- 
tem's Universal Modem product line is under development. 
?'his ASIC  support^ a variety of bit rates, modulations (BPSK, 
QPSK, SPSK, OQPSK), forward err01 correction, and frame 
formats. In order to satisfy the wingent operating conditions 
such as large carrier frequency offset (up to 13% symbol rate), 
low SNR (E~/NQ around OdB) and multiple operating modes, 
powerful and generic estimators are necessary to recover the 
burst parameters. Maximum likelihood (ML) estimators [51 
are optimal estimators. We present a good approximation of 
DA ML carrier frequency offset estimator, a joint carrier phase 
and timing offsets estimator and their corresponding systolic 
[SI VLSI implementations. 

Several carrier frequency offset atimation methods are dis- 
cussed in 131. The optimal ML frequency estimator is well 
known to be given by the location of the peak of a periodogram 
[9]. However the computation requirements make this approach 
prohibitive even with an FFT implementation. Therefore sim- 
pler approximation methods are desired. We present a DA car- 
rier freauencv offset estimator that is based on autocorrelation 

Figure 1: Matched Filler of Optimal Receiver 

and the algorithm derived by Kay [21. 
The DA ML joint carrier phase and timing offset estima- 

tor is derived in 111 6.296). The presented implementation is 
hardware intensive. We derived a simplified ML joint carrier 
phase and timing offsets estimator, which is suitable for sys- 
tolic VLSI implementation. 

In section II the estimation algorithms are presented. Sec- 
tion Ill presents their efficient VLSI implementations. In the 
last section the CIUBDA (for DA case) are investigated; the 
performance of the estimators is shown through computer sim- 
ulation and compared with CFUBDA. 

2. ESTIMATION ALGORITHMS 

The baseband received signal is modeled as: 

N-1  

dt) = dz [(ar,g(t - 0) + jaong(t - nT 

- ~ T ) ) e x p l j @ ~ f t  + e)]] + n(t) 
"=O 

(1) 

whereg(t) = gT(t)Qc(t)@f(t),gT(t) is themsmitlershap- 
ing function, c(t)  is the channel response, f(t) is the prefilter. 
n(t) is the additive white Gaussian noise (AWGN) with two- 
sided power specval density NQ/2,  and an 3 arn + ~CZQ" is 
the data symbol from complex plane (a,, = 4 / 2 ( + 1 +  j) for 
QPSUOQPSK signaling). T is the symbol interval f is the 
carrier frequency offset. and r is the delay factor that is 0 for 
QPSK and 0.5 for OQPSK. The matched filter for an OptiMIi 
receiver can be modeled as [l] shown in Firmre 1. y(t) is down 

0.7803-5435.4/991$10.00 0 1999 IEEE 733 VTC '99 

mailto:yjiang@hns.com
mailto:baras@isr.umd.edu


convened by carrier frequency offset estimate f ,  and then S a m -  
pled at rate of l/T8, typically T = MT,, With an integer. 
The sampled signal is filtered by a matched shaping filter With 
response g(-t )  and timing offset ET. The output is then deci- 
mated down to a rate of 1/T to obtain a one Sample Per symbol 
signal z(nT + ET). The demodulatorcorrSu; the phase Offset 
BandtimingoffsetEofz(nT+eT) priortomakingsymbolde- 
cisions and recovering the transmitted symbol dn. z(nT+ ET) 
is given by: 

m 

+T + E T )  = y(kT,)e-j(a"f")g~MF(nT + 
&=-CO 

ET - kT,) (2) 

2.1. Carrier Frequency Offset Estimation 

Initially suppose we have N z(nT + ET) (n = 0,. ' , N - 1) 
symbols without frequency rotation and a = [ao, '. ' , ~ N - I ]  
is known in DA case. In order to simplify the presentation, let 
us mume perfect timing (frequency estimation performance in 
the presence of random timing offset is shown through simula- 
tion), unit-energy pulse (g(t) o g(-t)), thus z(nT + ET) can 
be simplified a$ z(n, f), which can be expressed a$: 

(3) z(n, f) = a,, explj(2rfnT + e)] + 7" 
where y,, is additive Claussian noise. Correlation method is 
adopted to remove data modulation a,, let 

r,  H z(n, f)a: = E. expb(2rfnT + e)] + r a i  (4) 

It is easy to show that the autocorrelation of the exponential 
wave is still an exponential wave at high SNR (simulation shows 
that high SNR condition is notnecessary), i.e., 

N - l  

R(m) f - Crnr:-m 
N - m E m  

= E.'explj(ZrrfmT)] + noise(m) ( 5 )  

where m = 1,. . , L ( L  < N. - 1). Mengali 141 proposed 
a frequency estimator based on modeling noise(m) and the 
work done by Kay [Z]. From simulation we find that for N 
large enough noise(m) can be approximated as white Gaus- 
sian noise. The sequence {R(m)} can be treated as a contin- 
uous wave (with frequency f) which is parsed through a noise 
removal process. At high SNR, many good frequency estima- 
tion methods have been derived. Kay [2] presented a frequency 
estimation method bared on weighted sum of phase difference. 
His frequency estimator is ML at high SNR. Let us define the 
following process: 

e ( n t ) = ~ g [ R ( m ) ] ,  m =  l , . . . ,L (6) 
and 

Figure 2: Weighting Function {w;}  

We borrow from Kay's frequency estimator, that is the weighted 
sum of phase difference. Because R(m1) is calculated based 
on more data than R(m2) when ml < ma. after some arith- 
metic we derived the following canier frequency offset estima- 
tor: 

where 

m=O,. . . ,L- l  (9) 3((2L + 1)' - (2m + 1)') 
w; = ( (2L + l ) Z  - 1))(2L + 1) ' 
The weighting function is shown in Figure 2. It is easy to see 
that the weight w:, decreases as m increases. That is because 
as m gets larger and larger, the number of terms used to com- 
pute R(m) reduces and thus makes A, lav and less accurate. 
Compared with Mengali's algorithm, ow estimator adopts dif- 
ferent weighting function, L can be less than N / 2  (e.g. when 
N = 96, L = 32 can achieve the CRLB at OdB). 

2.2. Joint Carrier Phase and Timing Offsets Estimator 

Assuming zero frequency offset estimation error, there are K 
(K = M N )  observations of z(kTB + ET) (k = 0,. . . , K - 1) 
available for estimating E and 8, E E [-0.5,0.5). According to 
the work done in [l], the maximization object function of hfL 
joint phase and timing offsets estimation in AWGN channel is 

L(a,c,B) = C a p  -Re a;z(nT+dP)e-j' (10) 

where C is a positive constant and a = [ao,. . . , w - 1 1  which 
is the data pattern and is known to the estimator. Let us define 

I L: 11 
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!44 as: 
N-1 

p ( ~ )  = a:z(nT + ET)  (1 1) 
P O  

The ML joint phase and timing atimator is given by [I]: 

2 = wz myI&)I (12) 

8 = firgk(2)] (13) 

According to the Equivalence Theorem [l], and assuming that 
e( t )  and f(t) are all-pass filters, z(nT +ET)  is equivalent to 
the following: 

N-I 

Z(nT + ET) = akr(nT +ET - kT)e-je + N ,  (14) 
k=O 

where 
Figure 3: Correlation Magnitude /&(&)I vs. Timing Offset E 

i I j  1 
! i l l  

1 / i  ~ 1 ,  
version of n(t), Gaussian noise, after being filtered by gMF(t). -T, 0 7. I 

The above expression also assumes that raised cosine shaping 
is adopted with a denoting the rolloff factor. N ,  is the sampled 

Arriving at a solution to eq. (12) is a difficult task and the 
resulting hardware structure presented in t11 is quite compli- 
cated. It is well known that a quadratic form can be used to 
approximate the central segment of a convex function around 
its peak. The expression for P ( E )  can be approximated by a 
quadratic equation as shown below. If E + 0, the inter-symbol- 
interference @SI) and noise Nn can be ignored and we can sim- 
P W  Ir(4I as 

Figure 4 Three Sampling Points Model 

the closest ones to the ideal sampling point as shown in Figure 
4. In order to meet the condition that t is close enough to 0, two 
measures are adopted one is that the sampling rate M (samples 
per symbol) is large enough (simulation shows that M = 4 
can achieve good performance):second is locating the largest 
available magnitude 51 through peak search. Let us define the 
sampling time of ZI as nominal 0 on time axis. Therefore the 
sampling times of so and Q are -T8 and Ts, respectively. A 
LaGrange interpolating polynomial can be adopted based on 
the values of zh (k = 0,1,2): 

N-1 

IM)I lad@')  = NE,@') 
-0 

where \a,/' = 1 (n = O,... ,N  - 1). Furthermore by letting 
t = ET and using Taylor series approximations for sine and 
cosine functions and after some iimplification, we arrive at 

Figure 3 shows the result of numerical evaluation of Ip(&)I = bzt' + b i t  + bo 
. . . .  

using the fact that to = -Ta, ti = 0,  t 2  = T8, we can get which follows a quadratic form. From eq. (16) we can use a 
second order polynomial to approximate the relationshiu be- 

(19) 

(20) 

tween sampling time and themagnitude of correlation 
given that these sampling point? are close enough to the ideal 
sampling point (i.e. t is close enough to 0). Using a general 
form of the second order polynomial bl = -(--?!) 1 5 2  

T, 2 2 
Ip(t)l = b d  + b i t  -b bo (17) bo = X I  (21) 

suggests that ajoint phase and timing estimator can be derived 
bawd on three adjacent Samples of /b(t)l. These samples are 

The ML timing offset estimator (12) is the 2 which maximizes 
Ip(c)l. It is easy to compute the sampling time of the peak of 
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I&)[ from a second order polynomial, i.e. 

therefore, the ML estimate of E is 

The phase estimator is shown in eq. (13). Interpolation tech- 
niques can be applied to c o m t  the timing offset before phase 
estimation. This however introduces an additional delay in the 
demodulation process. Simulations show that using the time 
for the non ideal sample of z1 is sufficient for meeting the 
CRLB (sampling time of $1 is t l) .  This leads to 

8 = W [P(tl)l (24) 

In order to locate the largest available value z1 easily, a highly 
correlated data paaern 2 is selected. [6] discusses this problem 
in depth. Here unique word (UW) and alternating (one zero) 
data patterns are investigated. 

3. VLSI IMPLEMENTATIONS 

For the frequency estimator, the calculation of R(m) (eq. (5) )  
is a hardware intensive task that requires (2N - L - 1)L/2 
complex multiplication and (ZN - L - 3)L/2 additions. In 
order to make full use of each input data and exploit concur- 
rency, we propose the systolic VLSI implementation as shown 
in Figure 5. If higher speed clock is avalable, the complex 
multipliers can be shared on time division basis. {R(m)} will 
be available on the clock cycle following the one latching the 
Nth data symbol into the estimator. Frequency offset can then 
be calculated via eq. (8). One advantage of this StruCNIe is 
that it is scalable. If we want to increase L to get a better per- 
formance, more elements can be added at the right hand side 
shown in Figure 5. 

The hardware block diagram for the joint phase and timing 
estimator is shown in Figure 6. The multi-sample correlator 
generates outputs at a higher rate than one sample per symbol. 
A systolic VLSI implementation of the correlator is shown in 
Figure 7, where xi, denotes the ith symbol (i = 0,. . . , N - l), 
jthsampleu = 0,...,3)oftheoutputfromthematchedshap- 
ing filter. In QPSK case, a, = il f j, only adders are neces- 
sary therefore the computational complexity is relatively small 
especially when using the conelator ay soft-decision UW de- 
tector. Through peak search module, we can locate XO, 21 and 
$2. An Arctan Lookup table (LUT) is used when estimating 
the phase offset. 

4. PERFORMANCE BOUNDS AND SIMULATION 
RESULTS 

The performance lower bound for unbiased ML estimation is 
the Cramer-Rao lower bound (CRLB). The CRLBDA for DA 

,-L,.+<., 
* . T r  

--.."I 
---IC" $) .-pe 3" .I.,. ram= I -&. 1.1." 

Figure 5: Systolic VLSI Structure of Carrier Frequency Offset 
Estimator 

frequency estimation is given by 191 as follows: 

E[(jT - 2 6 4 7 r a 3 N ( N 2  - I))-' (25) 1 No 
The CRLBDA for phase estimation is given by [91 as follows: 

Moeneclaey pmposed the CRLB for i.i.d. random data pattern 
(i.e., no information about g available) in [71. The boundfor the 
case where the sampling rate 1/T, 2 2B (B is the bandwidth 
of r(t)) and N large enough is given by 

with n(j) the Fourier transform of r(t). Jiang has proposed 
the following expression for CRLBDA in [61: 

-1 Kla-1 { & [ k=-K/2  ( y)  'R (A) ld[k]]2] } (28) 

where A[k] is the kth element of N-point discrete Fourieruans- 
form (DFT) of a, i.e. d[k] = ane-j(asnk/N). Accord- 
ing to eq. (28). CRLBDA has different values for different data 
pattems. n o  data patterns have been investigated: alternating 
one-zero pattern (i.e. ai = (-l)ifi/2(1 + j )) ,  and a unique 
word pattern. A 48-symbol UW wa$ selected. According fo eq. 
(28) for the alternating one-zero data pattern 
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Figure 6: Joint Carrier Phase and liming Offsets Estimator 

Figure 7: Multi-Sample Comelator 

and thus the performance is independent of rolloff factor a 
given that a > 0. For the UW pattern, the timing estimation 
CRLBDA is closely related to the rolloff factor. It follows from 
eq. (28) that the larger the rolloff factor, the smaller CRLBDA. 
Figure 8 shows eq. (28) plotted as a function of SNR for three 
different values of rolloff factor. 

The parameters for the computer simulations were QPSK 
signaling, N = 96 and L = 32 in an AWGN channel for fre- 
quency estimation, N = 48 and M = 4 in the AWGN channel 
for joint phase and timing estimation. Figure 9 shows normal- 
ized root mean squared (RMS) frequency estimation error with 
f = 0.13/T, which is compared with the CRLBDA for fre- 
quency estimation. From simulation we can see that the estima- 
tion RMS emlr is very close to the CRLBDA even at OdB, the 
performance degradation caused by timing error is very small. 
Figure 10 shows the saw tooth characteristics of eq. (23) under 
no noise conditions with random phase. From simulations we 
can see that (23) is an unbiased estimate of E. Peak search (i.e. 
locating 21) resolves the m/4 (m = fl, f2) ambiguity. 

For phase and timing estimation, different rolloff factors 
for the raised cosine shaping function were also tested. Simu- 
lation shows that the RMS timing atimation mor  meets the 
CRLBDA of timing estimation for all as and data patterns. 
Simulations also support that for the one-zero pattern the RMS 
timing error is independent of a, while for the UW pattern it de- 
creases as a increases. This is in agreement with the evaluation 
of the CRLBDA. Figure 11 shows the timing offset estimation 
performance with a = 0.5, where one-zero pattern and UW 
pattern of QPSK are illustrated. Figure 12 shows the phase es- 
timation performance. The RMS phase estimation error meet,, 
the CRLBDA for phase estimation. 

5. CONCLUSIONS 

Simulation shows that the performance of our estimators are 
very close to the C U B D A  even at OdB, these algorithms are 
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Figure 8: The CRLBDA for Timing Estimation with UW Pat- 
tern 

good approximations of the ML estimations since if the per- 
formance of an unbiased estimation meets the CRLB then the 
estimation is ML PI. The techniques proposed here can be 
used in high performance PSK burst modems working under 
large carrier frequency offset and low SNR conditions. The 
complexities of these algorithms are moderate. 

Figure 9 RMS Carrier Frequency Offset Estimation Error vs. 
CRLBDA 
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