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ABSTRACT

A high performance Universal Modem ASIC that supports sev-
eral modulation types and burst mode frame formats 15 under
development. The ASIC is designed to work under stringent
conditions such as large carrier frequency offset (up to 13%
symbol rate) and low signal-to-noise ratio (SNR). Powerful and
generi¢ data-aided (DA) parameter estimators are necessary 10
accommodate many modes, In this paper we present an ap-
proximated maximum likelihood (ML) carrier frequency off-
set estimator, ML joint carrier phase and timing offsets esti-
mator and their systolic VLSI implementations for PSK burst
modems. The performances are close to the Cramer-Rao lower
bounds (CRLB) at low SNRs, Compared with theoretical solu-
tions the estimators proposed here are much simpler and easier
to impiement by the current VLS technology.

1. INTRODUCTION

A high performance ASIC supporting Hughes Network Sys-
tem's Unijversal Modem product line is under development.
This ASIC supports & variety of bit rates, modulations (BPSK,
QPSK, 8PSK, OQPSK), forward error correction, and frame
formats. In order to satisfy the stringent operating conditions
such as large carrier frequency offset (up to 13% symbol rate),
low SNR (E;/Ny around 0dB) and multiple operating modes,
powerful and generic estimators are necessary 10 recover the
burst parameters. Maximum likelihood (ML) estimators [5]
are optimal estimators. We present a good approximation of
DA ML carrier frequency offset estimator, a joint carrier phase
and timing offsets estimator and their corresponding systolic
[8] VLSI implementations,

Several carrier frequency offset estimation methods are dis-
cussed in [3]. The optimal ML frequency estimator is weil
known to be given by the location of the peak of a periodogram
[9], However the computation requirements make this approach
prohibitive even with an FFT implementation. Therefore sim-
pler approximation methods are desired. We present a DA car-
rier frequency offset estimator that is based on autocorrelation
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Figure 1: Matched Filter of Optimal Receiver

and the algorithm derived by Kay [2].

The DA ML joint carrier phase and timing offset estima-
tor is derived in [1] (p.296). The presented implementation is
hardware intensive. We derived a simplified MI., joint carrier
phase and timing offsets estimator, which is suitable for sys-
tolic VLSI implementation.

In section 1I the estimation algorithms are presented. Sec-
tion III presents their efficient VL.ST implementations. In the
Inst section the CRLBpa (for DA case) are investigated; the
performance of the estimators is shown through computer sim-
ulation and compared with CRLBpg4 .

2. ESTIMATION ALGORITHMS

The baseband received signal is modeled as:

Nl
¥&) = VB Y [(orng(t = nT) + jagag(t - nT
n=0
~+T)) explj{@nft + 6)]) + n(t) M

where g(t) = gr(+)®c(t)® f(t), g(t) is the transmitter shap-
ing function, ¢($) is the channel response, f(2) is the prefilter,
n(t) is the additive white Gaussian noise (AWGN) with two-
sided power spectral density Ny /2, and ay, = arn + jagn i8
the data symbol from complex plane (a, = v2/2(x1 % ) for
QPSK/OQPSK signaling). T is the symbol interval, f is the
carrier frequency offset, and 7 is the delay factor that is 0 for
QPSK and 0.5 for OQPSK. The matched filter for an optimal
receiver can be modeled as [13 shown in Figure 1, y(t) is down
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converted by carrier frequency offset estimate f, and then sam-
pled at rate of 1/T,, typically T = MT,, with M an integer.
The sampled signal is filtered by & matched shaping filter with
response g(—t) and timing offset £7". The output is then deci-
mated down to a rate of 1/7 to obtain a one sampie per symbol
signal z(nT + eT"). The demodulator corrects the phase offset
8 and timing offset £ of z(nT +&T') prior to making symbol de-
cisions and recovering the transmitted symbol dy,. 2(nT"+¢T)
is given by:
oo
Z y(kT)e~ 3@ T g o(nT +

k=00

eT — kT)

2T+ eT) =
2)

2.1, Carrier Frequency Offset Estimation

Initially suppose we have N z(nT +&T) (n =0, ,N ~ 1)
symbols without frequency rotation and g = [ag, -, GN—1]
is known in DA case, In order to simplify the presentation, let
us assume perfect fiming (frequency estimation performance in
the presence of random timing offset is shown through simula-
tion), unit-energy pulse (g(t) ® g(—¢)), thus z(nT + €T') can
be simplified 2s 2(n, f), which can be expressed as:

z(n, f) = anexp{j(@rfaT + )] + 3

where , is additive Gaussian noise. Correlation method is
adopted to remove data modulation ay,, let

= 2(n, flan = Bpexp[i(2nfnl +8)] + va;, )

It is easy lo show that the autocorrelation of the exponential
wave is siill an exponential wave at high SNR (simulation shows
that high SNR condition is not necessary), i.e.,

1 N-1
R(m) = mzr“?‘;_m
n=m

E?exp(j(2nfmT")] + noise(m)  (5)

wherem = 1,---,L (L < N.— 1), Mengali [4] proposed
a frequency estimator based on modeling noise(rn) and the
work done by Kay [2]. From simulation we find that for N
large enough noise{m} can be approximated as white Gaus-
sian noise. The sequence {R(m)} can be treated as a contin-
uous wave (with frequency f) which is passed through a noise
removal process, At high SNR, many good frequency estima-
tion methods have been derived, Kay [2] presented a frequency
estimation method based on weighted sum of phase difference,
His frequency estimator is ML at high SNR, Let us define the
following process:

H(m) = a.rg[R(m)], m = 1) T sL (6)
and
8(1)= m=0
A, =
™ { (B(m+1) ~f(m))mod2r), 1<m<i
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Figure 2; Weighting Function {w, }

‘We borrow from Kay’s frequency estimator, that is the weighted
sum of phase difference. Because R(m; ) is calculated based
on more data than R(mg) when my < my, after some arith-
metic we derived the following carrier frequency offset estima-
tor:

1 L-1
5T 2 Ynlm ®

m=0

Il

/

where

Lo ELF)P-Cm1)
Un = TRL T ~aL e o il

®

The weighting function is shown in Figure 2. It is easy to see
that the weight w}, decreases as m increases. That is because
as o gets larger and larger, the number of terms used to com-
pute B(m) reduces and thus makes A, less and Jass accurate.
Compared with Mengali's algorithm, our estimator adopts dif-
ferent weighting function, L can be less than N/2 (e.g. when
N =96, L = 32 can achieve the CRLB at 0dB).

2.2, Joint Carrier Phase and Timing Offsets Estimator

Assuming zero frequency offset estimation error, there are K
(K = MN) observations of z(kT, +¢T) (k=10,---, K =1)
available for estimating £ and 6, ¢ € [—0.5,0.5). According to
the work done in [1], the maximization object function of ML
joint phase and timing offsets estimation in AWGN channel is

N-1

L{a,e,6) = Cexp {-—Re {Z atz(nT + eT)e’f’] } (10)

n=0

where C' is a positive constant and a = [ag, - -+, an-1] Which
is the data pattern and is known to the estimator. Let us define
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14(g) as
N-1
ple) =Y anz(nT +6T) (1
n=0
The ML joint phase and timing estimator is given by [1}:
£ = arg max|u(e)| (12
§ = arglu(8)] (13)

According to the Equivalence Theorem [1], and assuming that
e(t) and f(t) are all-pass filters, z(nT + £T) is equivalent to
the following;

N-1
#nT +el) = Z agr(nT +eT —~ ke + N,  (14)
k=0

where

i T
() = gn() @ 1) = T 1) LEEI,

The above expression also asstmes that raised cosine shaping
i5 adopied with ¢ denoting the rolloff factor. Ny, is the sampled
version of n(t), Gaussian noise, after being filtered by gprp(2).

Arriving at a solution to eq. (12) is a difficult task and the
resulting hardware structure presented in {13 is quite complhi-
cated. Tt is well known that a quadratic form can be used to
approximate the central segment of a convex function around
its peak. The expression for w(e) can be approximaied by a
quadratic equation as shown below. If £ — 0, the inter-symbol-
interference (ISI) and noise N, can be ignored and we can sim-

plify {ule) as

N-1
w(E)| ~ By ) lan[*r(eT) = NEyr(eT)

n=0

(15)

where {an|? = 1 (n = 0,---,N — 1). Furthermore by letling
t = T and using Taylor series approximations for sine and
cosine functions and after some simplification, we arrive at

ﬂ-ﬂt2
|u(t)| ~ NE, (1 - 'Eiq) (16)
Figure 3 shows the result of numerical evaluation of |u(e)]
which follows a quadratic form, From eq. (16) we can use a
second order polynomial to approximate the relationship be-
tween sampling time and the magnitude of correlation ju(t))
given that these sampling points are close enough to the ideal
sampling point (i.e. ¢ i close enough to 0). Using a general
form of the second order polynomial
() = bat® + bit + by an

suggests that a joint phase and liming estimator can be derived
based on three adjacent samples of {(2)|. These samples are

0-7803-5435-4/99/$10,00 © 199% TREE

735

. . . JI— .
03«02 -b3 o EX] 0z 83 o4 oS
Thing Clsat & {Ih symbsel paricd 18 1) po noise, tunkown phase

-05  -p4

Figure 3; Correlation Magnitude {u(e)| vs, Timing Offset e

Figure 4: Three Sampling Points Model

the closest ones to the ideal sampling point as shown in Figure
4. In order to meet the condition that £ is close enough to 0, two
measures are adopted:-one is that the sampling rate M (samples
per symbol) is large encugh (simulation shows that M = 4
can achieve good performance);second is locating the largest
available magnitude x; through peak search, Let us define the
sampling time of 21 as nominal O on time axis. Therefore the
sampling times of ©g and zo are —T), and T}, respectively, A
LaGrange interpolating polynomial can be adopted based on
the values of = (k = 0,1, 2):

i ot
lu(t) = Ty - (18)
=0 oy B
= bt +hit+ by
using the fact that tg = =T}, ¢, =0, to = T}, We can get
- 1 Zg g
b= o (Fat) a9
1 i) iy}
= {22 2
o T, ( 2 2 ) (20)
bp = m 21

The ML timing offset estimator (12) is the £ which maximizes
Ju(e)]. It is easy to compuie the sampling time of the peak of
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|s(£)| from a second order polynomial, i.e.
b] _ (.’L‘o -2 )T,

SN SO ool M Lol (22)
tpeak = = gy = G — Ay + 222
therefore, the ML estimate of £ is
g= _tpeak _ Ty~ X (23)

_T_ - M(2$‘Iu — 43 +2£Ez)

The phase estimator is shown in eq. (13). Interpolation tech-
niques can be applied to correct the timing offset before phase
estimation, This however introduces an additional delay in the
demodulation process. Simulations show that using the time
for the non ideal sample of z; is sufficient for meeting the
CRLB (sampling time of 2, is &;). This leads to

§ = arg [u(t)] 24)

In order to locate the largest available value x; easily, a highly
correlated datz pattern g is selected. [6] discusses this problem
in depth. Here unique word (UW) and alternating (one zero)
data patterns are investigated,

3. VLSI IMPLEMENTATIONS

For the frequency estimator, the calculation of R(m) (eq. (5))
is a hardware intensive task that requires (2N — L — 1)L/2
complex multiplication and (2N ~ L — 3)L/2 additions. In
order to make full use of each input data and exploit concur-
rency, we propose the systolic VLSI implementation as shown
in Figure 5. If higher speed clock is available, the complex
multipliers can be shared on fime division basis, {R(m)} will
be available on the clock cycle following the one latching the
N'th data symbol into the estimator. Frequency offset can then
be caleulated via eq. (8). One advantage of this structure is
that it is scalable. If we want to increase L to get a better per-
formance, more elements can be added at the right hand side
shown in Figure 5.

The hardware block diagram for the joint phase and timing
estimator is shown in Figure 6. The multi-sample correlator
generates outputs at a higher rate than one sample per symbol,
A systolic VLSI implementation of the correlator is shown in
Figure 7, where ;4 denotes the ith symboi (i = 0, -, N —1),
Jthsample (§ = 0, - -+, 3) of the output from the matched shap-
ing filter. In QPSXK case, a, = %1 = 7, only adders are neces-
sary therefore the computational complexity is relatively small
especially when using the correlator as soft-decision UW de-
tector. Through peak search module, we can locate xg, 2 and
Z2. An Arctan Lookup table (LUT) is used when estimating
the phase offset,

4. PERFORMANCE BOUNDS AND SIMULATION
RESULTS

The performance lower bound for unbiased ML estimation is
the Cramer-Rao lower bound (CRLB), The CRLBp, for DA

0-7803-5435-4/99/510,00 © 1998 IREE

736

s 14
-— A
hr."'- {m)

o MLy B 2m 4 TH)
T A T TR T}

LR g i

mely., L=

Qim) o=l b

1

f i
b el
1.

il

PRCYSN EFIFSRT BT

*complea conjugaie

Figure 5: Systolic VLS1 Structure of Carrier Frequency Offset
Estimator

frequency estimation is given by [9] as follows:
‘ ~1
Byr- i ze{wiven-n} e
i 1]
The CRLBpa for phase estimation is given by [9] as follows:

R 2E, ™
—§y? a4
E[(g-6) 2> { N, N} (26)
Moeneclaey proposed the CRLB for i.i.d. random data pattern
(i.e., no information about g available) in [7]. The bound for the
case where the sampling rate 1/T, > 2B (B is the bandwidth
of r(2)) and N large enough is given by

-1
sr-12 {2 [t prna} @

with R(f) the Fourier transform of r(t). Jiang bas proposed
the following expression for CRLBp, in {6):
-1
} {28)

it | 5 (5 () e

k=~KJ2

where A[k] is the kth element of N -point discrete Fourier trans-
form (DFT) of g, i.e. Ak] = YN ane=#m8/M), Accord-
ing to eq. (28), CRLBpa has different values for different data
patterns. Two data patterns have been investigated: alternating
one-zero pattern (i.e. ay = (=1)'/2/2(1 + 7)), and a unique
word pattern, A 48-symbol UW was selected. According to eq.
(28) for the alternating one-zero data pattern

-]
ORLBpalio = {wffl } 29)
0
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Figure 7: Multi-Sample Correlator

and thus the performance is independent of rolloff factor &
given that & > 0. For the UW pattern, the timing estimation
CRLBp4 is closely related to the rolloff factor. It follows from
eq. (28) that the larger the rolloff factor, the smaller CRLBpa.
Figure 8 shows eq. {28) plotied as a function of SNR for three
different values of rolloff factor.

The parameters for the computer simulations were QPSK
signaling, N = 96 and L = 32 in an AWGN channel for fre-
quency estimation, N = 48 and M = 4 in the AWGN channel
for joint phase and timing estimation. Figure 9 shows normal-
ized root mean squared (RMS) frequency estimation error with
f = 0.13/T, which is compared with the CRLBp, for fre-
guency estimation, From simulation we can see that the estima-
tion RMS error is very close to the CRLBpy4 even at 0dB, the
performance degradation caused by timing error is very small.
Figure 10 shows the saw tooth characteristics of eq. (23) under
no noise conditions with random phase. From sirulations we
can see that (23) is an unbiased estimate of . Peak search (i.e.
locating ;) resolves the m /4 (m = £1, £2) ambiguity.

For phase and timing estimation, different rolloff factors
for the raised cosine shaping function were also tested. Simu-
lation shows that the RMS timing estimation error meets the
CRLBp4 of timing estimation for afl as and data patterns.
Simulations also support that for the one-zero pattern the RMS
timing error i independent of @, while for the UW pattern it de-
creases as & increases. This is in agreement with the evaluation
of the CRLBp4. Figure 11 shows the timing offset estimation
performance with & = 0.5, where one-zero pattern and UW
pattern of QPSK are illustrated. Figure 12 shows the phase es-
timation performance. The RMS phase estimation error meets
the CRLBp4 for phase estimation.

5. CONCLUSIONS

Simulation shows that the performance of our estimators are
very close to the CRLBp, even at 0dB, these algorithms are
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Figure 8: The CRLBpy for Timing Estimation with UW Pat-
tern

good approximations of the ML estimations since if the per-
formance of an unbiased estimation meets the CRLB then the
estimation is ML [5]. The techniques proposed here can be
used in high performance PSK burst modems working under
large carrier frequency offset and low SNR conditions, The
complexities of these atgorithms are moderate.
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