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ABSTRACT 

This paper presents a joint source-channel coding scheme 
of digiral video broadcasting over satellite channel. The video 
compression is based on human visual model. Perceptual dis- 
tortion model the just-noticeable-distrtiou (JND) is applied 
to improve the subjective quality of compressed videos. 3-D 
wavelet decomposition can remove spatial and temporal redun- 
dancy and provide scalability of video qualily. In order to con- 
ceal the errors occurred under bad channel conditions, a novel 
slicing method and a joint source channel coding scenario that 
combines RCPC with CRC and utilize9 the distortion informa- 
tion to allocate convolutional coding rates are presented. A new 
performance index based on JND is proposed and used to eval- 
uafe the overall performance at different signal-to-noise ratios 
(SNR). Our system uses OQPSK modulation scheme. 

1. INTRODUCTION 

High quality video broadcasting via satellite channel is of great 
interests nowadays. In this paper we focus on a satellite video 
transmission system that combines human visual model, 3-D 
wavelet subband decomposition and joint source channel cod- 
ing scheme. Because the ultimate objective of video transmis- 
sion systems is to maintain the ,subjective visual quality of im- 
ages, performance metrics (other than MSE or PSNR) that take 
the psychovisnal properties of human visual system ( W S )  into 
account are proposed [2]. Several modem human visual mod- 
els are developed, such as the just-noticeable~disto~on (JND) 
[21 [7] and the three-component image model [51. The JND 
model provides each pixel a threshold of enor visibility, below 
which reconsmction errors are rendered imperceptible. The 
JND profile of a video sequence is a function of local signal 
properties, such as brightness, background texture. luminance 
change9 between two frames. and frequency distribution. Scal- 
able video compression schemes (e.g. subband coding) are 
widely Studied [l] because they allow selective transmission of 
subbands to different users depending on their quality require- 
ments and available channel bandwidths. Subband decomposi- 
tion has extended to three dimensions (3-D) recently [ll. The 

JND model and 3-D wavelet decomposition are applied in our 
video codec. The quantizer is based on the JND model and to 
approach the perceptual optimum. 

Traditionally source and channel coders are designed in- 
dependently according to Shannon's source-channel separation 
theorem. However in any practical communication system with 
finite delay and finite complexity in sonrce and channel coders 
there are advantages in joint source-channel coding. [lo] gives 
a survey of recent progress on it. 

In satellite broadcast case feedback channelis not available. 
thus the transmitter has no information about the receivers and 
their channel environments. It is diflicult m guarantee the aver- 
age video qualities under diversified channel conditions with- 
out large channel coding overhead. We derive a new slicing 
method to truncate the data from each subbandinto small slices 
before arithmetic coding. Rate compatible punctured convolu- 
tional (RCPC) codes [ll] are adopted in our system. The ad- 
vantage of using RCPC codes is that the high rate codes are 
embedded into the lower rate codes of the family and the same 
Viterbi decoder can be used for all codes of a family. Reed- 
Solomon code and Ramsey interleaver plus RCPC is used to 
protect the data from spatial LLLL temporal L subband. Cyclic 
redundancy check (CRC) codes are combined with RCPC for 
other less significant subbands to assure acceptable video qual- 
ity even under bad channel conditions. 

In Section 2 the video cdec is presented. Section 3 pments 
the error concealment scheme. In the last section the perfor- 
mance of the system is shown through computer simulation. 

2. THE JND MODEL BASED VIDEO CODEC 

Figure 1 and Figure 2 show the JND model based video en- 
coder and decoder respectively. In the video encoder, the input 
video sequence is decomposed into eleven spatio-temporal fre- 
quency subbands in 3-D wavelet analysis module. The Frame 
Counter & Motion Detector renews the JND profiles from frame 
count and abrupt motion detection. The JND Model Genera- 
ton estimate the spatio-temporal JND profile from analyzing 
local video signals and the distodon allocation algorithm that 
determines the JND profile for each subband. The Perceptu- 
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Figure 1: The JND Based Video Encoder 
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Figure 2: The JND Bared Video Decoder 

ally Tuned Quantizer quantizes the wavelet coefficients in each 
subband according to their JND profiles. The spatial LLLL 
temporal L subband will be encoded by DPCM. Then the data 
from all subbands goes through the Slicer and Arithmetic Cod- 
ing part to do slicing and entropy coding. Afterward we get 
compressed video signal. Several modules in video codec will 
be presented subsequently. 

2.1. 3-D Wavelet Analysis 

The two-tap Haar wavelet is adopted to proceed temporal anal- 
ysis, Antonini (7.9) wavelet [6] is used to proceed spatial anal- 
ysis for the signal through the Haar filter. The temporal low 
frequency part is decomposed to two levels, and high frequency 
part is decomposed to one level shown as Figure 3. 

2.2. The Frame Counter &Motion Detector 

Because the calculation of the JND profiles is resource con- 
suming, the Frame Counter & Motion Detector is designed to 

Figure 3: Subbandr after 3-D Wavelet Decomposition 
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control the renew process of the JND. Typically the JND pro- 
filcr are renewed every 10 to 20 frames, however they will be 
renewed immediately after an abrupt motion detected by a sim- 
ple motion detector which calculates the energy of the spatial 
LL temporal H subband (i.e. subband 7 in Figure 3). If the en- 
ergy exceed. some threshold, an abrupt motion happens with 
high probability. 

2.3. The JND Model Generator 

The JND provides each signal a threshold of visible distortion, 
below which reconstructiou errors are rendered imperceptible. 
The JND profiles in spatio-temporal domain is as [3] [41, the 
same syntax is adopted, please refer to [31[41 for explanation: 

JNDs-~( s ,y ,n )  3 f3(f ld(z ,~,n)) .  JNDs(z,y,n) (1) 

where0 5 z < W, 0 5 y < H, W and Hare the width and 
height of an image, and 

JNDs(z,y, n) I m 4 f i  (mg(z, y,n)),fa(ms(z,y, 4)) (2) 

2.4. A Novel Human Perceptual Distortion Measure 

Based on the basic concept of the JND, the idea of minimally- 
noticeable-distortion @IND) is developed for the situation that 
bit-rate budget is tight and the distortion in the reconstructed 
image is perceptually minimal at the available bit-rate and uni- 
formly distributed over the whole image [7]. The perceptual 
quality of the reconstnrcted image is accordingly expected to 
degrade evenly if bit-rate is reduced. MND is expressed a?: 

MND(z,y) 5 JND. d(z,y) (3) 

where d(s, y) is the distortion index at point (z, y) . We define 
the energy of MND of a small area indexed by (i, j )  as: 

( w ) € r i j  (Z,d€Ti l  

where ~ d j  is a small block (typically 8 by 8 pixels), S(i,j) is 
the distortion index for this block. We can define our global hu- 
man perceptual distortion measure based on evaluating 6(i, j )  
as follows: 

1 K L  A, I - - - ~ ~ ~ ( k , l )  
KL b=l I=1 
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where e(k,1) is the distortion measure of a medium block in- 
dexed by (k, 1) . We decompose the whole image into K by 
L non-overlapped medium blocks R ~ I ;  each medium block 
is divided into M by N small blocks q j ( k , l ) ,  i.e., Rki = 
Ui=l,M;j=l,N~ij(lC,I).~(b,I) isdefinedas: 

~ ( k ~ l )  I median(g(i,j)(rij(k,I) E % I )  (6) 

The larger AG is, the larger the subjective perceptual distor- 
tion. Compared with FSNR or MSE, AQ taka$ human visual 
model into account, therefore i t  can reflect the subjective visual 
quality better than PSNR or MSE. We will use this distortion 
measure to evaluate the performance of our system. 

2.5. The Perceptual Tuned Quantizer 

The advantage of the JND model is that it provides a quantita- 
tive measure of the error sensitivity threshold with spatial and 
frequency localization. Therefore the quantization table based 
on the JND model can be localized, which adds a globally even 
control on the compressed video quality. A mid-rising uniform 
quantizer is adopted as OUT basic quantizer due to its simplicity 
and optimal performance under certain conditions [41 [SI. 

typically ranges from 1.0 to 10.0, where 1.0 stands for the just 
noticeable distortion. Second, each subband is partitioned into 
non-overlapped8 by 8 block$. For each block, the step size of 
the quantizer is maximized under the condition that quantiza- 
tion error energy is less than or equal to the MND energy(eq. 
(4)) of this block whose distortion index J(i,j) equals to AQ. 
A quantization table that leads to uniform error energy over all 
subbands is setup for each one. It is packaged in the header of 
the bit stream of each subband. 

Firs& the globalobject distortionindex AG is selected. which 

2.6. Arithmetic Coding and Slicing Algorithm 

3. ERROR CONCEALMENT 

A punctured code is a high rate code obtained by periodically 
deleting (i.e. puncturing) certain coded bits from the output 
stream of a low rate encoder. When compared with the op- 
timum codes of equal rates, punctured codes are slightly less 
efficient but decoding complexity is greatly reduced. Clearly 
the puncturing rule determines the receiver SvUCtuKe for dif- 
ferent code rates. A family of RCPC codes [ l l ]  are gener- 
ated by adding rate-compatibility restriction to the puncturing 
rule. The rate-compatible restriction makes the receiver sVuc- 
mre nearly identical for a large range of code rates. From 
the work in [Ill, we order the information bits from 11 suh- 
bands according to their source significance information (SSI) 
as Sl0 . . .So. The ordered information bits are shifted into the 
shift registers of a 1/N, memory M convolutional encoder. 
When the nlo information bits from subband 10 are transmit- 
ted the puncturing matrix a(llo) (we borrow the syntax used in 
[ll]) is used as puncturing table. As soon as the first bit from 
subband 9 enters the encoder the puncturing table a&) will be 
used. After another ng information bits, the table is switched 
to a(ln), etc. The procedure is easy to follow if nk is a multiple 
of the punCturingpenod P. 

In order to optimize the overall subjective video quality at 
reasonable coding cost, a rate allocation scheme based on JND 
distortion is proposed. We define the averageJND distortion of 
subband l(1 = 0. . .lo) as follows: 

where SI is the set of pixels of subband I , Hi and ,Wi are its 
height and weight. DI is an indication of the robustness of SI 
to quantization errors. The larger DI is, the more robust it is 
to errors, the higher coding rale we choose. Table 1 shows Di 
for video sequence "Mobile-Calendar", From simulation we 
can see that DI divides SI (1 = 0 ". 101 into 3 erouos iSnl. " . L - ,  

Arithmetic coding [9] is adopted to achieve efficient compres- 
sion. however the decodingresult of one coefficient depend$ on 
the decoding result of previous one because of adaptive coding 
procedure. In order to prevent decoding errors from spreading, 
a slicing algorithm is derived to truncate the whole subband 
into small bit streams before arithmetic coding. The idea is to 
make each small bit stream cany the same amount of "distor- 

{si, sz,&, s4',&, se, $7): {ss ,sg,  SI,}, which is intuitive 
for subhand 

tion sensitivity 'I. If we segment the subband SI into Cj small 
bit streams (or sets), each set Gi, (i = 1, . . . , Q) is defined a Table 1: Average Distortion DI for Each Subband 

Figure 4 shows the unequal error protection (UEP) encoder, 
Figure 5 shows the corresponding UEP decoder. The spatial 
LLLL temporal L subband (i.e. So ) is the most significant 
subband, we should use a large amount of rtsource to protect 
it from errors. In order to deal with burst emrs  in channel 
Red-Solomon (RS) code and Ramsey interleaver can be used. 
After RS encoder, a low rate RCFC code is selected to add 

1 - { (z2v) i c JNDa(2,y) - Gi 
(.,U)€Gi 

1 
(7) 
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Figure 4 UEP Channel Encoder 
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Figure 5: UEP Channel Decoder 

more protection. We select a family of RCPC codes (Table 
II in [ll], memory length Ma), the coding rate covers from 
Si9 to 8/24. For other less significant subbands, cyclic rednn- 
dancy check (CRC) codes are added before RCPC encoder to 
detect uncorrected errors got from channel. If errors are de- 
tected by CRC syndromes check in a block in Sg before arith- 
metic decoding, this block is discarded. Simulation shows that 
discarding an error-corrupted block is better than using wrong 
decoded information. Therefore the video quality degradation 
under bad channel conditions is acceptable because of the per- 
formance scalability of wavelet based subband coding. It gives 
broadcast system designers some freedom to assure the over- 
all video quality without receivers' channel environment in- 
formation at moderate coding cost. In decoder, soft-decision 
(or hard-decision) Wterbi decoder is adopted. An unique word 
(UW) detector is used to detect the start of anew subband. Rate 
allocation information is available on both sides. 

The error probability performance of the system is discussed 
as following. The biterrorrateupperboundof arateP/(P+1) 
convolutionalcode is given by [121: 

where ck is got from convolutional code generation polyno- 
mial T(D,  N )  , 

P k  is the probability that the wrong path with distance k to the 
correct path is selected. A more relax upper bound for binary 
symmetric channel (BSC) is given by [121: 

Table 2: Rate Index of RCPC Codes 

where is p the transition probability of BSC. For OQPSK signal 
over AWGN channel, p is lower bounded by Q(m) . It 
is eaqy to achieve this bit error rate with the cntting-edge mo- 
dem techniques. If CRC can detect all the channel errors, the 
probability that a block with length n in subband I is discarded 
is as follows: 

P D  = 1- ( l -pB( l ) )n  (11) 

where P B ( ~ )  is the bit error rate of subband 1 with coding rate 
TI  if BSC model is applied. 

4. SIMULATION RESULTS 

Table 2 shows the index of RCPC codes used in our system, 
index 0 stands for no channel coding. Figure 6 shows the sim- 
ulation result of the bit error rate @ER) of different coding rate 
at different SNR. 

Video sequence "Mobile-Calendar" and "Claire" are used 
to test our system. Figure I shows Frame 1 in the recovered 
sequence of "Claire", which shows that the distortion measure 
AG is better than PSNR in the sense that it reflects the sub- 
jective visual quality of imagdvideo beuer. The PSNR of (a) 
and @) are almost the same, but A@ indicates that the distor- 
tion of (a) is smaller than that of (b) a$ we can tell from ob- 
servation (e.g. shoulder, hair and cheek). The video frames 
are encoded, modulated by OQPSK modulator and transmitted 
over AWGN channel at different SNR. The object AG is set 
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Figure 8: AG with Different UEP Coding Scheme at Different 
SNR 
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(b) 
Figure 7: Recovered Frame of "Claire" (a) A0 = 2.38, 
PSNR=30.80& (b) AG = 3.07,PSNR=30.15dB 

to 1 which means that the compression brings just noticeable 
distortion in the pictures. Figure 8 and Figure 9 show distor- 
tions A0 and PSNR of first 10 recovered frames with different 
protection schemes at different SNR. The 1egend"Rate 4.7,8" 
means that the first UEP group (subbando) definedpreviously 
uses the 4th RCPC code, the second UEP group (subband 1 to 
7) uses the 7th RCPC code and the third UEP group (subband 
8 to 10) uses the 8th RCPC code. From these figures we can 
see that if SNR is larger than some threshold that is different 
for each UEP coding scheme there will be no distortion caused 
by channel errors. AG (Rate 4,S, 6) is 1.22 that is larger than 
desired value 1 when SNR is larger than 5 0 ,  the reason is 
that the JND model initially calculated from first two frames 
and is not renewed €or the subsequent 8 frames, which brings 
bias in vidw encoding. Figure 10 shows Frame 3 of the recov- 
ered sequence of "Mobile-Calendar", Some areas corrupted by 
channel noise can be observed. 

Figure 9 PSNR with Different UEP Coding Scheme at Differ- 
ent SNR 

5. CONCLUSIONS 

We have presented a satellite vidw transmission system based 
on wavelet analysis and human vision model. The joint source 
channel coding scheme is investigated. A new performance in- 
dex based on the JND model is proposed. The quantizer and 
slicer are pfrCepNdy optimized. Since we focus on the sub- 
jective quality and enor concealment, more powerful compres- 
sion schemes (e.g. Zero-tree, motion estimation and run-length 
coding) are not applied in our system. 
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