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1.1 Introduction

As an important concept in network security, trust is interpreted as a set of
relations among agents participating in the network activities. Trust relations are
based on the previous behavior of an agent within a protocol. Trust establishment
in distributed and resource-constraint networks, such as mobile ad hoc networks
(MANETs), sensor networks and ubiquitous computing systems, is much more dif-
ficult but more crucial than in traditional hierarchical architectures, such as the In-
ternet and base station- or access point-centered wireless LANs. Generally, this type
of distributed networks have neither pre-established infrastructures, nor centralized
control servers or trusted third parties (TTP). The trust information or evidence used
to evaluate trustworthiness is provided by peers, i.e. the agents that form the network.
Furthermore, resources (power, bandwidth, computation etc.) are normally limited
because of the wireless and ad hoc environment, so the trust evaluation procedure
should only rely on local information. Schemes that depend only on local interac-
tion also have the desired emergent property that enables fast reaction to network
member changes, topology changes and security changes that frequently happen in
mobile networks. Therefore, the essential and unique properties of trust management
in this new paradigm of wireless networking, as opposed to traditional centralized
approaches are:uncertainty and incompletenessof trust evidence, trust value is
between−1 and1; locality in trust information exchange;distributed computa-
tion.

Trust establishment is a process starting from a small set of agents who are known
to be trustworthy. For example, the first few peers to join a network are often known
to be trustworthy, while the majority are neutral, i.e. with trust value0. They are
subsequently evaluated by agents who have direct interaction with them. Those eval-
uating agents are either the physical or logical neighbors of target agents. Based on
their observations and evidence, they are able to provide opinions on the target agent,
to build the trust value (also called reputation) of the target agent. The whole network
therefore evolves as the local interactions iterate from “isolated trust islands” to “a
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connected trust graph”. Our interest is to discover rules and policies that establish
trust-connected networks using only local interactions, to understand the impact of
local interactions on the whole network and also to find the conditions under which
trust spreads to a maximum set, as well as the parameters that speed up or slow down
this transition.

There have been several works on trust computation based on interactions with
one-hop physical neighbors. In [2], for instance, first-hand observations are ex-
changed between neighboring nodes, where nodeA adjusts his opinion forB, based
on how closeB’s evidence is toA’s previous opinion about another nodeC. It pro-
vides an innovative model to link nodes’ trustworthiness with the quality of the evi-
dence they provide. Our work emphasizes the inference of trust value instead of gen-
erating the direct trust, which is similar to [7] and [8], where weighted averages were
used to aggregate multiple votes for trust evaluation and provided promising results
on using this simple local interaction rule to correctly evaluate trust in distributed
networks. Particularly in [7], different kinds of malicious behaviors have been sim-
ulated and their results showed that by ranking nodes according to the trust value,
the network application (in their case, file downloading in p2p networks) doesn’t
get affected by malicious nodes. However, the results in both [7] and [8] are based
on simulation. In this paper, we analyze a local interaction rule using graph theory
and provide a theoretical justification for network management that facilitates trust
propagation.

In wireless networks such as mobile ad hoc networks and sensor networks, most
of the functions (routing, mobility management, and security) must rely on coop-
eration between nodes. In addition, such cooperation utilizes local information and
local (between neighbors) interactions. This is probably the most important differ-
ence between this type of networks and traditional networks, such as the Internet and
cellular networks.

In the wireless networks of interest in this paper, nodes are not under the control
of any central authority. In other words, each node is its own authority. The network
is generated in a more distributed and asynchronous manner. In this situation, the
most reasonable assumption is that each node will try to maximize its benefit by ex-
ploiting the network, even if this means adopting a selfish behavior. This selfishness
means that nodes are not willing to participate, without additional incentives, in the
common networking functions, such as route discovery, packet forwarding and secu-
rity management, which are always resources consuming, including power batteries
and bandwidth consumption.

Over the last few years, there has been increasing amount of research on design-
ing mechanisms to encourage nodes to collaborate. Basically, the approaches taken
can be divided into two categories: one is based on incentive techniques, which nor-
mally rely on various kinds of trust or reputation systems to promote cooperation
and circumvent misbehaving nodes [2, 3, 9]; the other is inspired from game theory,
where payoffs are assigned to different strategies of nodes, and Nash equilibria in
non-cooperative games are considered to be the optimal and stable solutions [5, 13].

In our paper, the interactions among nodes are also modeled as games, which are
cooperative games rather than non-cooperative games, where players always conflict.
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In cooperative games, players form coalitions to obtain the optimum payoffs. The key
assumption that distinguishes cooperative game theory from non-cooperative game
theory is that players can negotiate effectively [10]. We will discuss how negotiation
can help to form thegrand coalitionthat includes all players together. Another way
to form a grand coalition is through a trust establishment mechanism: nodes which
do not cooperate will be penalized by the trust establishment mechanism. How trust
establishment mechanisms can help in cooperative games is also analyzed. Further-
more, we show that trust establishment and evolution of cooperation go hand in hand
by viewing the whole network as a distributed dynamical system.

As discussed, trust computation is distributed and restricted to only local inter-
actions in a MANET. Each node, as an autonomous agent, makes the decision on
trust evaluation individually. The decision is based on information it has obtained
by itself or from its neighbors. Those aspects are analogous to situations in statis-
tical mechanics of complex systems with game theoretic interactions. Game theory,
and more specifically the theory of evolutionary games, provide the framework for
modeling individual interactions. This circle of ideas has a lot in common with ran-
domized optimization methods from statistical physics.

One of the simplest local interaction models is the Ising model [11], which de-
scribes the interaction of magnetic moments or spins, where some spins seek to
align with one another (ferromagnetism), while others try to anti-align (antiferro-
magnetism). The Ising spin model consists ofn spins. Each spin is either in position
“up” or “down”. Any configuration of spins is denoted ass = {s1, s2, . . . , sn},
wheresi = 1 or − 1 indicating spini is up or down respectively. A Hamiltonian, or
energy, for a configurations is given by

H(s) = − 1
T

∑

∀i∈V,j∈Ni

Jijsisj − mH

T

∑

i

si. (1.1)

whereT is the temperature. The first term represents the interaction between spins.
The second term represents the effect of the external (applied) magnetic field. In
the Ising model the local interaction “strengths” are all equal to a parameterJ . In
the more complex case of spin glass theJij are different and may even come from
random processes [11].

The problem of computing the ground state (global minimum of energy) for the
Ising model (and even more so for spin glasses) is an NP-hard problem. There are
2n possible configurations for the model, the computation becomes infeasible when
n gets large. So we must use heuristic methods to find low energy configurations.
As proposed in [1], we could imagine that the spins try to reduce their ownfrus-
tration (or energy) individually, and come up with an interesting cooperative game.
In game theoretic terms, thepayoff for nodei, when the graph has a configuration
s = {s1, s2, . . . , sn}, is

πi =
∑

j∈Ni

Jijsisj (1.2)
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WhenJij = 1, the agents are rewarded for aligning their spin states; whenJij = −1
they want to take on opposite states (anti-align their spins) in order to maximize their
payoffs. Agents interact in order to maximize their own payoffs.

This model provides the inspiration for our approach, as it can be directly used
for distributed trust computation. Letsi be the trust value assigned to nodei, where
si ∈ {−1, 1}. Nodei will be assigned a trust value according to the opinion of the
majority of its neighbors. We setJij = 1,∀j ∈ Ni. Then the payoff of agenti
is πi = si

∑
j∈Ni

sj . In order to maximizeπi, i will set si with the same sign as∑
j∈Ni

sj , which is actually the same value as neighbor majority vote. Simulations
using Simulated Annealing (SA) show that the average payoff of the whole network
is a function of the temperatureT in the Ising model. High temperatures, in the trust
computation context, mean that the agents are very conservative and not willing to
change their trust values, the payoffs are near 0, which is the expected payoff for
a random set ofsi from {−1, 1}. While, as the temperature decreases (aggressive
agents), the algorithm becomes greedier and payoffs increase, most of the nodes will
reach agreement. Recently there has been very strong interest in the application and
extension of such optimization schemes from the statistical mechanics of spin glasses
and associated games to optimization and other problems in information technology
[11].

In the Ising model, and the more complex models of spin glasses, an important
characteristic isphase transition phenomena. It is observed that when the tempera-
ture is high, all the spins behave nearly independently (no long-range correlation),
whereas when temperature is below acritical temperaturec0, all the spins tend to
stay the same (i.e., cooperative behavior). Phase transitions are also studied in evolu-
tionary prisoner’s dilemma games [14]. Phase transition is a common phenomenon
that takes place in any combinatorial structure, where a large combinatorial struc-
ture can be modeled as a system consisting of many locally interacting components.
A phase transition corresponds to a change in some global (macroscopic) parame-
ter of the system as the local parameters are varied. Distributed trust computation is
essentially a cooperative game where nodes interact with their neighbors locally.

The structure of the paper is as follows. In Section 1.2 we develop the network
model and the framework of cooperative games for analyzing cooperation among
the agents. In Section 1.3 we analyze the cooperative game framework and show
that agent cooperation can be achieved employing negotiations between the agents.
We also develop a dynamic distributed trust mechanism framework and demonstrate
that it can also induce cooperation among agents, albeit without negotiations. In
Section 1.4 we investigate the dynamic evolution of both cooperative games and
trust mechanisms and establish certain quantitative measures and characteristics of
the “spread” of cooperative behavior among agents. Finally, Section 1.5 contains our
conclusions and a brief description of future research directions.
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1.2 Problem formulation

1.2.1 System model

The network is modeled as an undirected graphG(V, E). Throughout this pa-
per, we use the termsnode, player andagentinterchangeably, where a nodei is an
element in the setV . Nodes are players that play games among themselves. Since
we only consider direct interaction among nodes, nodes only play games with their
neighbors, which are denoted as:

Ni , {j|(i, j) ∈ E} ⊆ {1, . . . , N} \ {i}.
The neighbor set of agenti, Ni, can represent the set of agents with whichi is
allowed to communicate (giving rise to a logical interconnection network), or the set
of agents whichi can sense, transit or receive information from (physical wireless
communication links).

Update strategy

Votes

Node i
Strategies

Strategy

Trust Values

Payoff

xi

γi

t1i, . . . , tNi

Inference

Neighboring Nodes

Fig. 1.1.System operation block-graph for a typical node.

In our model, each node has a self-defined playing strategy, which is denoted
by γi for nodei. Another characteristic of each node is its trust values, which are
dependent on the opinions of other nodes. Trust values of a node can be different for
different players. For instance,tji andtki are the trust values ofi provided by distinct
playerj andk, and possiblytji 6= tki. Fig. 1.1 is a block graph demonstrating how
nodes interact among their neighbors, where the payoff of nodei after playing games
is represented asxi. The procedure is summarized as the following three rules:
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• Strategy updating rule: as shown in Figure 1.1, nodes update strategies based on
their own payoffs. They tend to choose rules that obtain the maximum payoffs.

• Payoff function: the payoffs are functions of the strategies of all participants. For
a specific node, the payoff only depends on strategies of its neighbors and itself.

• Trust computation rule: trust values are computed based on votes, which are pro-
vided by neighbors and are related to the history (strategies and trust values) of
the target node. Since trust values eventually have impact on the payoff of the
node, there is a dotted line in Figure 1.1 from trust values to payoff to represent
their implicit relation.

For simplicity, we assume the system is memoryless. All values are dependent
only on parameter values at most one time step in the past. Therefore, the system can
be modeled as a discrete-time system:

γi(t + 1) = f i(xi(t), γi(t), γj(t), tij(t)) (1.3)

tik(t) = gi(tij(t), vjk(t)) ∀k ∈ N (1.4)

xi(t) = hi(γi(t), γj(t)) (1.5)

vij(t) = pi(γj(t), tji(t)) (1.6)

wherej stands for all neighbors ofi, andvij is the value nodei votes forj. In
Section 1.4, we will analyze the dynamics of the system, especially the effect of trust
propagation on the formation of cooperation. We first introduce the basic element of
this system: the cooperative games among neighboring nodes.

1.2.2 Games

In this part, we give the formal definitions of the interaction games. In our work,
we consider two-person games with perfect information, say, player (or node)P1

interacts with player (or node)P2.

Definition 1 (Strategy).A strategyγi for Pi is the alternativePi chooses based on
the information it currently holds. The set of all strategies ofPi is called his strategy
set (space), and it is denoted byΓi.

Definition 2 (Payoff).The payoff of playerPi is the function of the strategies of both
players, which is denoted byxi = fi(γ1, γ2).

In a game, two rational players choose their strategies based on the information
they have, and aim to achieve the optimum payoff. Games are generally divided into
two categories: non-cooperative games and cooperative games. The essential differ-
ence of these two types of games is that in cooperative games players are allowed to
negotiate while in non-cooperative games players play the game for their own sake.
Therefore, in cooperative games, correlated mixed strategies are allowed, and the
payoff can be transferred from one player to the other (though not always linearly).
In what follows we will compare two different games by providing simple example
games; our game model is based on a simple cooperative game and the interactions
among neighbors.
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Non-cooperative vs. cooperative games

One of the most well known models in two-player non-cooperative games is
the prisoner’s dilemma. In prisoner’s dilemma, the strategy sets of both players are
Γi = {cooperate, defect}. Then there are four combinations for(γ1, γ2) and the
payoffs of two players are assigned in a matrix form as showed in Table 1.1, where

P1

P2

C D
C (r, r) (s, t)
D (t, s) (p, p)

Table 1.1.Payoff matrix of prisoner’s dilemma.

“C” stands for cooperate and “D” for defect. The payoffs are related to whether
players cooperate or not and to what extent. For each possible pair of strategies,r is
the “reward” payoff that each player receives if both cooperate,p is the “punishment”
that each receives if both defect,t is the “temptation” that each receives if he alone
defects ands is the “suckers” payoff that he receives if he alone cooperates. The
payoffs satisfy the following chain of inequalities:

t > r > p > s

Players try to maximize their payoffs. For playerP1, strategy D isstrictly dominant
to the strategy C: whatever his opponent does, he is better off choosing D than C.
By symmetry, D also strictly dominates C for playerP2. Thus two “rational” players
will defect and receive a payoff ofp, while two “irrational” players can cooperate
and receive greater payoffr.

In cooperative games, players are allowed to negotiate and use the strategies
according to their committed agreement. Under such an assumption, rational players
either cooperate at the same time or defect simultaneously. If two players do not
cooperate, the payoff they get is called thedisagreement vectorf∗ ∈ R2. If they
cooperate, the players negotiate about which point in the set of feasible payoffsL ∈
R2 they will agree upon. So in cooperative games we need to investigate: 1)whether
players are willing to reach a consensus on which feasible payoff to realize; 2) how
to allocate the payoffs among the players. We can analyze a simple cooperative game
that is a modification of the prisoner’s dilemma: the disagreement vectorf∗ = (p, p),
for simplicity letp = 0 and the payoffs are defined as

x1 = f(a2)− ca1

x2 = f(a1)− ca2

a1 + a2 ≤ E

wherea1 anda2 are some limited resources (with limitE) shared by two players,
such as money or bandwidth in the network context, andf is a concave function.
Figure 1.2 depicts an example of the players’ payoffs.
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x 1

x
2

L (feasible payoffs) 

x
1
=g(x

2
) 

Fig. 1.2.Illustration of a two-player cooperative game.

The negotiation resultx = (x1, x2) satisfies the following conditions

1. x ∈ L (feasibility);
2. x ≥ f∗ (rationality);
3. x′ ∈ L, x′ ≥ x imply x′ = x (Pareto-optimality).

Then the boundary of the compact, convex feasible setD = L ∩ {x : x ≥ f∗}, i.e.
the curvex1 = g(x2) in Fig. 1.2, is the set of candidates for negotiation. Then the
question is: on which point the agents would agree on if they cooperate? This will be
discussed in Sect. 1.3.

Games on networks

In this paper, we consider cooperative games on networks, where nodes play
cooperative games with their neighbors iteratively. Assume that at each time step,
two neighboring nodes only play the game once. Cooperative games are normally
represented by thecharacteristic function formwhich is a finite setN = {1, . . . , N},
the set of players and a function (characteristic function)v : 2N → R defined on
all subsets (coalitions) ofN with v(∅) = 0. We denote such a game asΓ = (N, v).
DefineS, a subset ofN , as a coalition if all nodes inS cooperate. Thenv(S) is
interpreted as the maximum utility (payoff)S can get without the cooperation of the
rest of the playersN \S. In order to simplify our analysis, we assume the payoff only
depends on the interacting two parties and the feasible payoff set of the two-player
game is shown in Fig. 1.2. Supposeyij is the payoff ofi from the game betweeni
andj. Since games are played on networks,yij 6= 0 only if i andj are neighbors,
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and setyij = 0 if i = j or i andj are not neighbors. For instance, consider two
neighboring nodesi andj and letS = {i, j}, then

v(S) = max{yij + yji}. (1.7)

Apparently, the payoffs that maximizev(s) are on the Pareto frontier of the convex
setL. Substituteyij = g(yji) into (1.7), and we can derive the payoffs that maximize
v(s), denoted as(xij , xji). In a geometric interpretation,(xij , xji) is the point on the
boundary ofL from where a tangent toL can be drawn with slope−1. It is obvious
thatx = (xij , xji) satisfies the negotiation conditions.

The following are assumptions made and used in this paper:

• The games are with transferable utility, i.e., payoffs were given in linearly trans-
ferable utility.

• The cooperation is bilateral, i.e. for two neighboring nodes, either both cooperate
or none cooperates. This is because there is no incentive for a node to altruisti-
cally contribute without receiving some payoff.

• Nodes cooperate with all the neighbors in the same coalition. Ifi is in coalition
S, j ∈ Ni andj ∈ S, theni cooperates withj.

As we defined, a coalition is a subset of nodes that cooperate with all their neigh-
bors in the coalition. Among all coalitions, there are so-calledmaximumcoalitions
which are not subsets of any other coalition, i.e., ifS is a maximum coalition, then
∀i ∈ S, j /∈ S, i andj do not cooperate with each other. In this paper, all coalitions
are maximum coalitions, so we omitmaximumfrom now on. We could easily find
the characteristic function of our cooperative game, which is the summation of the
payoffs from all cooperative pairs in the coalition, as:

v(S) =
∑

i,j∈S

xij (1.8)

Notice that∀i, v({i}) = 0. We denote the cooperative game defined from (1.8) as
Γ = (N, v).

In the next section, we will describe the details of the system model. Based on the
model, we will investigate stable solutions for enforcing cooperation among nodes,
and demonstrate two efficient methods for achieving such cooperation: negotiation
and trust mechanism.

1.3 Cooperation in games

1.3.1 Cooperative games with negotiation

In Sect. 1.2.2, we reviewed and defined games, especially cooperative games
that are used in our interaction model. In this section, we investigate the impact of
the games on the collaboration in a network. First we start with a simple fact.

Lemma 1. If ∀i, j, xij + xji ≥ 0, thenΓ = (N, v) is a superadditive game
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Proof. SupposeS andT are two disjoint sets (S ∩ T = ∅), then

v(S ∪ T ) =
∑

i,j∈S∪T

xij =
∑

i,j∈S

xij +
∑

i,j∈T

xij +
∑

i∈S,j∈T

(xij + xji)

= v(S) + v(T ) +
∑

i∈S,j∈T

(xij + xji) ≥ v(S) + v(T ).

The last inequality holds by our assumption thatxij + xji ≥ 0. ut
The main concern in cooperative games is how the total payoff from a partial or

complete cooperation of the players is divided among the players. Apayoff allocation
is a vectorx = (xi)i∈N in RN , where each componentxi is interpreted as the payoff
allocated to playeri. We say that an allocationx is feasible for a coalitionS iff∑

i∈S xi ≤ v(S).
When we think of a reasonable and stable payoff, the first thing that comes to

mind is a payoff that would give each coalition at least as much as the coalition
could enforce itself without the support of the rest of the players. In this case, players
couldn’t get better payoffs if they form separate coalitions different from the grand
coalitionN . The set of all these payoff allocations of the gameΓ = (N, v) is called
the core and is formally defined as the set of alln-vectorsx satisfying the linear
inequality:

x(S) ≥ v(S) ∀S ⊂ N, (1.9)

x(N) = v(N), (1.10)

wherex(S) =
∑

i∈S xi for all S ⊂ N . If Γ is a game, we will denote its core by
C(Γ ). It is known that the core is possibly empty. Therefore, it is necessary to dis-
cuss existence of the core for the gameΓ . We first give the definition of a family of
common games: convex games [6]. The convexity of a game can be defined in terms
of themarginal contributionof each player, which plays the role of first difference
of the characteristic functionv. Convexity ofv can be defined in terms of the mono-
tonicity of its first differences. The first difference (or the marginal contribution of
playeri) di : 2N → R of v with respect to playeri is

di(S) =
{

v(S ∪ {i})− v(S) if i /∈ S
v(S)− v(S \ {i}) if i ∈ S

A game is said to beconvex, if for eachi ∈ N , di(S) ≤ di(T ) holds for any coalition
S ⊂ T .

Lemma 2. Γ (N, v) is a convex game.

Proof. ForΓ , di(S) =
∑

j∈S,j 6=i(xji + xij). Take two setsS ⊂ T ,

di(T )− di(S) =
∑

j∈T∩Sc

(xji + xij) ≥ 0

ut
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The core of a convex game is nonempty ([6]), thusC(Γ ) 6= ∅. By Lemma 2, we
have the following theorem,

Theorem 1.Γ = (N, v) has a nonempty core.

Now let’s find one of the payoff allocations that are in the core. For any pair of
players(i, j), suppose the payoff allocation of the game betweeni andj is (x̂ij , x̂ji).
Then we have the following

Corollary 1. If the payoff allocation satisfieŝxij ≥ 0 and x̂ji ≥ 0, then the payoff
allocationx̂i =

∑
j∈Ni

x̂ij is in the coreC(Γ ).

Proof. Take an arbitrary subsetS ⊂ N ,

x̂(S) =
∑

i∈S

x̂i =
∑

i,j∈S

x̂ij +
∑

i∈S,j /∈S

x̂ij ≥
∑

i,j∈S

x̂ij = v(S)

the inequality holds becausêxij ≥ 0, ∀i, j ∈ N . ut
Because we only consider transferable utility games,x̂ij + x̂ji = xij + xji ≥ 0.
Therefore(x̂ij , x̂ji) could be constructed in the following way:

x̂ij =





xij if xij ≥ 0, xji ≥ 0
xij + λijxji if xij < 0, xji > 0
(1− λij)xji if xij > 0, xji < 0

where0 ≤ λij = λji ≤ 1, andx̂ij ≥ 0 is achieved by carefully choosingλij .
Obviously, the payoff allocation we provided in Corollary 1 is a set of points in

the core, while there generally exist more points in the core that are not covered in
the Corollary. However, this solution indicates a way to encourage cooperation in the
whole network. The players which have positive gain can negotiate with their neigh-
bors by sacrificing certain gain (offering their partial gainλxji). Though they cannot
achieve their best possible payoff, they can set up a cooperative relation with their
neighbors. This is definitely beneficial for the players who negotiate and sacrifice,
since without cooperation they cannot get anything. This solution is also efficient
and scalable, because players only need to negotiate with their direct neighbors.

Thus we established cooperative games among nodes in the network, and de-
scribed an efficient way to achieve cooperation throughout the network. In the next
section, we are going to discuss solutions by employing trust mechanisms, which do
not require negotiation and the assumption onxij + xji ≥ 0 can also be relaxed.

1.3.2 Trust mechanism

Trust is a useful incentive for encouraging nodes to collaborate. Nodes who re-
frain from cooperation get lower trust value and will be eventually penalized because
other nodes tend to only cooperate with highly trusted ones. From Fig. 1.1 and the
corresponding system equations, the trust values of each node will eventually influ-
ence its payoff. Let’s assume, for nodei, that the loss of not cooperating with nodej
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is a nondecreasing function ofxji, because the morej loses, the more effortj under-
takes to reduce the trust value ofi. Denote the loss fori being non-cooperative with
j aslij = f(xji) andf(0) = 0. For simplicity, assume the characteristic function is
a linear combination of the original payoff and the loss, which is shown as

v′(S) =
∑

i,j∈S

xij −
∑

i∈S,j /∈S

f(xji) (1.11)

The game with characteristic functionv′ is denoted asΓ ′(N, v′). We then have

Theorem 2. If ∀i, j, xij + f(xji) ≥ 0, C(Γ ′) 6= ∅ andxi =
∑

j∈N xij is a point in
C(Γ ′).

Proof. First we proveΓ ′ is a convex game, givenxij + f(xji) ≥ 0. ∀i ∈ N in Γ ′,

di(S) =
∑

j∈S,j 6=i

(xij + xji)−
∑

k/∈S

f(xki) +
∑

j∈S,j 6=i

f(xij)

Let S ⊂ T ,

di(T )− di(S) =
∑

j∈T∩Sc

(xij + xji) +
∑

k∈T∩Sc

f(xki) +
∑

j∈T∩Sc

f(xij)

=
∑

j∈T∩Sc

(
(xij + f(xji)) + (xji + f(xij))

) ≥ 0.

ThereforeC(Γ ′) is nonempty. Next, we verify thatxi =
∑

j∈Ni
xij is in the core.

For anyS ∈ N ,

∑

i∈S

xi − v(S) =
∑

i∈S

∑

j∈N

xij −

 ∑

i,j∈S

xij −
∑

i∈S,k/∈S

f(xki)




=
∑

i∈S,j /∈S

(xij + f(xji)) ≥ 0.

ut
Apparently, the payoffxi =

∑
j∈Ni

xij does not need any payoff negotiation.
Thus we showed that by introducing a trust mechanism, all nodes are induced to
collaborate with their neighbors without any negotiation.

In this section, we introduced two approaches that encourage all nodes in the
network to cooperate with each other: 1)negotiation among neighbors; 2)trust mech-
anism. We proved that both approaches lead to non-empty core for the coopera-
tive game played in the network. However, we have only considered these two ap-
proaches separately, and the results are based on static settings. The more interesting
problems are how these two intertwine and how the dynamics between the two ap-
proaches converge to a cooperative network – these are discussed in the next section.
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1.4 Dynamics of cooperation

We have analyzed the effect of a trust mechanism on the formation of coopera-
tion. However, what we concentrated on in Section 1.3.2 is the final impact of trust
on the payoffs at the steady state. In this section, we are going to discuss two dynamic
behaviors in the system: trust propagation and game evolution.

1.4.1 Trust propagation

Trust propagation is concerned with how trust evidences (usually negative evi-
dences) propagate from the victims (those who do not receive desired services from
their neighbors) and how the trust evidences of a certain node reach its neighborhood
and trigger off revocation. The consequence of revocation is that the neighbors refuse
to cooperate with the poorly-trusted node and finally isolate it.

Our model is motivated by considering a group of agents each of whom must
decide between two alternative actions (trust or distrust a certain node), and whose
decisions depend explicitly on the actions of other members of the group. Appar-
ently, the other members are those who are interacting with the agent. In economic
terms, this entire class of problems is known generically as binary decisions with ex-
ternalities. Though it appears as a very simple binary decision problem, it is relevant
to surprisingly complex problems, such as statistical mechanics. The decision rule in
our model is basically a threshold rule. Agents are usually reluctant to switch their
decisions, because decisions usually require more resources and time. But once their
individual threshold has been reached, even a single evidence can trigger them into
switching from one state to another. Our decision rule, which is particularly simple,
while capturing the essential features outlined above, is the following. Every node
keeps a state that represents its opinion on a particular node, say nodei: 0 stands
for distrust and 1 stands for trust. Suppose initially all nodes have the state 1, i.e.,
nodes first trust all others, but the state immediately changes if the node observes
non-cooperation of the particular nodei. We model the system evolving in discrete
time. At each time step, a node observes the current states (either 0 or 1) of other
nodes it interacts with, which we call its neighbors. The node adopts state 0 if at
least a threshold fractionφ of its k neighbors are in state 0, else it adopts state 1.

Because of the differences in knowledge, preferences and observational capabili-
ties across the nodes, the thresholdφ is allowed to be heterogeneous.φ is determined
by the individual node, and can be modeled as drawn at random from a pre-defined
distribution with pdf f(φ). As we have discussed, to model the dynamics of the re-
vocation, the states of all nodes are initially set to 1. At a certain time, the non-
cooperative behavior of nodei is observed, then a fraction (usually very small, be-
cause the network is sparse) of the nodes are switched to state 0. The whole network
evolves at successive time steps, with all nodes updating their states in asynchronous
order according to the threshold decision rule above. Once a node has switched to
state 0, it remains at 0 for the rest of the dynamics.

The main objective of trust propagation is to explore how the trust revocation
depends on the network interactions. Because building relationships and exchanging
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information are both costly, especially for wireless ad hoc networks, the interactions
tend to be very sparse, so we consider only the properties of networks with low
(node) degree. Our approach concentrates on two quantities: (i) the probability that
the revocation is accepted by sufficient large portion of the network (or a finite frac-
tion for an infinite network) triggered from a single node (or small fraction of nodes)
– we call these phenomena global revocation; and (ii) the expected size of the global
revocation.
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Fig. 1.3.Revocation windows for the threshold model. The network is a random graph based
on Erd̈os and Ŕenyi [4].

Figure 1.3 shows graphically the condition for global revocation. For simplicity,
we assume homogeneity, i.e., the thresholdφ is the same for every node.d is the
average (node) degree of the network [12]. The line encloses the region of the(φ, d)
plane in which a large fraction (80%) of the network nodes accept the revocation.
Figure 1.4 illustrates that the fraction of nodes accepting revocation changes with
the thresholdφ, with fixed average (node) degree.

The phase transitions in Fig. 1.4 define the boundaries of the revocation windows.
The exact solutions for the phase transitions are discussed in [15], which also pro-
vides the comparison of different network topologies. Therefore, the network topol-
ogy and threshold value are crucial parameters for global revocation. This gives an
important indication and reference for network management and decision control
in sparse networks, where agents interact and make decisions based on information
provided by their neighbors, and in collaboration with their neighbors.
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Fig. 1.4.Percentage of nodes accepting revocation vs. thresholdφ, d = 6.

1.4.2 Game evolution

As shown in Sect. 1.3.2, the trust mechanism drives selfish nodes to sacrifice part
of their benefits and thus promotes cooperation. In this section, the procedure and
dynamics of such cooperation evolution are studied.

In this section, we assume that nodes either cooperate or do not cooperate with
neighbors.γij = 1 denotes that nodei cooperates with its neighborj, andγij = 0
denotes that it does not cooperate withj. We assume that the payoff when one of
them does not cooperate is fixed as(0, 0), and as(xij , xji) when both cooperate. If
xij < 0, we call the link(i, j) anegative linkfor nodei, and when the opposite holds
apositive link. Since all nodes are selfish, nodes tend to cooperate with neighbors that
are on positive links, while they do not wish to cooperate with neighbors on negative
links. In the mean while, the trust mechanism is employed, which aims to function as
the incentive for cooperation. In this part, we assume that revocation and nullification
of revocation can propagate through out the network as discussed in Sect. 1.4.1.

In our evolution algorithm, each node maintains a record of its past experience
by using the variable∆i(t). First definexa,i(t) as the payoffi gains at timet and
xe,i(t) as the expected payoffi can get at timet if i always chooses cooperation with
all neighbors. Notice that the expected payoff can be different each time, since it de-
pends on whether the neighbors cooperate or not at the specific time. Then compute
the cumulative difference

∆i(t) = ∆i(t− 1) + (xa,i(t)− xe,i(t)) , (1.12)

of the total payoff in the past minus the expected payoff if the node always cooper-
ates. Each node chooses its strategy on the negative links by the following rule:
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• if ∆i(t) < 0, nodei chooses to cooperate, i.e.,γij = 1, ∀j ∈ Ni.
• if ∆i(t) ≥ 0, γij = 0, if j ∈ Ni andxij < 1.

Notice that at time0, ∆i(0) = 0. That is to say initially all nodes choose not to
cooperate on the negative links, since they are inherently selfish. There are two other
conditions that force non-cooperation strategies:

• nodes do not cooperate with neighbors which have been revoked.
• nodes do not cooperate with non-cooperative neighbors.

To summarize, as long as one of those aforementioned conditions is satisfied, nodes
choose not to cooperate.

Since we allow and encourage nodes to rectify, i.e., to change their strategies
from non-cooperation to cooperation, we define a temporal thresholdτ in the trust
propagation rule. Instead of always keeping 0 once the state is switched to 0, as in
Sect. 1.4.1, we allow the nullification of revocation (switch back to state 1) under the
condition that the revocation has been nullified forτ consecutive time steps.τ also
represents the penalty for being non-cooperative.τ needs to be large so that the non-
cooperative nodes would rather switch to cooperate than get penalized. However,
largeτ will also reduce the payoff.

The detailed algorithm is shown in Fig. 1.5.
Suppose the total payoff of nodei, if every node cooperates, isxi =

∑
j∈Ni

xij .
We have the following

Theorem 3.∀i ∈ N andxi > 0, there existsτ0, such that for a fixedτ > τ0:

1. The iterated game converges to Nash equilibrium.
2. ∆i(t)/t → 0 ast →∞.
3. i cooperates with all its neighbors fort large enough.

Proof. Nodes without negative links, will always cooperate, thus∆i ≡ 0. Therefore,
we only consider nodes with negative links. First we prove that fort large enough
∆i(t) < 0. Define for nodei, the absolute sum of positive payoffs and negative
payoffs asx(p)

i andx
(n)
i respectively. Then

xi = x
(p)
i − x

(n)
i

Therefore the first payoff for nodei is xa,i(1) = x
(p)
i > 0 and∆i = x

(n)
i . Define

Tmax as the maximum propagation delay in the network. Then att = Tmax all i’s
neighbors revokei because at timet = 1, i didn’t cooperate, and the payoff now is
xa,i(Tmax) = 0 and∆i(Tmax) = ∆i(Tmax − 1) − xi. i continues to get0 payoff
till all neighboring nodes have used the penalty intervalτ . It’s easy to show that asτ
is set large enough,i eventually gets negative∆i.

If i follows the strategy rules in Fig. 1.5,i starts to cooperate with all neighbors.
The difference of the actual payoff and expected payoff is0 from then on. Therefore
∆i(t)/t → 0 ast →∞.

Assume nodei deviates to non-cooperation, then it will get negative cumulative
payoff difference as discussed above. So nodei has no intention to deviate from
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Consider nodei, and the initial settings are as follows:

• all the trust states are set tosij = 1, ∀j ∈ N ;
• the variable∆i(0) = 0.

Node i chooses strategies and updates variables in each time step fort =
1, 2, . . . :

1. The strategy on the game with neighborj is set according to the following
rule:
• for negative links (xij < 0), choose non-cooperation strategy (γij = 0)

if ∆i(t− 1) ≥ 0;
• if sij = 0, γij = 0;
• for all neighbors,γij = 0 iff γji = 0 (cooperation is bilateral);
• otherwiseγij = 1.

2. For all j ∈ Ni, update the trust statesij if one of the following three condi-
tions is satisfied, otherwise keep the previous state
• if i accepts a revocation on nodej, sij = 0;
• if the revocation has been nullified for more thanτ consecutive steps, set

sij = 1;
• if γji = 0, setsij = 0;

3. Compute the actual payoffxa,i(t) and expected payoffxe,i(t), then get the
cumulative difference∆i(t) by Eqn.( 1.12).

Fig. 1.5.Algorithm for game evolution modeling trust revocation.

cooperation. Therefore the game converges to its Nash equilibrium with all nodes
cooperating. ut

We have also performed simulation experiments with our evolution algorithm.
In the simulations, we didn’t assume the condition that∀i, xi > 0, instead the per-
centage of negative links is the simulation parameter. We can report that without
this condition, our iterated game with the trust scheme can still achieve very good
performance. Figure 1.6 shows that cooperation is highly promoted under the trust
mechanism. In Figure 1.7, the average payoffs between the algorithm with strategy
update and without strategy update are compared, which explains the reason why
nodes converge to cooperation.

1.5 Conclusions and Future Directions

In this paper we investigated fundamental methods by which collaboration in
infrastructure-less wireless networks with mobile nodes can be induced, analyzed
and evaluated. In this paper we have also described a new framework within which
the problem of distributed trust establishment and maintenance in a mobile ad hoc
network (MANET) can be formulated and analyzed.
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Fig. 1.6.Percentage of cooperating pairs vs. negative links.
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We concentrated only on distributed methods that use local interactions. We de-
veloped and analyzed a cooperative game framework first and demonstrated how
collaboration can be induced. We showed that negotiation between the mobile agents
is an important component for achieving collaboration within this framework. We
next developed a model for establishing, propagating and managing trust within a
MANET. We showed that such trust mechanisms can also establish collaboration,
even without negotiations between the mobile agents. Finally we investigated both
the dynamics of games as well as of trust propagation as a means for quantifying the
degree of collaboration achieved among the agents and of the speed by which this
collaboration spreads in a large part of the network agents. In the context of our re-
search reported here, we have drawn inspiration from analytical methods used in sta-
tistical mechanics investigations of the Ising model and spin glasses. these analogies
include the existence and investigation of phenomena analogous to phase transitions.

Important current and future directions of our research program are the evaluation
of the robustness of these mechanisms for collaboration in wireless networks, analy-
sis of their reliability and identification of parameters (including topology types) that
influence the dynamics and the qualities of the induced collaborative behavior.
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