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Abstract  
Neural systems of organisms derive their functionality 
largely from the numerous and intricate connections 
between individual components. These connections 
are costly and have been refined via evolutionary 
pressure that acts to maximize their functionality while 
minimizing the associated cost. This tradeoff can be 
formulated as a constrained optimization problem. In 
this paper, we use simulated annealing, implemented 
through Gibbs sampling, to investigate the minimal 
cost placement of individual components in neural 
systems. We show that given the constraints and the 
presumed cost function associated with the neural 
interconnections, we can find the configuration 
corresponding to the minimal cost. We restrict the 
mechanisms considered to those involving incremental 
improvement through local interactions since real 
neural systems are likely to be subject to such 
constraints.  By adjusting the cost function and 
comparing with the actual configuration in neural 
systems, we can infer the actual cost function 
associated with the connections used by nature. This 
provides a powerful tool to biologists for investigating 
the configurations of neural systems.  

Keywords: Neural systems, optimal layout, simulated 
annealing, Gibbs sampler, Markov random field 

1. Introduction 
Connections between neurons in neural systems of 
organisms play a critical role in shaping their 
functionality. The connections, which we also call 
wires, require significant resources such as space, 
power, and development time. Minimizing the wiring 
cost while achieving the required functionality confers 
survival advantages to the organism. Recent work [2, 
5] has suggested that the actual layout of neural 
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systems might be the result of wiring cost 
minimization. Through brute-force search using a 
linear cost function, it has been shown that the actual 
ordering of the ganglia of Caenorhabditis elegans 
minimizes the total wire length [2]. For a quadratic 
cost function, an analytic solution exists for the 
optimal layout problem [3]. The solution gives the 
same ordering for C. elegans ganglia as the actual 
layout for all the ganglia except one. In a very 
different neural system, the optimal wiring solution for 
the prefrontal cortical area in macaque shows similar 
patterns of spatial arrangement as the actual ones [5].  

So far, most prior research on the neural 
placement problem found the optimum solution using 
either exhaustive search [2, 5] or analytic optimization 
techniques [3]. Note that the possible number of 
alternative layouts explodes as the number of neurons 
grows. Therefore brute force searches are impossible 
even for moderately sized systems. On the other hand, 
analytic optimization techniques can only provide an 
exact solution for a few types of cost functions, such 
as the quadratic cost function in [3]. However, it is 
important to explore the possibility of other cost 
functions, since we have no a priori reason to believe 
that any specific function is closest to the one used by 
nature.   

Optimization is universal in all biological 
systems. For instance, swarms of bacteria, insects, and 
animals yield sophisticated collective behaviors based 
only on simple local interactions. In neuronal 
networks, collective behavior during development 
achieves optimal placement as components interact 
through local interconnections. Swarm systems 
generally involve large number of individuals. Thus 
scalability and computational complexity are crucial in 
swarms as well as in neural systems. A stochastic 
approach for large swarm systems has been proposed 
[1], where the interconnection of nodes are modeled as 
Markov random fields (MRFs) and the movement of 
each node is controlled by simulated annealing with 
Gibbs sampling. This approach can yield the node 
configuration corresponding to the global potential 
minimum. Inspired by the emergent behavior of large 
swarm systems from local interactions, we model the 



neuronal network as a MRF. We design Gibbs 
potential functions corresponding to the wiring cost 
function and use simulated annealing with Gibbs 
sampling to find the neural layout with minimal wiring 
cost. In this way we can compare the configurations 
resulting from different cost functions with the actual 
layout. This may provide some insight into the actual 
cost functions used by nature. 

Furthermore, our method more closely parallels 
the actual optimization process that occurs during the 
evolution of biological systems, so it may offer 
insights into this process as well. Although previous 
work indicates that neural systems might be optimized 
to minimize wiring cost, there is limited understanding 
about how this optimization is actually implemented in 
such complicated systems with huge numbers of 
components. It is hard to imagine that nature arrived at 
this solution by brute-force search or by employing a 
simple quadratic cost. It is more reasonable to assume 
that nature uses gradual adjustments and that 
optimality emerges through millions of years of 
evolution. Our proposed optimization method using 
incremental updates based on local interactions is one 
example of such a possible scheme (or process).   

This paper is organized as follows: in Section 2, 
the neural wiring minimization problem is formulated; 
in Section 3, Markov random field, Gibbs sampling 
and simulated annealing are introduced; in Section 4, 
the algorithm and simulation results on neural wiring 
cost minimization are described; in Section 5, we 
summarize our contributions.  

2. Optimal neural placement 
problem and cost function 

The functionality of a neural system arises in 
large part from its connections. In the optimal neural 
layout problem, we assume that the connections 
necessary for a specific functionality are known, 
including both internal connections (connections 
among the neurons) and external connections 
(connections to neurons external to the neural 
network). The task is to find the placement of the 
neurons that minimize the cost associated with the 
connections.  

We abstract the neuronal network as a non-
directed weighted graph. Nodes of the graph represent 
individual components of the neuronal network. 
Depending on the level of the network, they can be 
neurons, clusters of neurons such as ganglions, or sub-
neuronal networks. For simplicity, we use these 
interpretations interchangeably. Edges of the graph 
represent connections; the weight of each edge 
represents the connection strength. In addition, there 
are edges from the nodes of the network to external 

nodes which correspond to the external components 
connected with the neuronal network. The positions of 
external nodes are fixed.  

The graph is specified by the adjacency matrix, A, 
where element Ars gives the connection strength 
between nodes r and s. The connection to external 
nodes is specified by the matrix B, where element B Brt 
gives the connection strength between node r and 
external node t. The total cost of the wires is given by 
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where xr, xs are the positions of the nodes, yt is the 
position of the external node, f(xr, xs) is the wiring cost 
between nodes r and s, and g(xr, yt) is the wiring cost 
between node r and external node t. To solve the 
optimal layout problem, we search for the node 
positions giving minimum wiring cost. 

The cost associated with each wire could arise 
from its volume, metabolic requirements, signal 
transmission, or development guidance. The farther 
apart two connected neurons are, the higher the wiring 
cost.  However, it is not clear what exact function of 
the distance the cost should be. Brute force 
enumeration has been used to find the optimal layout 
for a linear cost function. It has also been argued that 
the cost should depend on )(nnL 23 +  due to the trade-off 
between wire volume and signal propagation delay, 
where L is the length of the wire and n is a positive 
number [3]. For n equal to or greater than 1, the cost 
function lies between linear and cubic functions of the 
length. So the cost function can be written as 
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with [1,3]γ ∈ . In [3], the quadratic cost function 
( 2γ = ) was chosen because it provides an analytic 
solution to the wiring cost minimization problem. For 
other cost functions, there are no analytic solutions, 
and solving the optimal layout problem is complicated 
due to the large number of possible spatial 
arrangements of all the components.  

Using our proposed method for solving the 
optimal layout problem, we are able to investigate 
many different cost functions. By comparing the 
resulting solutions with the actual layout we hope to 
find tight estimates of the actual cost functions used by 
nature. 

3. Local interaction and global 
optimum 

As mentioned in previous work [2], the nervous 
system is far from a completely interconnected 
network, where “everything is connected to 
everything”. In the connectivity matrix of C. elegans 



ganglia, about half of the matrix elements remain 
empty, i.e., about half of the ganglia pairs do not 
interconnect. In addition, connections tend to link 
pairs of ganglia which are adjacent or at least nearby. 
Information is exchanged only among the 
interconnected neurons, so each neuron obtains 
information from a subset of the entire system and 
usually from the nearby portion. This leads naturally 
to the question: how does a real physical system reach 
an optimum using only partial or local information 
exchanges? 
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A disadvantage for optimization methods that 
depend only on local interactions is that they are very 
easily trapped in local optima, and they are likely to 
misinterpret local optima as global ones. In order to 
avoid these local optima, we adopt a stochastic 
approach which is based on the theory of Markov 
random fields (MRFs) and simulated annealing with 
Gibbs sampling and can yield the desired 
configurations corresponding to global minima of the 
cost function using only local interactions [1]. We first 
introduce MRFs and the Gibbs distribution. 

3.1 MRFs and Gibbs distribution 
Define the neighborhood of a site s as sN ={r|r 

and s interconnect r }. In MRFs, the value 
corresponding to s is independent of non-neighbors 
given the values of all its neighbors. In the neural 
placement problem, the sites are the neurons and the 
corresponding random variables are their positions (to 
be determined), which are denoted as X

s≠

s for neuron s, 
where s S∈ . Then the conditional probability of the 
MRF can be represented as: s S∀ ∈  

( | , ) ( | , )s r s rP X X r s P X X r≠ = ∈ sN  
i.e., the conditional probabilities depend only on 
neighbors.  

For local interactions, the well-known 
Hammersley-Clifford theorem proves the equivalence 
between a MRF and the Gibbs distribution, whose 
joint probability distribution is of the form 
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where T is the temperature (discussed further in Sect. 
3.2), U(x) is the potential, and Z is the normalization 
constant. In the neural placement problem, the 
potential U(x) is naturally set to be the cost function 
(for simplicity, only internal costs are considered, but 
it is easy to extend to include external costs): 
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Then if the positions of any neurons are fixed as 
x

r s≠
r, the probability that the position of s is z is defined 

as 
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where the last equality is obtained by substituting Eqn. 
(1). Notice that the conditional probability only 
depends on the neighbors of s. This also verifies the 
equivalence of MRFs and Gibbs distributions. Next, 
we introduce the stochastic method that achieves the 
desired minimum cost based on the MRF property.  

3.2 Simulated annealing with Gibbs 
sampling 

We allow local changes of the neuron positions 
obtained by randomly sampling the conditional 
distribution of Eqn. (2), where the local conditional 
distributions are dependent on a global control 
parameter T called “temperature”. At low temperatures 
the distributions concentrate on states that decrease the 
cost function, whereas at high temperatures the 
distribution is essentially uniform. T is initially large, 
so the process avoids becoming trapped in local 
minima. Then temperature is gradually lowered and 
neural positions are iteratively adjusted to minimize 
the cost function. This gradual reduction of 
temperature simulates “annealing” and has been 
shown [4] to converge to the global maxima of the 
Gibbs distribution, which corresponds to the 
placements with minimum cost. The whole stochastic 
process works as follows: 

1. Initialization: Pick a cooling schedule for T 
and randomly select the initial position of 
each neuron. 

2. Annealing: At each temperature, visit all the 
neurons a certain number of times. Update 
the position of each neuron in turn. When 
visiting s, fix the positions of all other 
neurons r≠s, and change the position of s to z 
with the probability defined in Eqn. (2). 

3. End: Repeat the 2nd step until the cooling 
schedule ends. 

4. Algorithm implementation 
and results 

We implemented our algorithm in Matlab using 
the interconnection matrix for C. elegans ganglia 
provided in [2]. We assume that the neurons and all  
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Fig. 1:  Optimal placement under different cost functions 
( 1, 2,3γ = ). Dots on the diagonal line are the actual 
positions of 11 C. elegans ganglia with normalized length. 
The line with stars is the exact solution with quadratic cost 
from [3].The thick lines are the results of Gibbs sampling.  

external sensors and organs are located in a unit length 
line because of the worm’s large aspect ratio. The head 
and tail are at positions 0 and 1 respectively. For the 
software implementation, we divided the unit line into 
100 small intervals of equal length. Each interval 
represents a position, and intervals are ordered from 1 
to 100. In order to emphasize the locality of our 
algorithm, the candidate positions for a neuron to 
move at each temperature are only those at most 2 
positions away, i.e., if a neuron is at z, then it can only 
choose positions from the set  { 2  
for the next iteration.  

, 1, , 1, 2z z z z z− − + + }

We compare the exact solution and our result for 
the quadratic cost function ( 2γ = ) in Fig 1. Our result 
approaches the exact solution provided in [3]. In Fig. 
1, results with different cost exponents are also shown. 
We observe that in all three cases, the order of the 
neurons is nearly the same as the actual order except 
for one or two ganglia that are slightly different. This 
verifies that wire length is an important factor in 
neuron placement. Moreover, the solution for a linear 
cost function performs slightly better, especially for 
neurons located near the head. However, for ganglia 
near the tail, none of the three cases gives good results. 
Tail side ganglia are all shifted toward the head.  

By examining the connectivity matrix, we 
observed that tail side neurons have relatively strong 
connections with external sensors or organs that are 
located on the tail. So we modified our cost function to 
include an external cost with high penalty. Figure 2 
shows the solution which results from using the cost 
function  
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Fig. 2: Optimal placement with different external and 
internal cost exponents. ( inter exter1, 2γ γ= = ) 

5. Conclusions 
We introduce a stochastic method based on 

simulated annealing with Gibbs sampling for the 
neural layout optimization problem, which is 
computationally feasible and can handle all kinds of 
cost functions. It also provides a new way to explore 
the detailed evolution of biological systems. Using this 
method, we defined a new cost function that 
distinguishes between internal and external 
connections. This cost function estimates actual neural 
positions much better than previous methods.   

We are also considering two-dimensional models 
of neural interconnection, such as the prefrontal 
cortical area in macaques or cats. In future work we 
will investigate more general cost functions that 
achieve better predictions of neural placement. 
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= . This cost function gives 
a much better estimate of the actual positions, 
especially for ganglia near the tail.  

 


