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Abstract— Performance of the Adaptive RED scheme is sus-
ceptible to bursty web traffic. A parallel queue structure was
proposed earlier to address this problem, where real time con-
nections (such as web and UDP) and non-real time connections
(such as FTP) are served in two different queues with drop-
tail and Adaptive RED policies, respectively. In this paper a
modified Adaptive RED scheme is proposed for the second queue
to improve the goodput of non-real time connections. In this
scheme the queue length thresholds for the Adaptive RED are
dynamically determined by the average dropping probability.
Simulation shows that the packet dropping probability of the
Adaptive RED queue stays within a desired small region. The
stability of the queue length variation under this policy is proved
under mild conditions.

Index Terms— Adaptive RED, Active Queue Management,
Scheduling, Stability.

I. INTRODUCTION

The basic idea of RED (Random Early Detection) is to
randomly drop packets to prevent buffer overflow and the
global synchronization problem [1]. The dropping probability
is a non-decreasing function of the queue length as shown
in Figure 1. A TCP connection with a higher flow rate
has a better chance to get packets dropped and reduces its
rate more rapidly. By dropping packets actively, RED keeps
the queue length within a desired region. However, some
simulation and analysis results [2] [3] [4] have demonstrated
that the performance of RED is very sensitive to parameter
settings. Based on the original idea of RED, there have been
some modifications such as Stabilized RED (SRED) [5], Flow
RED (FRED) [6], Weighted RED [7], Random Early Marking
(REM) [8], BLUE [9] and Adaptive RED [10] [11]. The
Adaptive RED scheme dynamically updates the maximum
dropping probability Pmax according to the exponentially
weighted moving average (EWMA) of the queue length and
the overflow/underflow events of queue length. In particular
Pmax is increased if the average queue length is greater than
maxth and decreased if average queue length is less than
minth. The average queue length can thus be kept in the
region (minth, maxth). This adaptive scheme makes itself
more robust with respect to the congestion level.

The Adaptive RED policy provides good rate control for
TCP connections operating in the congestion avoidance phase.
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Fig. 1. The dropping probability function of the original RED.

However, a great portion of Internet traffic is web and UDP
traffic. Since most web connections involve transfer of several
small files, these connections have a short life and are mostly
operated in the TCP slow start phase with a small congestion
window. Dropping web packets by RED in this phase is
not an effective way to control the traffic rate and alleviate
the congestion at the bottleneck router. Furthermore, from
the viewpoint of a web user, one or several packet losses
in the slow start phase would lead to extra delay for re-
transmission or even TCP timeout. It would also force TCP to
enter the congestion avoidance phase prematurely with a small
congestion window and result in a low throughput. This delay
and low throughput would severely degrade the performance
of delivering short messages such as web pages, and web
browsers would experience long waiting times even with a
high speed network as shown in Figure 2. To address these
problems, we propose a parallel queue structure for active
queue management at the router in [12]. In this structure
short-life and delay sensitive traffic such as web is bypassed
to a separate queue as shown in Figure 3, and the Adaptive
RED queue is only responsible for handling delay insensitive
applications such as FTP.

The original Adaptive RED dynamically changes the max-
imum dropping probability Pmax to keep the queue length
within the thresholds. However, for non-real time applications,
high goodput (low packet dropping rate) is more important
than short packet delay. Hence in this paper we explore a
modified Adaptive RED policy for non-real time applications
at the second queue in which the queue length thresholds are
dynamically adjusted to maintain the dropping probability of
Adaptive RED algorithm in a desired range. Simulation results
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Fig. 2. TCP/Reno mean delivery delay of small file v.s. dropping probability
Pd with file sizes 30, 60, ...,210Kbytes, bandwidth 3Mbps and round-trip
time 128ms.

show that high link utilization is achieved while the packet
dropping probability for the Adaptive RED queue stays in
a desired (small) region. This scheme allows one to control
the rates of non-real time connections using queuing delay
(not a problem for such connections) instead of the dropping
probability. A question that arises naturally is whether the
queue length variation under the modified Adaptive RED is
stable. We shall provide an affirmative answer to this question
through analysis of queue length dynamics.

The remainder of the paper is organized as follows. In
Section II the parallel queue structure is briefly reviewed. The
Adaptive RED scheme with dynamic thresholds is described
in Section III. Section IV contains the stability analysis of the
queue length dynamics. Finally, we conclude in Section V.

II. A PARALLEL QUEUES STRUCTURE

In this section we briefly introduce the parallel queue struc-
ture proposed in [12]. The first queue serves UDP packets and
short-life real-time traffic such as web traffic. Since dropping
these UDP and web packets cannot effectively alleviate the
congestion level, it would be good to keep them in the queue
unless the total buffer (shared with the other queue) has
overflowed. Hence, the queuing policy of this queue is chosen
to be drop-tail to minimize the packet loss rate. In order to
have a short file delivery delay for UDP and web connections,
the service rate C1(t) is changed dynamically according to its
instant queue length q1(t) at time t.

The second queue serves long-life TCP connections such
as FTP with large file sizes, where the Adaptive RED is
used. Figure 3 shows the RED+Tail parallel queue structure
in the router. In order to allocate bandwidth dynamically to
both queues and assign a desired region of queue length for
the Adaptive RED queue, we define the maximum thresholds
maxthi and minimum thresholds minthi for i = 1, 2. The
service rates C1(t) and C2(t) are given by the following
algorithm:

• if q1(t) = 0, then C1(t) := 0.
• if 0 < q1(t) < minth1, then C1(t):=C1min.
• if minth1 ≤ q1(t), then C1(t):=min(C q1(t)

maxth1
, C1max).

• C2(t) := C − C1(t),
where C is the link bandwidth. The constant C1max preserves
the minimum available bandwidth C − C1max for the RED

queue to prevent FTP connections from timeout. The thresh-
olds maxth2 and minth2 fixed in the original Adaptive RED,
are used to regulate the maximum dropping probability, i.e.,
the maximum dropping probability Pmax is adjusted when the
average queue length is outside [minth2, maxth2].

Router

Short−life TCP & UDP 

Long−life TCP

Drop−Tail

Adaptive RED 

maxth

maxth minth

minth2 2

1 1

maxP C2(t)

C1(t)

Fig. 3. The parallel queue structure for active queue management (Fixed
Thresholds) .

Although the available bandwidth of the Adaptive RED
queue is shared with the drop-tail queue, q2(t) stays in
a desired region [12]. With this RED+Tail parallel queue
structure, we can keep the benefits of Adaptive RED such
as high (100%) link utilization. Furthermore, the packet loss
rate of UDP and web connections is greatly reduced by the
drop-tail policy and a shared buffer. The packet loss rate of
long-life TCP traffic is also reduced due to a more stable queue
length in the Adaptive RED queue [12]. Figure 4 compares the
small web file delivery time under different buffer management
schemes such as Drop-Tail, Adaptive RED and RED+Tail.
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Fig. 4. Small file delivery delay: mean and standard deviation.

III. ADAPTIVE RED WITH DYNAMIC THRESHOLDS

The original Adaptive RED dynamically adjusts the Pmax

(or equivalently, the slope of dropping function) to control the
flow rates of TCP connections and keep the average queue
length in a desired region. However, for those applications with
large file sizes, the goodput is more important than the packet
delay. The packet loss rate is a key factor in determining the
TCP congestion window size and goodput. Since the minimum
and maximum thresholds of the Adaptive RED scheme are
fixed, the dropping probability of Adaptive RED could be
very high when a congestion happens. This high dropping
probability causes frequent re-transmissions, small average
congestion window size and low goodput. In other words,
the congestion in bottleneck router causes another bottleneck
at the TCP sender end. Considering that the Adaptive RED
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queue is designed for serving time insensitive connections, we
propose to control the TCP flow rate by adjusting its queuing
delay instead of dropping packets.

To maintain a low packet loss rate (and a large average
congestion window size at the TCP sender), the following
modified Adaptive RED scheme for the Adaptive RED queue
is proposed, where minth2 and maxth2 are dynamically
adjusted while D=maxth2 −minth2 is maintained constant:

• Pick 0 < γ < 1 (γ=0.05 in this paper).
• If P̄d > PU , then minth2 := minth2(1+γ), maxth2 :=
minth2 + D.

• If P̄d < PL, then minth2 := minth2(1−γ), maxth2 :=
minth2 + D,

where P̄d is the average dropping probability obtained by
the EWMA algorithm and (PL, PU ) is the desired region of
dropping probability. Note that if we set PU < Pmax, the
floating thresholds do not change the current slope of dropping
probability function dramatically since the distance between
the thresholds is fixed.

The rationale behind the above scheme is that, by increasing
the thresholds (when P̄d > PU ), the queuing delay is in-
creased and the flow rates are reduced. Since the average TCP
throughput [13] is proportional to 1

RTT
√

Pd
, we achieve the

same throughput without raising the packet loss rate. Figures
5 and 6 obtained in ns2 simulation compare the Adaptive RED
schemes with fixed and dynamic thresholds respectively. There
are 20 persistent FTP servers sharing a 6Mbps bottleneck link.
Another 20 FTP servers arrive at time 100s and leave at time
300s. It can be seen that the fixed threshold scheme has a
small queue length variation and a large dropping probability
(0.05). In contrast, the dynamic threshold scheme has a much
lower average dropping probability (0.014 with PL=0.010,
PU =0.020), but a higher packet delay. Note that both schemes
achieve 100% link utilization so that each FTP connection has
the same throughput. However, with a much lower packet loss
rate, the scheme with dynamic thresholds achieves a higher
goodput. This scheme provides a trade-off between packet loss
and queuing delay in an Adaptive RED queue.
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Fig. 5. Average queue length with fixed and dynamic thresholds: 20 FTP
starting at t=0, and another 20 FTP starting at t=100s and leaving at t=300s,
C=6Mbps, dk=64ms.

We also implemented the Adaptive RED with dynamic
thresholds in the parallel queue structure, and compared with
the case where the fixed threshold Adaptive RED was used.
The network in our ns2 experiment has a simple dumbbell
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Fig. 6. Dropping probability with fixed and dynamic thresholds: 20 FTP
starting at t=0, and another FTP 20 starting at t=100s and leaving at t=300s,
C=6Mbps, dk=64ms (Inst. P: instantaneous dropping probability; Avg. P:
EWMA average of Inst. P).

topology with the bottleneck link bandwidth C=3.0Mbps. One
side of the bottleneck consists of 800 web clients. Each client
sends a web request and has a think time of Exponential
distribution with mean 50s after the end of each session.
The other side contains 800 web servers, running HTTP 1.1
protocol and having a Pareto file size distribution with param-
eters (Kp=2.3Kbytes, α=1.3) (mean 10Kbytes). The round-
trip propagation delay of HTTP connections is uniformly
distributed in (16, 240)ms. Note that the mean rate of the
aggregate web traffic is around 1.2Mbps. There is one CBR
traffic source which periodically generates a 1Kbytes UDP
packet every 50ms. Besides the short web connections and
UDP traffic, there are 10 persistent FTP connections sharing
the bottleneck link with round-trip propagation delay of 64ms.
Web and CBR traffic go to the first (drop-tail) queue and
FTP traffic goes to the second (Adaptive RED) queue at the
bottleneck router. Table I compares the performance of each
type of connection, and the results are consistent with Figure
5 and Figure 6. We also note that in the dynamic threshold
scheme the packet loss rate of q1 is slightly higher than that in
the fixed threshold scheme. This is due to the longer average
length of the RED queue (and thus smaller buffer for q 1

since both queues share the same physical memory) when
the dynamic threshold scheme is used. This situation can be
improved by increasing the total buffer size despite that this
approach is general useless or even harmful in a single RED
queue or a single drop-tail queue.

TABLE I

PERFORMANCE METRICS:RED+TAIL WITH FIXED AND DYNAMIC

THRESHOLD SCHEMES RESPECTIVELY

Policy Loss % Delay Sec. Rate KB/s
Fix. Thres.:FTP(q2) 2.747 0.184 209.465
Fix. Thres.:WEB(q1) 1.278 0.114 144.455
Fix. Thres.:CBR(q1) 0.300 0.109 19.867

Dyn. Thres.:FTP(q2) 0.899 0.318 209.455
Dyn. Thres.:WEB(q1) 2.306 0.093 144.505
Dyn. Thres.:CBR(q1) 0.519 0.091 19.827
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IV. STABILITY ANALYSIS OF THE QUEUE LENGTH

DYNAMICS

In Section III we proposed the modified Adaptive RED
scheme with dynamic thresholds in the parallel queue structure
for controlling the flow rate of non-real time applications.
The maximum threshold maxth2 and minimum threshold
minth2 are changed dynamically to keep the packet dropping
probability Pd within a desired small region (PL, PU ) at the
cost of packet delay variation. In this section we analyze issues
related to the stability of this queue. To simplify the analysis,
it is assumed that the dropping probability Pd of the Adaptive
RED at the bottleneck router is fixed so that the average
flow rate of each TCP connection can be approximated by
a simple function of its round-trip time (RTT). Note that this
assumption is not very restrictive considering that the interval
(PL, PU ) is small.

Consider N persistent TCP flows. Define T n
k as the average

flow rate of the kth TCP connection during time slot n. Let d′
k

be the link round-trip propagation delay of connection k. At
the beginning of time slot n, the k th connection sees a round-
trip time Rn

k which is equal to the sum of link propagation
delay and the average queuing delay in the forward direction
qn/C and in the backward direction qn

b /C:

Rn
k = d′k +

qn

C
+

qn
b

C
, (1)

where C is the link bandwidth, qn and qn
b are the forward

queue length and the backward queue length at the beginning
of time slot n, respectively. We assume that congestion only
happens in the forward direction, and the queuing delay q n

b /C
in the backward direction is a constant. Hence we can write
Rn

k = dk + qn/C with dk = d′k + qn
b /C.

Based on the assumption of fixed dropping probability at
the router, each TCP connection experiences a fixed packet
loss rate Pd. As a result, the corresponding average congestion
window size is assumed to be a constant W̄ , and the average
flow rate T n

k of the kth TCP connection at slot n is

T n
k =

W̄

Rn
k

+ En
k (2)

where En
k is a white Gaussian process with zero mean and

variance σ2 modeling the flow rate perturbation of the k th

connection at slot n.
Given the arrival rate of each TCP connection, the dynamics

of queue length qn follows the Lindley equation:

qn+1 = min{B,max[0, qn + (
N∑

k=1

T n
k − C)S]}, (3)

where B is the buffer size and S is the duration of one
time slot. Since the queue length of Adaptive RED is mostly
operated in a region far from the boundary, we first ignore
the max and min operations in (3) and have a simplified
nonlinear dynamic system:

qn+1 = f(qn) + ξn, (4)

where

f(qn)
�
= qn + S{(

N∑

k=1

W̄C

qn + dkC
) − C}, (5)

and

ξn �
= S

N∑

k=1

En
k . (6)

To avoid the trivial case q ≡ 0, we assume that the sum of
possible peak rates of all connections is greater than the link
bandwidth at the bottleneck router:

N∑

k=1

W̄

dk
≥ C. (7)
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Fig. 7. Queue length and TCP throughput (of a single connection) with
C=6Mbps, dk=64ms, W̄ =6.02×104 bits. Compare with simulation in Fig.5.
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Figure 7 shows the queue length dynamics (and the through-
put of a persistent TCP connection) based on the model (4),
where the flow rate deviations σ = 77021, 128490 (bits/s)
for N=20, 40 are measured from the simulation in Section
III, respectively. For both N = 20 and N = 40, Figure 7
shows consistent steady state behavior with simulation results
in Figure 5. The mapping f(·) is plotted in Figure 8 for
N = 20 and N = 40.

We first analyze the stability of the equilibrium of the model
(4) when there is no flow disturbance, i.e., En

k = 0. An
equilibrium qe of qn+1 = f(qn) should satisfy

N∑

k=1

W̄

dk + qn/C
= C. (8)
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Since
∑N

k=1
W̄
dk

≥ C by assumption, (8) has a unique solution
qe in [0,∞). qe is located at the intersection of the graph of
f with the 45o line (see Figure 8).

It is well known that qe is locally asymptotically stable if
|f ′(qe)| < 1. In the following we give conditions for qe to be
globally asymptotically stable.

Proposition 4.1: If the rate update interval S satifies

S <
2C

W̄ (
∑N

k=1 d
−2
k )

, (9)

the equilibrium qe is globally asymptotically stable. Further-
more, |qn − qe| < ρn|q0 − qe| for some ρ ∈ (0, 1) dependent
on q0.

Proof: First we observe that the function f is convex
since

f ′′(q) =
N∑

k=1

2SW̄C

(q + dkC)3
> 0, ∀q ∈ [0,∞). (10)

For any B0 such that B0 > qe and

B0 ≥ f(0) = (
N∑

k=1

W̄

dk
− C)S, (11)

one can verify that f maps [0, B0] to [0, B0] due to convexity
of f and

f ′(q) = 1 − S
N∑

k=1

W̄C

(q + dkC)2
< 1, ∀q ∈ [0,∞). (12)

When restricted to [0, B0], f ′(q) ≤ ρ1 with ρ1 ∈ (0, 1). If
(9) is satisfied, f ′(q) > −1, ∀q ∈ [0,∞], and f ′(q) ≥ −ρ2,
∀q ∈ [0, B0], with ρ2 ∈ (0, 1).

Hence |f ′(q)| ≤ ρ
�
= max(ρ1, ρ2) < 1 ∀q ∈ [0, B0], which

implies that f is a contraction mapping on [0, B0]. By the
Contraction Mapping Principle [14],

|qn − qe| < ρn|q0 − qe|, if q0 ∈ [0, B0]. (13)

Since B0 can be arbitrarily large (as long as B0 < ∞), qe

is globally asymptotically stable. Note that the contraction
constant ρ depends on B0 and thus on q0. �

From Proposition 4.1, when rate update is frequent enough,
the equilibrium will be asymptotically stable (the equilibrium
itself does not depend on S). Another sufficient condition for
asymptotic stability is the following:

Proposition 4.2: If f ′(qe) ≥ 0, then qe is a globally
asymptotically stable.

Proof: As shown in the proof of Proposition 4.1, f is
convex. If f ′(qe) ≥ 0, graphical analysis reveals that

|qn+1 − qe| ≤ |qn − qe|,
where the equality holds if and only if qn = qe. The claim
thus follows. �

For the homogeneous case dk = d, we have qe = NW̄−dC.
And the condition f ′(qe) ≥ 0 is equivalent to S ≤ NW̄

C =
qe/C + d. In other words, qe is asymptotically stable if the
rate update interval S is no larger than the round-trip time
(RTT). Figure 9 shows the mapping f and the equilibrium q e

for different S. Figure 10 shows the queue length dynamics

for S=RTT and 2RTT , respectively. We can see that in
the case S=RTT , the queue length stays around qe with
small variation, while in the case S=2RTT , the queue length
dynamics is much more chaotic.

For the heterogeneous case, a sufficient condition S ≤ ( C
W̄
−

N(N−1)
(qe+C mink dk)2 )−1 for stability can be derived.
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Next we consider the Lindley equation with random per-
turbation ξn = S

∑N
k=1 E

n
k :

qn+1 �
= g(qn, ξn) = min{B,max[0, f(qn) + ξn]} (14)

Note that since {En
k } is white and stationary, so is {ξn}. It

turns out that stability of the equilibrium of the deterministic
system qn+1 = f(qn) is closely related to stochastic stability
of the system (14).

Proposition 4.3: The stochastic system (14) admits an
invariant probability measure µ∗ for the queue length qn.
Furthermore, if the condition (9) on Proposition 4.1 is satisfied,
this system is weakly asymptotically stable, i.e., the queue
length distribution µn for qn converges to µ∗ weakly.

Sketch of Proof. Since f is continuous and {ξn} is iden-
tically and independently distributed, the system (14) is a
regular stochastic dynamic system [15].

Since [0, B] is compact, the system admits an invariant
probability measure µ∗ by the Krylov-Bogolubov Theorem
[15]. When condition (9) is satisfied, g is a contraction
mapping with respect to its first argument, i.e.,

|g(x, ξ) − g(y, ξ)| < ρ|x− y|, ∀x, y ∈ [0, B], ∀ξ, (15)
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where ρ ∈ (0, 1). Hence the system is weakly asymptotically
stable by Theorem 12.6.1 of [15]. �

The invariant probability measure µ∗ has probability masses
at q = 0 and q = B, and has probability density on (0, B).
An approximation to µ∗ can be obtained by numerically
advancing the probability distribution µn for the queue length
qn. We have discretized the queue length and consequently
obtained a Markov chain for the dynamics of the queue length
distribution.

Let the packet size have a fixed length L (bits),
zn:=ceil(qn/L) be the number of packets in the queue at time
n and πn = [Pr(zn = 0), ..., P r(zn = B)] denote the corre-
sponding probability vector. Denote by T the state transition
matrix of the Markov Chain, where T (i, j)=Pr[zn+1 = j|
zn = i]=Pr[j ≤ (min{B,max[0, f(iL) + ξ})/L < (j + 1)].
We have

πn+1 = πnT, (16)

π∗ = π∗T, (17)

where π∗ = limn→∞ πn is the steady state distribution.
On the other hand, when the buffer size B is far greater than

the equilibrium queue length and the perturbation magnitude
is small, the transformation g(q, ξ) can be linearized around

the equilibrium point qe. Let Qn �
= qn − qe. Then

Qn+1 �
= f

′
(qe)Qn + ξn. (18)

Since {ξn} is white Gaussian process with zero mean and
variance NSσ2, {Qn} will be a Gaussian process with zero
mean and normalized variance

V ar[Qn/S] =
Nσ2

1 − |f ′(qe)|2 . (19)

From (19) the normalized queue length variation will be
minimal if f

′
(qe) = 0, which corresponds to S = RTT for

the homogeneous case.
Figure 11 shows the queue length distributions obtained

through empirical estimation from ns2 simulation, numerical
computation based on (16), and linear approximation based on
(19), repectively. Three distributions agree well, which verifies
that our nonlinear model (14) captures the queue length
dynamics under the Adaptive RED scheme with dynamic
thresholds.
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Fig. 11. Steady state queue length distributions for N=20 and 40, S=RTT.

V. CONCLUSIONS

In this paper we have first reviewed the parallel queue
structure for active queue management. This structure offers
more degrees of freedom to its flexibility in accommodating
variants of the Adaptive RED scheme. We have explored a
modified Adaptive RED scheme with sliding queue length
thresholds. This scheme is able to maintain the dropping
probability within a small interval and improve the goodput
of non-real time connections. The queue length variation
under this policy has been analyzed and conditions for its
stability have been given. The dynamic threshold Adaptive
RED might also be useful for achieving throughput fairness
among multiple RED queues.
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